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0. Introduction

Consider a strictly pseudoconvex domain @ C C” and the Dirichlet problem
for the generalized complex Monge-Ampére operator:

e PSHNL*(Q)
(ddp)'=gdV

lirrzgo(z)=h(£) for all £e0qQ.
z-'—)

We prove that if 0 < g € L?(Q) and 4 € C(d9), then there is a unique solution
o = U(h, g). This is not true if we require only that g € L1(Q); see [7]. We also
prove that the solution U(#4, g) is continuous not only at the boundary butin
all of Q. In fact we prove the estimate

1/2n
suplU(hl,gl)—U(hz,gz)Issuplhl—hz|+C(S |gl_’g2|2) ;
Q a0 Q

which is our main result and generalizes an inequality of Gaveau [8], who
used the L®-norm instead of L2. In the proof we use a comparison between
convex and plurisubharmonic functions and their real and complex Monge-
Ampere measures, based on an idea of Cheng and Yau discussed in [1]. We
use the following notation: Let PSH(Q) and CVX(Q) denote the cones of
plurisubharmonic and convex functions on Q, respectively; let dV denote
2n-dimensional Lebesgue measure; let || and |-|5o denote the sup-normon
Q and 9Q, and let ||, o denote the LP-norm on Q; for a matrix A, let A’ de-
note its transpose; the identity matrix is denoted by 1.

1. The Generalized Real and Complex
Monge-Ampeére Operators

Let Q be a strictly convex domain in C” (n=2), and let J: C"—->R"XR":
(x+1iy)~ (x, y) be the canonical isomorphism. For ¢ € C2(2; R), define the
real n X n matrices
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2( 0 -1 2,0 71 2( 0 -1
A:[M], B=[ﬂ£_u . c=|%ed )
ox j 6xk ax 5 ayk By_, 3yk

The real and complex Hessians of ¢, denoted Hg(¢) and H¢(¢), are de-

fined as
A B!
H = ,
r(®) [B C :l
a real 2n X 2n matrix, and

o 3%
Hc(e)=(A+C)+i(B —B)=4[ — ],
aZjaZk

a complex n X n matrix.
The real Monge-Ampere operator on ¢ is defined as

 My(p) =det Hyg(p)dV

: dp de de de
=(=2i)"d| — )Ad| — |A---Nd AN — ),
(=21) <3zl> (651> (azn> (afn)

where d =3+0d and dV = (i/2)"dz; AdZ; A - - - ANdz,NdZ,, the Lebesgue mea-
sure on R?". The complex Monge-Ampeére operator on ¢ is defined as

Mc(p) = det Ho(p) dV = ;}ﬂdd%o)"

where d€=i(d—9).

Note that if ¢ € PSH(Q) then Mc(¢)=0, and if ¢ € CVX(Q) then also
Mpg(¢) = 0. The operators M¢ and My can be extended to PSHN C(Q2) and
CVX(R), as positive measures, and the following continuity property holds.

THEOREM 1. If ¢;, ;€ CVX(Q) or PSHNC(Q) (j €N), and ¢;— ¢ uni-
Sformly on compact subsets when j — oo, and y € Cy(2), then

lim | yMiey=| yMp)

Jj—o oo
Jor M = Mg and Mc, respectively.
Proof. See [11, Prop. 3.1] and [2, Prop. 2.3].

LEMMA 1. The operators My and M¢ are superadditive; that is, if ¢, ¢> €
CVX(Q) or PSHNC(RQ) then

M(¢1) +M(pr) = M(o1+¢3)
Jor M = My or M, respectively.
Proof. See [11, Prop. 3.3] and [2, Prop. 2.8].

The operator M is further extended to PSH N Lj.(Q) as a nonnegative mea-
sure, and is then weakly continuous on monotone sequences. See [2, Prop.
2.9] and also [6] and [10] for details.
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2. The Dirichlet Problem

Let © be bounded and strictly convex, assume that 2 e C(d{2) and that g=0
is a measurable function on €, and consider the Dirichlet problems

e e CVX()
(1 Mgr(p)=gdV

li_rg e(z)=h(¢) for all £€09Q
and

0 e PSHNL™(Q)
2) Mc(p)=gdV

lirréqo(z)=h(E) for all £edq.
z—)

The solutions, if they exist, are denoted Ug(#, g) and Uc(h, g).

THEOREM 2.

(i) If 0=<ge L (Q) then (1) has a unique solution Ug(h, g).
(ii) If 0 <ge C(Q) then (2) has a unique solution Uc(h, g), and this solu-
tion is in C(Q).

Proof. See [11, Thm. 4.1] and [2, Thm. D].

The uniqueness in Theorem 2 follows from the following comparison prin-
ciple.

THEOREM 3. Assume that hy, h, € C(09Q) and that g,, g,€ LX(Q). If hy <h,
and g,= g,, then Ug(hy, g;) < Ugr(hy, &5). If in addition g,, g, € C(Q), then
also Uc(hy, g1) < Uc(hy, g2).

Proof. See [11, Lemma 3.6] and [2, Thm. A].

COROLLARY 1.

U(hy, g1)+U(hy, g2)<U(h +hy, g1+ 83)
and

|U(hy, 81) —U(hy, 85)| < —U(—|h—hy),|g1—&2|)
Jor U=Ug and U =Ug.

Proof. Use the comparison principle and the superadditivity.
Concerning higher regularity, the following is known.

THEOREM 4. If Qe C*®, he C®(dQ), and g € C®(Q) (g > 0), then for
U=Ug and U=Ug¢, U(h, g) e CP(Q).
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Proof. See [4, Thm. 1.1] and [3, Thm. 1.1].

REMARK. We use only the regularity result for Uy, and we would do with
a classical one (e.g., [9, Thm. 17.24)).

THEOREM 5. IfheC(09) and ge LY(Q) (g =0), then
inf h— Clgl/y" < Ur(h, g) <sup h
a2 a0

for some constant C depending only on Q, and
|Ur(hy, 80— Ur(hy, 82)la <A1 — Byl a0+ Clgi — 2118
for all hy, hy e C(0Q) and nonnegative g, g, € L'(Q).

Proof. The first inequality follows from [11, Lemma 3.5]; see also [9, Lem-
ma 9.2]. The second inequality follows from the first and Corollary 1.

3. Solvability and Stability of the Complex Dirichlet Problem
in L? for Bounded Strictly Convex Domains

For the reader’s convenience, we include the following elementary facts (see
also [10]).

LEMMA 2. Let T:C"->C":z2~z[P+iQ] (P, Q real nXn matrices) be a
C-linear mapping, and let J: C" > R"XR": (x+iy) - (x,y) be the canoni-
cal isomorphism. Then JTJ ~': R?" - R?" s given by

P Q
(x,y)H(x,y)[__Q P]

and |det TR =det(JTJ ).

Proof. The simple computations

JTI Y x,y)=JT(x+iy)=J[(x+iy)(P+iQ)]
=J[xP—-yQ+i(yP+xQ)]=(xP—-yQ, yP+xQ)

and
- . o P+iQ 0
|det T|* =det(P+iQ)det(P lQ)—det[ 0 P—iQ]
_ P+iQ 0o _ P+iQ Q1] P Q
i N L a4 S
prove the lemma. O

THEOREM 6. If 0<ge C(Q) and he C(3Q), then
Ur(h, g*) < Uc(h, g).

Proof. Put ¢ =Ug(h, g?), a convex function. By the comparison principle,
it is sufficient to prove that
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3) §Q¢MC(¢)2§Q¢ng for all 0=y e Cy(Q).

Fix . We can assume that a2 € C*™. Otherwise, replace €2 by a strictly con-
vex subdomain of @ with C* boundary containing supp ¥, and replace A
by the boundary values of ¢ on this domain. Take a sequence h; € C*(d)
converging uniformly to 4, and a sequence 0 < g; e C*({1) converging uni-
formly to g. Put ¢; = Ug(h;, g;). Then ¢; — ¢ uniformly by Theorem 5, and
§ YMc(¢;) = § YMc(¢) by Theorem 1. Furthermore, § yg; dV — {yg dV. Thus
it is sufficient to prove (3) for 90e C*, 0<ge C*(Q), and h e C*(3Q). But
then ¢ € C*(Q) by Theorem 4, so it suffices to prove that (det He(p))? =
g?=det Hy(p) or, by Lemma 2, that

(€] det(JHc(p)J 1) = det Hg(p).
To prove this, put

A+C B'-B
S=JH, 1=
THe(e)] [B—B’ C+A]
by Lemma 2, and
S;=Hgr(p)= A B
| —1IRlp)= B C ’

which is nonnegative since ¢ is convex, and
S—O —IM[A B'1[0 —1“_ C -B
>“l1r oflB cflr of T|-B" 4]
Then S; and S, have the same eigenvalues. In particular, S, is also nonnega-
tive, and det S; =det S,. Furthermore, S$=S,+S,, and the superadditivity
of the determinant on nonnegative matrices (see the proof of Proposition

3.3 in [11]) gives det S =det S, +det S, = det S;, which proves (4) and the
theorem. 0

THEOREM 7. If he C(09Q) and 0<ge L*(Q), then Uc(h, g) exists and is
in C(Q). Furthermore,

inf h—C|g|y% < Uc(h, g) <suph
a0 a9
and
|Uc(hy, 8) = Uc(hz, 82)la < |y~ | a9+ Clgi — 2114
Sor all hy, h, e C(0Q) and nonnegative g, g, € L*(Q).

Proof. It is sufficient to prove the inequalities for g € C(). The existence of
Uc(h, g) for g e L>(Q) then follows by approximation, using the second in-
equality and Theorem 1. Now Theorem 5 and Theorem 6 give

inf i — C|g?| /2" < Ur(h, g*) < Uc(h,g) <suph,
a0 a0

which proves the first inequality. The second inequality follows from the
first and Corollary 1. This proves the theorem. ]
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REMARK. Theorem 7 answers the question of stability given in [1, p. 20],
where also the first inequality is stated and is attributed to Cheng and Yau.

4. Solution of the Dirichlet Problem in L?
for Strictly Pseudoconvex Domains

THEOREM 8. Let Q be a bounded, strictly pseudoconvex domain in C",
and let he C(0Q) and 0 < g e L*(Q). Then the following Dirichlet problem
has a unique solution:

0 e PSHNC(D)

(ddp)'=gdV

lirré e(z)=h(&) forall £e€dN.

il

Proof. The estimates in Theorem 7 hold also in this case. For take a bounded
strictly convex domain { containing Q and extend |g, —g,| by zero to an L%
function on €. Then —Uc(0, |g; —g»|) is dominated by the corresponding
function relative to  and Theorem 8 now follows from Theorem 7. 1

REMARK. Let Q be a bounded, strictly pseudoconvex domain in C”, he
C(0%), and H:R xQ—[0,00] such that the function z+~sup{H(¢,z):t <
sup A} is in L?(Q) and H(-, z) is continuous on ]—oo, sup 4] for all fixed z € Q.
Then the following Dirichlet problem is solvable:

¢ € PSH(Q)NC(Q)

(dd“p)'=H(p,z)dV

lirr}:_ e(z)y=h(¢) for all £e0dql.

—

Via Theorem 8, this is proved exactly as the theorem in [5].
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