Minimizing the Cardinality of the
Fixed Point Set for Self-Maps of
Surfaces with Boundary

MICHAEL R. KELLY

1. Introduction

Among all maps homotopic to a given self-map of a compact polyhedron,
there is an integer which gives the greatest lower bound for the number of
fixed points. We develop a method for computing this bound when the poly-
hedron is a surface with boundary. A few applications of this method are
also given.

Given a compact manifold of dimension 7 and a map f: X — X, a problem
of general interest is to obtain information about the fixed point set Fix(f)=
{xe X | f(x)=x}. As f can be approximated by a map having Fix(f) finite,
a natural problem is to find a lower bound for the cardinality of Fix(f)
where the lower bound is among maps homotopic to the given map f. Fol-
lowing conventional notation, let

MF| f]=min{#Fix(g) | g is homotopic to f}.

The dependence on the space X is suppressed in this notation. We are inter-
ested in computing MF[ f] given the space X and the homotopy class of
maps [f].

Central to the solution of this problem is the Nielsen number N(f), which
is the number of essential fixed point classes of f; see either [B] or [J1] for
the definition and properties of N( f). Its importance is that it always gives a
lower bound for MF[ f] and the following classical theorem due to Wecken
[W].

THEOREM 1.0. If X is a manifold of dimension greater than 2, then
N(f)=MF[f]. :

In dimension 2, the above result holds if f is a homeomorphism, but in
general the lower bound given by N(f) cannot be achieved. Counterexam-
ples appear in [J2], [J3], [K], and [Z]. In [K] the author gives an algorithm
for computing MF[ f] in the case where X is a disk with two open holes re-
moved—that is, the pair of pants. The aim of the present paper is to abstract
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the ideas in [K] and to give a geometric scheme, but not an algorithm, for
computing MF{ f] for any self-map of a compact surface with boundary.
This geometric method is quite different than the commutator calculus and
braid group techniques used by Jiang [J4] to give an algebraic formulation
for MF[ f]. In Section 3 two factorization theorems for computing MF[ f]
are presented. In Section 4 a few applications of these theorems are given,
including the proof of the following embedding theorem.

THEOREM 1.1. Let P and M be compact, connected surfaces each having
nonempty boundary. Suppose that i: P — M is an embedding such that the
induced map i,: H(P; Z) - H{(M; Z) is a monomorphism. Let F: M — M
be a map such that F(M) is contained in i(P). If f: P— P is the induced
map satisfying iof =Foi, then MF[F1=MF][f].

To see that the hypothesis imposed in Theorem 1.1 regarding the embedding
of P into M is necessary, consider the following example.

EXAMPLE 1.2. Let C, denote the circle in the plane with center (0, 0) and
radius r. Let M be the annular region in the plane bounded by C, and C;.
Let B denote the circle with center (2.5, 0) and radius %, and let P be a reg-
ular neighborhood of C,UB in M. As the loop B bounds a disk in M, the
inclusion of P into M violates the hypothesis in Theorem 1.1.

Fix orientations for the loops C, and B, which are based at the point
(2,0)=C,NB. Let n be a positive integer and define a family of maps
J.: P— P by sending B to the point (2,0) and mapping C, to the loop
(BC,B~'C;1)"BC,. Extend to a map F, of M by mapping each compo-
nent of M\ P into P. Since (F,)y: 7y(M)— (M) is the identity homo-
morphism, F, is homotopic to the identity map on M and so MF[F,] =0.
On the other hand, Corollary 1.2 of [K] states that MF[ f,]=2n.

2. Definitions and Related Examples

Let D be a 2-dimensional disk and M the surface obtained by attaching 1-
handles Hy, ..., H; to D:

M=DUH,UH,U---UH,.

Let {A,;_1,A5;}, 1 =i =<k, denote the attaching region for H;. Then each
A; is a proper arc in M. Let A=U3?%, 4;. Choose xyeintD, and for 1=
[ < k let w; be a simple closed curve based at x;, such that w;Nw; =x, if i = /,
w; N (M\ D) C H;, and w; meets each of A,;_; and A,; transversally in one
point. Let W=w,U --- Uw,; then we can naturally associate n;(M, x,) with
the free group generated by {w,, ..., w;}.

Since our interest is in finding the minimal number of fixed points possible
for a given map f: M — M, it follows from Lemma 3.2 and Corollary 3.6 in
[K] that we may always assume that f(x,) & A, f~!1(A) is a 1-dimensional
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manifold transverse to both W and A, that Fix(f)N f~!1(4) =49, and that
f71(A) does not contain any inessential simple closed curves.

The following is some terminology regarding f: M — M that was intro-
duced in [K] and will be used throughout this paper. The closure of a com-
ponent U of M\(f~'(A)UA) is a critical region for f if both f(U) and
U are contained in the same component of M \ 4. Observe that (topologi-
cally) critical regions are just 2-dimensional disks and that the union of their
interiors contains the fixed point set of f. The index of a critical region C is
the topological fixed point index of f|C (see [B] or [J1]).

Let o be an arc contained in f~!(A;) with daNA; =0 and aNA;=0
when i # j. The order of a, denoted |a/|, is the cardinality of {aNA4;}. If «
has the property that |«|=|8| given any curve 8 C f~1(A4;) satisfying « N B #
@ and BN A; =0 when i # j, then we say that

aisa turn if |a|is even,
ais a crossing if |a|is odd.

If the order of « is at most 2 then we say that « is simple. To visualize, let @
be the component of f~!(A)N (DU H;) containing «. Then d& is contained
in (A\ 4;) and rel endpoints, & and A; can be oriented so that their alge-
braic intersection number is 0 if « is a turn, 1if it is a crossing. Observe that
a turn can be isotoped off of 4; by an isotopy of M with support on DU H;.

Now, by [K; Lemma 2.1], up to homotopy each critical region has at most
one fixed point; one if its index is nonzero and none if its index is zero. With
this in mind we let #Fix(f) denote the number of critical regions having a
nonzero index. The following example illustrates the computation of the
index of a critical region using the terminology above.

EXAMPLE 2.1. Let C be a critical region for f which is contained in D
and bounded by A;, 4; and by curves aC f71(A4;) and BCf_I(Aj), i#],
as indicated in Figure 1. In this case, o and 3 contain (respectively) cross-
ings oy and By. Identify D with I X I so that 4;C{0}xJ and 4; C {1} x[1.

e
Ai ‘ / - / CD ﬂo
B

D P , 4,
N, ////
-

Figure 1
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Following [K, §2], the index of C is completely determined by f acting on
the set S={aNA;3}U[{BN A;} as follows: Think of S as a cyclically ordered
set on dC and label each s € S with + if f(s) > s or with — if f(s) <s, using
the given product structure on D. Now by successively cancelling adjacent
++ or —— labeled pairs of points, reduce S to a set S’ containing only alter-
nating labeled points. Then the index of C is +1(#S).

As a consequence of Lemma 3.5 in [K], the labels for N A; alternate be-
tween + and —. For if consecutive points had the same label then this lemma
allows us to replace f by a new minimizing map g, with g ~!(A4) N A differing
from f~!(A)N A only by the removal of these two points. Similarly, the
labels for BN A; alternate sign. Hence the index of C is zero only when
|eg| =|Bo| and the labels for p and g agree. A special case is noteworthy as
it turns out to be the generic case. If [ag|=1=|8,| then C meets A; and 4;
in arcs and, without loss, f(C) is an arc joining the point f(«) € A;\C to the
point f(8) € A;\C. If index(C) =0 then f(C)N C =@, otherwise index(C) =
+1 and f(C) meets C in a subarc of f(C).

An arc or a simple closed curve v in M is said to be faut if dyN A =6,
int y meets W UA transversally in a finite number of points, AU+ does not
contain any inessential simple closed curves, and for each 7, int yU (w;\ x,)
does not contain any simple closed curves. This last condition keeps the
geometric intersection of v and W minimal up to isotopy (rel @) in M \ x,. A
map f: M — M is taut if each component of f~1(A) is a taut proper arc or
a taut simple closed curve, Fix(f)NA=0 and f(M)C W. 1t follows imme-
diately from the definitions that if f is a taut map, then f~1(A4) does not
contain any turns and all crossings are simple.

The following two constructions of taut maps will be used throughout
this paper. Since there is a bijection between End(=;(M)) and [M, M ], the
first construction produces a representative map for the homotopy class cor-
responding to a given endomorphism. The second produces a map from
more geometric data; in this case the endomorphism is not given explicitly.

(1) Given an endomorphism ¢ of 7 (M, x,) by w; » ¢(w;) (Where ¢(w;) is
a reduced word), there is a natural taut map f,: M — M satisfying f,(D) =
Xo, and f[‘(A)ﬂH,- consists of 2-[length(¢(w;))] proper arcs in M each
traversing w; in a single point. Define f, so that the loop f;(w;) corresponds
to the word ¢(w;). (See [K, p. 82] for more detail.) Since each crltlcal region
has index +1, we have

#Fix(f;) =1+ 2 (number of appearances of w*!in ¢(w;)).

i=1
(2) Given the following data:
(i) A finite collection I' of pairwise disjoint, taut proper arcs and simple
closed curves;
(i) amap u: I'> WNA;
(iii) a map p: {components of M \I'} - {components of M\ A};
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(iv) for each component V of M\TI" and each curve yeI" which lies on
aV, if p(V) = H; then p(y) € {Ay;_1,A2i};
there exists a taut map fr: M — M such that I' = { fi1(A4)}.
The construction (1) above can be thought of as a special case of (2). Given
the endomorphism ¢, the proper arcs in M\ D comprise all of I" and the
functions p, p are determined by the words ¢(w)), ..., d(w,).

The constructions of the maps f; and fr- are certainly not unique, but we
have the following lemma.

LEMMA 2.2. Let h: M — M be a homeomorphism isotopic to the identity.
Given (T, u, p) and fr as defined above, let T = h(T'), p'=poh™!, and p'=
poh~\. Then for any fr. defined corresponding to (I, ', p’), fr- is homo-
topic to fr.

Proof. Since fyeoh is homotopic to fr-, we may assume that I' =I", p=u’,
and p=p’. As W is a deformation retract of M, and since the induced map

(f |w) on fundamental groups is completely determined by I' "\ W and u, the
result follows. O

The computation of #Fix(f) in construction (2), which depends on I', g,
and p, is illustrated in the next example.

EXAMPLE 2.3. The collection T, lying on the disk with three holes re-
moved, consists of six proper arcs and two simple closed curves isotopic to
w3, as indicated in Figure 2. The u-values (indices only) for the arcs are

/ i
A3 //// N
w2
1" ~
- tat
-
Aj 5::1 GE_-_S A1

Figure 2
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marked along the outer boundary curve. The u-values for the circles are as
labeled. For p-values, the region between 1 and 2 goes to H,, between 3 and
4 goes to H,, between 5 and 6 goes to H;, and the rest are mapped to D.
There are seven critical regions in all; one in H,, two in H,, and four in D.
All have index 0 except the one in H,;; thus #Fix(fr)=1. On the level of a
fundamental group, w; is sent to wyw;™!, w, to w,, and w; goes to the trivial
word. Since the Lefschetz number of this map is nonzero, MF[ fy]1=1.

EXAMPLE 2.4. This example illustrates the importance of the topology
of the surface, in addition to the endomorphism ¢ acting on a fundamen-
tal group, in determining MF[f;]. Suppose M is defined as above with
rank(H;(M))=2. Let m be a positive integer and define ¢: (M) - m(M)
by

—1,,—1
wy= (Wowiwy wy ) wywy,
Wz'—’l.

In [K] it was shown that if M is homeomorphic to a disk with two holes re-
moved then MF[ f;]1=2m. On the other hand, if M is topologically a punc-
tured torus then one can construct a fixed point free map homotopic to f;.
Roughly, the fixed point free map occurs because the word w,w;w; lw!
corresponds to the boundary of the punctured torus.

Let f: M — M be given, taut except possibly having turns and nonsimple
crossings. A critical region for f is said to be exceptional if it meets at least
three components of A. Now suppose £=L;UL, is given, where each L;
consists of a nested collection (possibly empty) of simple closed curves con-
tained in distinct critical regions for f. These critical regions are assumed
to meet at least three components of A. Suppose further that p, u are de-
fined for f~1(A)U L, and that the innermost curve of L; bounds a criti-
cal region E; (its index must be zero). Let D; be a disk containing L; and
not intersecting f~1(A4)UA. Let f be defined by construction (2) above
so that: f=f on the complement of the union of all the exceptional criti-
cal regions; and, on each such region, f has a fixed point, possibly having
index 0.
Let 0; € {1, 3} be given. A taut arc « in M is a merging arc for f if it satisfies
the following conditions.
(1) With da={p,, p,}, if L; =0 then p; € Fix(f), otherwise p; e int E;.
(2) For each /e L;, o meets / transversally in 6; points.
(3) There is a regular neighborhood N of « such that, for each /e L;,
NN/ consists of §; arcs and f(«) is homotopic to a rel(daU (M \N)).
" (4) « is transverse to, and does not meet any turns of, f~1(A4). Here
transverse means (in addition to topologically transverse) that if « is
a component of (a\ A), 7 is a component of (f~1(A4)\ A), and 7N
is nonempty, then oy and 7 meet in exactly one point and their closures
do not intersect a common component of A.
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The above definition is no doubt unwieldy, and is only used in its most
general form in the proof of Theorem 3.2 and in Example 4.1. For con-
venience, and indeed it is the generic situation, the reader should first con-
sider the case where £ is empty so that o joins two fixed points of £. In this
case o will be called a simple merging arc. By condition (3), it follows that
da: belongs to the same fixed point class.

Suppose that f: M — M is a map and « a merging arc. We define a new
map g: M — M as follows: Let Sp=aN f~!1(A). Suppose p,ge S, so that
the interior of the subarc of « from p to g misses Sy and both f(p), f(q) are
in the same A;. Also, if « is not simple, then the subarc from p to g is not
contained in (D, UD,). We alter f~!(A) as indicated in Figure 3.

£~1(a)

</ ~ :ZO

+

«a p q a 4 q

Figure 3

Thus, neighborhoods of p and g in f~!(A) are replaced by arcs /,, /§
which are parallel to «. Setting S; = S\ {p, ¢}, we repeat the above proce-
dure choosing /;, /{ disjoint from /,, /5. Exhausting all such pairs, we end up
with a set of points S, on o and a family of curves {/;,//}. We obtain an
intermediate map g: M — M by letting I" denote the taut collection of curves
obtained by isotoping the {/;, //} to taut curves and letting p, p be naturally
induced by f; then g = f-. Notice that since the curves in £ ~!(A4) which did
not meet o were already taut, they are unchanged in T".

Now, write «aNA={gq,..., q,} ordered along «. Since f(«) is homotopic
to a, from the above construction it follows that S,=g~1(A4)={r,...,7,}
(using the same ordering along «) with g(r;) and g; contained in the same
component of 4. Namely, u(L;) where r;e L; C g ~'(A).

We alter 2 ~!(A4) as indicated in Figure 4. Here a neighborhood of r; in
£71(A) is pulled along « until u(L;)Ng; is traversed, forming a turn at

M(L,') L; C ﬁ_l(A) u{L;) L;

Figure 4
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p(L;). Let L} denote this new curve. The turn is the subarc of L] which meets
p(L;) in an even number of points and meets no other component of A.

Define g: M — M by requiring that g(L}) C u(L;) and that g agrees with g
outside a neighborhood of «. We say that g is obtained from f by merging
along o, and write f = g. Certainly g is not uniquely determined, but by
virtue of the construction and the proof of Lemma 2.2 we have the follow-
ing proposition.

PROPOSITION 2.5. If f=> g then f and g are homotopic maps.

Suppose f > g is given. If g has a merging arc 8 we can merge along 8 to
obtain a map A. This gives

2285 n which we write as f -2 p.

In general, &> g where A = (M1, -.-» A\,) means that there exist maps f;:
M- Mwith fo=f, f,=g,and f;_ 1)‘—> fi- Wecall A a merging sequence for
Jf, and note that A is an ordered sequence since d\; may not be in Fix(f;_,).
We say A is disjoint if )\ N )\ @ for each i # j. If in addition each X\; is sim-
ple, we say that A is szmple

3. The Factorization Theorems

In manifolds of dimension 3 or more, the parallel notion of merging along
an arc « would be a homotopy, with support in a neighborhood of «, which
takes two fixed points and coalesces them to form a single fixed point (or
cancels the pair) without introducing any other fixed points. In dimension 2
we can think of merging along « as coalescing da, but it is quite possible
that new fixed points are introduced (by creating critical regions with non-
zero index), and others may be cancelled out, in the process. Nonetheless,
Theorem 3.1 will allow us to find the minimal number of fixed points for a
given map by this process, but only after a certain taut map is given. First,
one additional construction is needed.

Suppose f: M — M is given so that f ~1(A) is taut except for having turns
and crossings. Define a map f;,: M — M associated to f by requiring that

(1) fizi(A) and f£~1(A) differ only in the order and labeling (as in Ex-
ample 2.1) of the turns and crossings, and

(i1) fmin has the maximal number of critical regions with index 0 among
all maps satisfying (i).

After the proof of Theorem 3.1, a method is described for obtaining f;,
from f.

Our goal is to find a fixed point minimizing map in a prescribed homotopy
class of self-maps of M, which we may assume is determined by a given en-
domorphism ¢ of the fundamental group. This in turn determines the map
Js» constructed in Section 2, in the homotopy class corresponding to ¢. The
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idea is to find a map f so that the related map f;, defined above is a min-
imizing map. The following theorem states that such a map f is the result
of merging along some merging sequence which begins with a taut map.
Thus, the fixed point minimization problem is reduced to the consideration
of taut maps (construction (2) in Section 2) and merging sequences associ-
ated to these maps.

THEOREM 3.1. Given an endomorphism ¢ of ©(M, x,) there exists a taut
map g: M — M, homotopic to fy, and a simple merging sequence g f
such that #Fix(fiin) = MF[f,]. Moreover, if h is a map homotopic to f,
having MF | f,] fixed points and such that h~Y(A) is a 1-dimensional proper
submanifold of M, then g may be chosen so that g~1(A) is isotopic, by an
isotopy which is the identity on dM, to h~1(A).

Proof. Let h: M~ M be a map having MF|[f,] fixed points. Besides the
assumptions concerning minimizing maps given at the beginning of Section
2, we also assume that # satisfies the following condition (*) which is a con-
sequence of Lemmas 3.4-3.6 in [K]: Suppose 7 is a subarc of 4;,\A~'(A)
with endpoints in #71(A4), and that ¢ is a subarc of #~!(A) with the same
endpoints. If 7U ¢ forms an inessential simple closed curve, then ¢ is a sub-
arc of 271(A4;) and it only meets A4 in its endpoints.

A graph G(h) is embedded in M as follows: (i) The vertices of G(A) are
obtained by choosing a point in the interior of each critical region for 4, a
fixed point if one exists; and (ii) as each turn or crossing meets the boundary
of exactly two critical regions, we connect the corresponding vertices of
G(h) with an arc that intersects the turn or crossing in exactly one point, is
contained in the two critical regions, and is disjoint from all other edges.
Note that vertices of valence 3 or more correspond to exceptional critical
regions.

Let A be a nonempty maximal subgraph of G(#) defined so that each edge
of A meets a turn, and for each interior vertex the corresponding critical
region is not an exceptional one. If \ is a simple closed curve, then apply the
first half of the proof of [K, Lemma 4.5] to pull the turns meeting A off of 4
without changing the indices of the critical regions. This does not increase
the number of fixed points nor does it change the isotopy type (rel dM ) of
the collection of curves. Thus, we may assume that each such \ is an arc.

Let K, and K, denote the critical regions corresponding to the endpoints
of \. By the maximality of X and condition (*), all of the turns of A~1(A)
meeting A can be pulled taut without crossing over the endpoints of \. Let
h': M — M be the map obtained by pulling these turns taut (but not over
d\) and let K, K| be the analogous critical regions for 4’ containing d\. Ob-
serve that if index(4’, K/) = 0, then the intermediate map A obtained by pull-
ing only the turn meeting K; off of A has index(4, K/) =0 and so #Fix(%) <
#Fix(h). In this case, reduce /% by using Lemmas 3.4-3.6 of [K] so that con-
dition (*) is satisfied. As this involves replacing a given curve by a new curve
which is isotopic rel dM to the original, plus an inessential simple closed
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curve, the isotopy type of the collection of curves is unchanged. Hence, we
may assume that # has the property that index(#’, K/) # 0 for i =0, 1. Thus,
o\ C Fix(h’). Reverse this process to get that the arc A is a simple merging
arc for h’, so h 2.

Suppose « is another such subgraph and suppose further that daMN N #= @.
If K, is a critical region containing a point in common and if 4” is obtained
by pulling both collections of turns taut, it is possible that index(4”, K§) =0
while a nonzero index occurs as in the preceding paragraph. In this case, by
the max1ma11ty of @ and A, K, must be an exceptional critical reglon Thus,
daUd\ C Fix(4”), o and ) are disjoint merging arcs, and &Ny g By using
all maximal subgraphs of G(/) as above, there is a map g§: M —> M and a
simple merging sequence A, so that g A, hand 271(A) does not contain any
turns.

Let I" be a taut collection of curves isotopic (rel aM UA) to §71(A). Let
g=gr and let f be obtained from g by merging along A. Then f~1(A) and
h~1(A) differ only in the order and labelings of turns and crossings and so,
by definition, we can choose f,;, = 4. This proves the theorem. U]

With regard to the actual computation of the minimal number of fixed points,
suppose that a taut map g homotopic to f is given. First, because I'NW
was not specified in the above proof, one is free to arrange 'MW so as to
optimize the number of critical regions for g having index 0. Second, note
that each merging arc A € A is not only simple, but must have the additional
property that g(\) meets the same components of A in the same order as
A. As a result, given the fixed point data of g, it is straightforward to deter-
mine if two fixed points may be joined by such an arc.

Finally, after obtaining A and gp A, 7 so that each turn and crossing of
f~I(A) is simple, f,;, is obtained as follows. Let G(f) be as in the proof of
Theorem 3.1. Suppose C;, C, are critical regions, each with nonzero index,
which can be joined by an arc v in G(f) such that each critical region meet-
ing the interior of vy has index zero. If the orders and labels of the turns and
crossings meeting these critical regions can be altered so that at most one
of the regions has nonzero index, then do so. This reduces the fixed point
count. Repeat for all such pairs of critical regions to obtain f;,.

Of course, the problem with Theorem 3.1 is that all possible taut maps g
must be checked. In order to reduce the number of taut maps at the expense
of introducing nonsimple merging arcs, the following theorem is given.

THEOREM 3.2. Fix je{l,...,k}. Suppose ¢ has the property that, given
any taut simple closed curve | with l € ker ¢, INH; has at most one com-
ponent. Then there exist h: M — M homotopic to fy rel OM and a disjoint
merging sequence

A A A
h 1>h, Z:hll 3:f

such that
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(i) A~ (AYN(Ayj-1UA,;)=0;

(ii) Ay, A; are simple with (A{UA;)NH; =0;
(iii) for each Ne Ay, N\NH; #0; and
(iv) #FIX(fonin) = MF [ £].

Proof. If two curves 7, 7, in f~}(A) meet A; at points p,, p, so that the
image under f of the arc § of A, joining p, to p, is homotopic rel endpoints
to a subarc of A, we say that 7,, 7, are paired at A;.. Furthermore, if no other
curves of #71(A4) intersect & then we can alter the collection by surgering the
curves 1y, T, along 6. Replacing 7, 7, with 7{, 73 which no longer intersect 9,
7{ = 7; outside a prescribed neighborhood of 4.

Consider the factorization g A, S given in Theorem 3.1. Choose \ € A such
that AN H; # 0. First, by repeatedly surgering curves of f —1(A) that are on
opposite sides of X in H; and are paired at 4,;_; (or A;;), by pulling curves
taut we can define a new map f We say f is obtamea’ SJrom f by surgering \
along H;. Notice that this is the opposite of f — f except that either of the
followmg may happen when pulling a curve taut: (I) it passes over another
merging arc N’ € A; (I1) it passes over an endpoint of another X' e A; or (1I1) it
passes over an endpoint of .

In the case of (II) or (III), when pulling a curve taut we simply leave an
inessential closed curve that encloses the endpoint and a segment of A. In
(III) this is the opposite of a nonsimple merge along A with 6§ =3. In (II), N
will be a nonsimple merging arc with 8 =1.

Consider a pair A, X as in (I) for which both A and N intersect H;. Let x
denote the endpoint of N that is passed over first when pulling curves taut.
Then there exists a disk contained in D which meets \’ in an arc containing
x and meets A in an interior arc but meets no other arc in A. Let 7(\, \') be
an arc in this disk so that its interior misses AUN and has endpoints x and
a point on A. Let I" be the graph in M consisting of all possible \, N, with
I(\, \') as above. By simultaneously surgering all the merging arcs in I" along
H;, without worrying about endpoints, the resulting taut curves will only
intersect I" along a free edge. Thus, for any loop / in I', [/] € ker ¢. But, by
construction, each edge of I' must traverse H;, so by hypothesis I is simply
connected.

We are now ready to give the factorization for Theorem 3.2. First, A; =
{N| A, X satisfy (I) or (II) and NN H; = @}. For these turns we only remove
the turns corresponding to arcs in Az as in Theorem 3.1. Let #” be the cor-
responding map so that B A3, J. The arcs in A, are those from A that meet
H;. The order of the surgeries is determined by I', which being simply con-
nected means there exists an arc 7€ A which appears as a X\ in (I) but not as
a . Surger 7 along Hj first, then continue using the graph I" — 7. For those
in A, that are not contained in I', any order may be used. As a result, we
obtain a map 4’ and a merging sequence h' 22, h”, where the order in A, is
the opposite of the order of surgering. Finally, A, consists of all other arcs
in A, with only the turns being removed and 4 defined accordingly. O
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The additional hypothesis imposed on the endomorphism ¢ in Theorem 3.2
is quite restrictive. All examples indicate that surgering along H; should be
possible, independent of any conditions on ker ¢. In fact, by using a careful
choice of surgeries, a factorization of the form fy A, f, where #Fix(f) =
MFI|f], seems reasonable to expect. This is still not ideal, as nonsimple
merges are much more difficult to work with than simple ones—especially,
it seems, those having one of §; = 1. This is because, in the proof of Theorem
3.2, when (II) occurs the order of merging is (N, A\) where N’ is nonsimple,
0, =1. The corresponding inessential curves £ created for A’ must meet A in
a subarc. The problem is that, when merging N, the arc \ has not yet been
determined.

The ideal situation would be a merging sequence fj A, J where A is sim-
ple. This would be a step in the direction of showing that an algorithm exists
for computing MF[ f]. But the following example shows that this is not
always possible.

EXAMPLE 3.3. Let M be a disk with three holes defined, using the nota-
tion of this paper, so that w;, w,, w;, and w;w,w; are homotopic to bound-
ary curves. Let ¢ be the endomorphism defined by

wi-ws lwywawy
Wy wawy L,
W3H1.

Then Fix(f,) =[xy, X1, X,} with x; € H, and x, € H,. It is easy to check that
there are no simple merging arcs.

A nonsimple merging arc can be constructed in the following manner. Choose
a point yo € D and let « be an arc from x; to y, which traverses A4 in the order
A,, As, then Ag, thus looping around w;. Add two inessential simple closed
curves around y,, each meeting « in three points, with u-values 3 and 4 so
that f¢(a) ~ a. Then, by merging along «, we obtain a map g. It can be shown
that Fix(g) = {xy, 1, X2} with y, € D. Also, there exists a merging arc 8 with
B=1{y,x,}, BNa=0, and BNAC A,. Then g—g»f yields Fix(f) = {xp}.

REMARK 3.4. If ¢ is replaced by ¢’, where ¢’(w;) = w; l¢(w;)w,, then
Sy~ fs and there exists a simple merge to a map having one fixed point. But
by taking two copies of the example above and a boundary connected sum
(to obtain a disk with six holes), there is then no way to replace ¢ # ¢ by con-
jugating so as to avoid nonsimple merging arcs.

4. Applications of the Factorization Theorems

EXAMPLE 4.1 (Weier’s example). Let M=DUH,UH,UH;UH,, where
the handles are joined so that A,,..., Ag are in order on dD. Thus M is
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homeomorphic to a disk with four holes removed. Let ¢ denote the endo-
morphism of 7;(M, x,) defined by

Wl le,
Wy Wi lwawy,
w3 Wy,

W4""’1.
The taut map
fd):M—')M

has Fix(fy) = [{xg, X1, X2, X3} with indices {1, —1, —1, —1}, respectively. An
easy calculation shows that there exists, for each j, taut arcs «; such that
Jo(aj) ~ o rel doy; and do; = {xg, X;}. Hence N(fy) =1. Weier [We] claimed
without proof that MF[f,]=2. Recently, Tong [T] was able to establish
this claim. We present here an alternative proof based on the factorization
Theorem 3.2.

Let #2L p' 22, f 23, £ be a factorization as given in Theorem 3.2. In
order to calculate #Fix(f) we need some additional information about A,.
First consider the factorization g A, S of Theorem 3.1. The number of merg-
ing arcs in A that traverse a given H; is the same as the number of compo-
nents of M\ g ~!(A) that are bounded by paired curves in g~ (A4) and inter-
sect H;. In the present example there is a nice way to describe, up to isotcpy,
the collection of curves in g71(A4) as being obtained from the collection
f¢“‘(A). Outside of joining together the paired curves in H,N f¢“1(A), the
only way to change f¢‘1(A) is to add a collection of simple closed curves
each isotopic to w, and successively join them to other curves, each time
joining curves along some fixed taut arc. If this arc traverses H, then A has
one merging arc meeting H,; otherwise there are none. Thus, by the proof
of Theorem 3.2, we can assume that either A, is empty or consists of a single
arc A. If A is not simple, then one end loops around w,, 6 =3, and the other
end is contained in Fix(4’). Also, since there are only three choices (up to
isotopy) for A71(A) and in each case Fix(4) = Fix( J), we can assume that
h =f¢,.

Let o; denote either of the two arcs in w; going from Xx; to x,. Let «;; de-
note a merging arc for f, with do;; = {x;, x;}. For ¢;; € A, the only possibil-
ities are o = 0y, ag; =03, and ay3 =0y05 !, and A, is one of {ay}, {2ps),
fasl), or {agr, ap3). If A, =0 then without loss A; =4 as well, and it is easy
to check that in each case #Fix(f) = 2.

If A, # @then A, = {\}, as mentioned earlier. Since A;N H, =@, any merg-
ing arc starting at x, must pass through H, and so A is the only possible choice.
If x, ¢ A\, then x, € Fix(f) and by an index calculation #Fix(f) = 2. For the
following assume that x, € d\. Then, up to isotopy, A must be one of the
fOllOWing: (i) 0'2W40'1_-1 = o), IN= [xl, XZ}; (il) Ty Wy = 0o, IN= {x(), x2’; or
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(iii) N is not simple, isotopic to o, w, but x, ¢ dX. In this last case we denote
o\ ={x,,x,;} and denote \ as ayy. Also in (iii), since #’(\) ~ \, a straight-
forward calculation shows that no inessential simple closed curves are added
around x,.

There are three possibilities, depending on A;.

Case 1: Ay = {a;3} or {og;, ctg3}. Here Fix(h’) = {yy, x5}, where y, is the re-
sult of merging along A,. But \N A;# @, so A, =0, A; =6, and #Fix(f) =2.

Case 2: A= {ag3}] with Fix(h’) ={x;,Xx,}. In this case A is either ay, or
04, Where AN ayy; =@. As x4 and x; can be joined by a merging arcin DUH,
we can replace a4 by a5 by doing this additional merge. So we can assume
that A = «,. See Figure 5a for an illustration of «; and «g;. Let L, R be arcs

[
A3 O A4

z3

Figure 5a

in D from A; to A, which enclose one component of «, and miss o, U a3
(see Figure 5b). Without loss of generality we can assume that g(L UR) = x,.
After merging along «;, to the map # also satisfying #(LUR) = x,, the two
regions in D bounded by L, R and A~!(Ag) each contain a fixed point. De-
note these by / and r, respectively. Then Fix(%)={/, r, z}, with respective
indices {1, —1, —2}, where z is obtained by merging x; and x,. By construc-
tion, / and z are in the same critical region and can be combined into a single
fixed point /’. Finally, as /” and r can only be merged by an arc traversing o5,
A; =0 and thus #Fix(f) =2.

Case 3: A; = {ay} with Fix(h') ={x,,x3}. Then A\ = a4, and proceeding
exactly as in case 2 we obtain #Fix(f) = 2.
This establishes that MF[ f;]=2.
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Figure 5b

EXAMPLE 4.2. In [K] an algorithm was given for computing MF[ f] for
any self-map of the disk with two holes, P. Here we give a brief interpreta-
tion in terms of merging arcs and then a natural extension of that result.
Write P = H;U H, with m;(P, x4) ={w;, w,). By composing with a suitable
inner automorphism of (P, x,) and conjugating by a homeomorphism, ar-
range that for ¢: 7 (P, xy) — (P, x) only one of ¢(w;) p(w;), Wity p(wil)
contains a reduction. Consequently, there is only one way to choose merg-
ing arcs for f,; namely, by arcs parallel to the reduction. The only exception
is when ¢(w,) =1 and ¢(w,) is cyclically reduced. Then any merging arc is
isotopic to oy (w,w; ) w,(wow)) %0, (k=0) and ¢; is an arc from a fixed
point to x, along wy, or 7;(wyw,) w,(w;w,) %7, (k < 0) and 7, is an arc from
a fixed point to x, along w;~!. This gives two different types of merging arcs
which do intersect. Express the set of merging arcs for f; as {oy, a3, a3, ...}
in order of increasing length, or (equivalently) by increasing cancellation
occurring in f(«;). There are two such sequences in the exceptional case. Let
oy denote the set of all merging arcs for f; that have one endpoint x, and
that meet only one component of 4. Observe that if this collection is not
finite then, as i — o, «; spirals around one or two of the boundary compo-
nents of P. Let f; be the map obtained from f, by merging along o;.

LEMMA 4.3. Suppose i< j<k and da; = da; = day. Then #Fix(f;) =
#FlX(fk)

Proof. Since do; = doy;, «; is isotopic to Sfl o SéZ where S; and S, are simple
closed curves isotopic to boundary components.

Similarly, o= S{"';$5'2. Up to isotopy, curves in fj‘l(A) can be ob-
tained from curves in f;~!(A4) by twisting around the boundary components
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of P corresponding to S; and S,, —/; and /, times (respectively); likewise
for f;1(A). Since o; itself contains full spirals, the difference in critical
regions for f; and f; are only those created by twisting the boundary com-
ponents. By Lemmas 5.1 and 5.2 in [K], these have zero index. i

LEMMA 4.4. There exists a merging sequence f f , i =1, such that
#FiX(f) = MF[ /).

Proof. In [K, §6] the set of curves, up to isotopy, for f~1(A) is described
explicitly. Excepting the case when a simple turn is formed at A;, there is only
one sequence of turns in the merging sequence g—A—> S of Theorem 3.1. Thus

= (6, ap). By surgering all pairs of curves parallel to B, as in the proof
of Theorem 3.2, we obtain a factorization /229, £, where h~1(4) N A = 0.
Hence, h=f, and 8= ; for some i = 1. O

Combining Lemmas 4.3 and 4.4 yields an algorithm for MF[ f,].

REMARK 4.5. Conjugation by a homeomorphism of P was not really nec-
essary. It only served to convert the situation ¢’(C)=1, C isotopic to a
boundary curve, to the exceptional case ¢(w,)=1. So, without bothering
to conjugate, the above argument goes through using the corresponding
pair of sequences of merging arcs.

If M is any surface obtained by attaching two 1-handles, the above analysis
holds. The main observation is that an infinite sequence of merging arcs
must eventually spiral around boundary curves and the proofs of the above
lemmas are still valid. Consequently, we have the following theorem.

THEOREM 4.6. If M is a compact surface with rank(H;(M)) <2, then
there is an algorithm for computing MF'[ f].

As a final application of the factorization theorems in Section 3, we have
the following proposition. This will be the main step in the proof of Theo-
rem 1.1.

PROPOSITION 4.7. Suppose ¢ is an endomorphism of w (M, x,) such that,
foreach i, ¢(w;) does not contain either w, or wi\. Then there exists a map
J homotopic to f, rel M such that #Fix(f)=MF| f,] and f(M )N H,=0.

Proof. Consider the factorization g A, f given by Theorem 3.1. Without loss
of generality we may assume that f is minimal, in the sense that f~1(A4)N A
cannot be reduced using the lemmas of [K, §3]. The proof is completed by
showing that g71(4,UA,) =@ and that AN H, =@ for each \ € A. The latter
follows as g(\) is homotopic (rel endpoints) to a curve missing H;. Thus A,
being taut and homotopic to g(\), must be disjoint from H,.

Now suppose that « is a curve in g7!(4;). By hypothesis, f31(A4;) =9.
Since g ~ f; rel dM, it must be that « is a simple closed curve. Moreover,
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there exists a surface R contained in M such that g(dR) C 4, and g(R) is null
homotopic. As a result, there is a surface Q C R such that g(aQ) C A, for
some k and g(int Q)N A = @. After merging along A, there is a surface 0 in
M, homeomorphic to Q, with f(d0)C A, and f(int )N A=0. But, for
Jj#k, if ONA; 0 one could reduce f ~1(4)N A. Thus, by the minimality
of f, QN A C A, which implies that Q is a disk. But dQ is taut, so Q cannot
be a disk. Hence no such « can exist. Similarly, g71(4,) =0. Cl

Proof of Theorem 1.1. Without loss of generality, we assume that P is em-
bedded in the interior of M. Let K denote the closure of a component of
M\ P. Since the 1-chain [0K ] bounds in K, and since i, is a monomorphism,
it follows that K must meet both of P and dM. Now if K is not an annulus
then 1-handles can be successively added to 9P in K, forming a surface P, so
that the closure of K \J'AJ is homeomorphic to (M N K) X I. Consequently,
M is homeomorphic to the union of P and a finite number of 1-handles (em-
bedded in M) attached to dP. Thus, it suffices to consider the case M =
PU H,;, with w; being a generator of m;(M) corresponding to the 1-handle
H,. Now apply Proposition 4.7 to obtain the result. O
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