The Dirichlet Problem for the Complex Monge-Ampère Operator: Stability in L^2

URBAN CEGRELL & LEIF PERSSON

0. Introduction

Consider a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ and the Dirichlet problem for the generalized complex Monge-Ampère operator:

$$\begin{cases} \varphi \in \mathrm{PSH} \cap L^{\infty}(\Omega) \\ (dd^{c}\varphi)^{n} = g \, dV \\ \lim_{z \to \xi} \varphi(z) = h(\xi) \quad \text{for all } \xi \in \partial \Omega. \end{cases}$$

We prove that if $0 \le g \in L^2(\Omega)$ and $h \in C(\partial \Omega)$, then there is a unique solution $\varphi = U(h, g)$. This is not true if we require only that $g \in L^1(\Omega)$; see [7]. We also prove that the solution U(h, g) is continuous not only at the boundary but in all of $\overline{\Omega}$. In fact we prove the estimate

$$\sup_{\Omega} |U(h_1, g_1) - U(h_2, g_2)| \le \sup_{\partial \Omega} |h_1 - h_2| + C \left(\int_{\Omega} |g_1 - g_2|^2 \right)^{1/2n},$$

which is our main result and generalizes an inequality of Gaveau [8], who used the L^{∞} -norm instead of L^{2} . In the proof we use a comparison between convex and plurisubharmonic functions and their real and complex Monge-Ampère measures, based on an idea of Cheng and Yau discussed in [1]. We use the following notation: Let $PSH(\Omega)$ and $CVX(\Omega)$ denote the cones of plurisubharmonic and convex functions on Ω , respectively; let dV denote 2n-dimensional Lebesgue measure; let $|\cdot|_{\Omega}$ and $|\cdot|_{\partial\Omega}$ denote the sup-norm on Ω and $\partial\Omega$, and let $\|\cdot\|_{p,\Omega}$ denote the L^{p} -norm on Ω ; for a matrix A, let A' denote its transpose; the identity matrix is denoted by I.

1. The Generalized Real and Complex Monge-Ampère Operators

Let Ω be a strictly convex domain in \mathbb{C}^n $(n \ge 2)$, and let $J: \mathbb{C}^n \to \mathbb{R}^n \times \mathbb{R}^n$: $(x+iy) \mapsto (x,y)$ be the canonical isomorphism. For $\varphi \in C^2(\Omega; \mathbb{R})$, define the real $n \times n$ matrices

Received December 13, 1990. Revision received February 14, 1991. Partially supported by the Swedish Natural Science Research Council. Michigan Math. J. 39 (1992).

$$A = \left[\frac{\partial^2(\varphi \circ J^{-1})}{\partial x_j \partial x_k}\right], \qquad B = \left[\frac{\partial^2(\varphi \circ J^{-1})}{\partial x_j \partial y_k}\right], \qquad C = \left[\frac{\partial^2(\varphi \circ J^{-1})}{\partial y_j \partial y_k}\right].$$

The real and complex Hessians of φ , denoted $H_{\mathbb{R}}(\varphi)$ and $H_{\mathbb{C}}(\varphi)$, are defined as

$$H_{\mathbf{R}}(\varphi) = \begin{bmatrix} A & B^t \\ B & C \end{bmatrix},$$

a real $2n \times 2n$ matrix, and

$$H_{\mathbf{C}}(\varphi) = (A+C) + i(B^t - B) = 4 \left[\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_k} \right],$$

a complex $n \times n$ matrix.

The real Monge–Ampère operator on φ is defined as

$$M_{\mathbf{R}}(\varphi) = \det H_{\mathbf{R}}(\varphi) \, dV$$

$$= (-2i)^n d \left(\frac{\partial \varphi}{\partial z_1} \right) \wedge d \left(\frac{\partial \varphi}{\partial \overline{z}_1} \right) \wedge \dots \wedge d \left(\frac{\partial \varphi}{\partial z_n} \right) \wedge d \left(\frac{\partial \varphi}{\partial \overline{z}_n} \right),$$

where $d = \partial + \bar{\partial}$ and $dV = (i/2)^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_n$, the Lebesgue measure on \mathbb{R}^{2n} . The complex Monge-Ampère operator on φ is defined as

$$M_{\mathbf{C}}(\varphi) = \det H_{\mathbf{C}}(\varphi) dV = \frac{1}{n!} (dd^c \varphi)^n$$

where $d^c = i(\bar{\partial} - \partial)$.

Note that if $\varphi \in \mathrm{PSH}(\Omega)$ then $M_{\mathbb{C}}(\varphi) \geq 0$, and if $\varphi \in \mathrm{CVX}(\Omega)$ then also $M_{\mathbb{R}}(\varphi) \geq 0$. The operators $M_{\mathbb{C}}$ and $M_{\mathbb{R}}$ can be extended to $\mathrm{PSH} \cap C(\Omega)$ and $\mathrm{CVX}(\Omega)$, as positive measures, and the following continuity property holds.

THEOREM 1. If φ_j , $\varphi_j \in \text{CVX}(\Omega)$ or $\text{PSH} \cap C(\Omega)$ $(j \in \mathbb{N})$, and $\varphi_j \to \varphi$ uniformly on compact subsets when $j \to \infty$, and $\psi \in C_0(\Omega)$, then

$$\lim_{j\to\infty}\int_{\Omega}\psi M(\varphi_j)=\int_{\Omega}\psi M(\varphi)$$

for $M = M_R$ and M_C , respectively.

Proof. See [11, Prop. 3.1] and [2, Prop. 2.3].

LEMMA 1. The operators $M_{\mathbb{R}}$ and $M_{\mathbb{C}}$ are superadditive; that is, if $\varphi_1, \varphi_2 \in \mathrm{CVX}(\Omega)$ or $\mathrm{PSH} \cap C(\Omega)$ then

$$M(\varphi_1) + M(\varphi_2) \le M(\varphi_1 + \varphi_2)$$

for $M = M_R$ or M_C , respectively.

Proof. See [11, Prop. 3.3] and [2, Prop. 2.8].

The operator $M_{\mathbb{C}}$ is further extended to $\mathrm{PSH} \cap L^{\infty}_{\mathrm{loc}}(\Omega)$ as a nonnegative measure, and is then weakly continuous on monotone sequences. See [2, Prop. 2.9] and also [6] and [10] for details.

2. The Dirichlet Problem

Let Ω be bounded and strictly convex, assume that $h \in C(\partial \Omega)$ and that $g \ge 0$ is a measurable function on Ω , and consider the Dirichlet problems

(1)
$$\begin{cases} \varphi \in \text{CVX}(\Omega) \\ M_{\mathbf{R}}(\varphi) = g \, dV \\ \lim_{z \to \xi} \varphi(z) = h(\xi) \quad \text{for all } \xi \in \partial \Omega \end{cases}$$

and

(2)
$$\begin{cases} \varphi \in \mathrm{PSH} \cap L^{\infty}(\Omega) \\ M_{\mathbf{C}}(\varphi) = g \, dV \\ \lim_{z \to \xi} \varphi(z) = h(\xi) \quad \text{for all } \xi \in \partial \Omega. \end{cases}$$

The solutions, if they exist, are denoted $U_{\mathbb{R}}(h,g)$ and $U_{\mathbb{C}}(h,g)$.

THEOREM 2.

- (i) If $0 \le g \in L^1(\Omega)$ then (1) has a unique solution $U_{\mathbb{R}}(h,g)$.
- (ii) If $0 \le g \in C(\bar{\Omega})$ then (2) has a unique solution $U_{\mathbb{C}}(h, g)$, and this solution is in $C(\bar{\Omega})$.

Proof. See [11, Thm. 4.1] and [2, Thm. D].

The uniqueness in Theorem 2 follows from the following comparison principle.

THEOREM 3. Assume that $h_1, h_2 \in C(\partial \Omega)$ and that $g_1, g_2 \in L^1(\Omega)$. If $h_1 \leq h_2$ and $g_1 \geq g_2$, then $U_{\mathbf{R}}(h_1, g_1) \leq U_{\mathbf{R}}(h_2, g_2)$. If in addition $g_1, g_2 \in C(\overline{\Omega})$, then also $U_{\mathbf{C}}(h_1, g_1) \leq U_{\mathbf{C}}(h_2, g_2)$.

Proof. See [11, Lemma 3.6] and [2, Thm. A].

COROLLARY 1.

$$U(h_1, g_1) + U(h_2, g_2) \le U(h_1 + h_2, g_1 + g_2)$$

and

$$|U(h_1, g_1) - U(h_2, g_2)| \le -U(-|h_1 - h_2|, |g_1 - g_2|)$$

for $U = U_R$ and $U = U_C$.

Proof. Use the comparison principle and the superadditivity.

Concerning higher regularity, the following is known.

THEOREM 4. If $\partial \Omega \in C^{\infty}$, $h \in C^{\infty}(\partial \Omega)$, and $g \in C^{\infty}(\bar{\Omega})$ (g > 0), then for $U = U_{\mathbb{R}}$ and $U = U_{\mathbb{C}}$, $U(h, g) \in C^{\infty}(\bar{\Omega})$.

Proof. See [4, Thm. 1.1] and [3, Thm. 1.1].

REMARK. We use only the regularity result for $U_{\rm R}$, and we would do with a classical one (e.g., [9, Thm. 17.24]).

THEOREM 5. If $h \in C(\partial \Omega)$ and $g \in L^1(\Omega)$ $(g \ge 0)$, then

$$\inf_{\partial\Omega} h - C \|g\|_{1,\Omega}^{1/2n} \le U_{\mathbf{R}}(h,g) \le \sup_{\partial\Omega} h$$

for some constant C depending only on Ω , and

$$|U_{\mathbf{R}}(h_1, g_1) - U_{\mathbf{R}}(h_1, g_2)|_{\Omega} \le |h_1 - h_2|_{\partial \Omega} + C||g_1 - g_2||_{1, \Omega}^{1/2n}$$

for all $h_1, h_2 \in C(\partial \Omega)$ and nonnegative $g_1, g_2 \in L^1(\Omega)$.

Proof. The first inequality follows from [11, Lemma 3.5]; see also [9, Lemma 9.2]. The second inequality follows from the first and Corollary 1.

3. Solvability and Stability of the Complex Dirichlet Problem in L^2 for Bounded Strictly Convex Domains

For the reader's convenience, we include the following elementary facts (see also [10]).

LEMMA 2. Let $T: \mathbb{C}^n \to \mathbb{C}^n: z \mapsto z[P+iQ]$ (P,Q real $n \times n$ matrices) be a \mathbb{C} -linear mapping, and let $J: \mathbb{C}^n \to \mathbb{R}^n \times \mathbb{R}^n: (x+iy) \mapsto (x,y)$ be the canonical isomorphism. Then $JTJ^{-1}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is given by

$$(x,y) \mapsto (x,y) \begin{bmatrix} P & Q \\ -Q & P \end{bmatrix}$$

and $|\det T|^2 = \det(JTJ^{-1})$.

Proof. The simple computations

$$JTJ^{-1}(x,y) = JT(x+iy) = J[(x+iy)(P+iQ)]$$

= $J[xP-yQ+i(yP+xQ)] = (xP-yQ, yP+xQ)$

and

$$|\det T|^2 = \det(P + iQ) \det(P - iQ) = \det\begin{bmatrix} P + iQ & 0\\ 0 & P - iQ \end{bmatrix}$$
$$= \det\begin{bmatrix} P + iQ & Q\\ 0 & P - iQ \end{bmatrix} = \det\begin{bmatrix} P + iQ & Q\\ iP - Q & P \end{bmatrix} = \det\begin{bmatrix} P & Q\\ -Q & P \end{bmatrix}$$

prove the lemma.

THEOREM 6. If $0 \le g \in C(\overline{\Omega})$ and $h \in C(\partial \Omega)$, then

$$U_{\mathbb{R}}(h, g^2) \leq U_{\mathbb{C}}(h, g).$$

Proof. Put $\varphi = U_{\mathbb{R}}(h, g^2)$, a convex function. By the comparison principle, it is sufficient to prove that

(3)
$$\int_{\Omega} \psi M_{\mathbf{C}}(\varphi) \ge \int_{\Omega} \psi g \, dV \quad \text{for all } 0 \le \psi \in C_0(\Omega).$$

Fix ψ . We can assume that $\partial\Omega\in C^{\infty}$. Otherwise, replace Ω by a strictly convex subdomain of Ω with C^{∞} boundary containing supp ψ , and replace h by the boundary values of φ on this domain. Take a sequence $h_j\in C^{\infty}(\partial\Omega)$ converging uniformly to h, and a sequence $0< g_j\in C^{\infty}(\bar{\Omega})$ converging uniformly to g. Put $\varphi_j=U_{\mathbf{R}}(h_j,g_j)$. Then $\varphi_j\to\varphi$ uniformly by Theorem 5, and $\int \psi M_{\mathbf{C}}(\varphi_j)\to \int \psi M_{\mathbf{C}}(\varphi)$ by Theorem 1. Furthermore, $\int \psi g_j\,dV\to \int \psi g\,dV$. Thus it is sufficient to prove (3) for $\partial\Omega\in C^{\infty}$, $0< g\in C^{\infty}(\bar{\Omega})$, and $h\in C^{\infty}(\partial\Omega)$. But then $\varphi\in C^{\infty}(\bar{\Omega})$ by Theorem 4, so it suffices to prove that $(\det H_{\mathbf{C}}(\varphi))^2\geq g^2=\det H_{\mathbf{R}}(\varphi)$ or, by Lemma 2, that

(4)
$$\det(JH_{\mathbf{C}}(\varphi)J^{-1}) \ge \det H_{\mathbf{R}}(\varphi).$$

To prove this, put

$$S = JH_{\mathbf{C}}(\varphi)J^{-1} = \begin{bmatrix} A+C & B^{t}-B \\ B-B^{t} & C+A \end{bmatrix}$$

by Lemma 2, and

$$S_1 = H_{\mathbf{R}}(\varphi) = \begin{bmatrix} A & B^t \\ B & C \end{bmatrix},$$

which is nonnegative since φ is convex, and

$$S_2 = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \begin{bmatrix} A & B^t \\ B & C \end{bmatrix} \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}^{-1} = \begin{bmatrix} C & -B \\ -B^t & A \end{bmatrix}.$$

Then S_1 and S_2 have the same eigenvalues. In particular, S_2 is also nonnegative, and $\det S_1 = \det S_2$. Furthermore, $S = S_1 + S_2$, and the superadditivity of the determinant on nonnegative matrices (see the proof of Proposition 3.3 in [11]) gives $\det S \ge \det S_1 + \det S_2 \ge \det S_1$, which proves (4) and the theorem.

THEOREM 7. If $h \in C(\partial \Omega)$ and $0 \le g \in L^2(\Omega)$, then $U_{\mathbb{C}}(h, g)$ exists and is in $C(\overline{\Omega})$. Furthermore,

$$\inf_{\partial\Omega} h - C \|g\|_{2,\Omega}^{1/n} \le U_{\mathcal{C}}(h,g) \le \sup_{\partial\Omega} h$$

and

$$|U_{\mathbf{C}}(h_1, g_1) - U_{\mathbf{C}}(h_2, g_2)|_{\Omega} \le |h_1 - h_2|_{\partial \Omega} + C||g_1 - g_2||_{2, \Omega}^{1/n}$$

for all $h_1, h_2 \in C(\partial \Omega)$ and nonnegative $g_1, g_2 \in L^2(\Omega)$.

Proof. It is sufficient to prove the inequalities for $g \in C(\bar{\Omega})$. The existence of $U_{\mathbb{C}}(h,g)$ for $g \in L^2(\Omega)$ then follows by approximation, using the second inequality and Theorem 1. Now Theorem 5 and Theorem 6 give

$$\inf_{\partial\Omega} h - C \|g^2\|_{1,\Omega}^{1/2n} \le U_{\mathbf{R}}(h,g^2) \le U_{\mathbf{C}}(h,g) \le \sup_{\partial\Omega} h,$$

which proves the first inequality. The second inequality follows from the first and Corollary 1. This proves the theorem. \Box

REMARK. Theorem 7 answers the question of stability given in [1, p. 20], where also the first inequality is stated and is attributed to Cheng and Yau.

4. Solution of the Dirichlet Problem in L^2 for Strictly Pseudoconvex Domains

THEOREM 8. Let Ω be a bounded, strictly pseudoconvex domain in \mathbb{C}^n , and let $h \in C(\partial \Omega)$ and $0 \le g \in L^2(\Omega)$. Then the following Dirichlet problem has a unique solution:

$$\begin{cases} \varphi \in \mathrm{PSH} \cap C(\bar{\Omega}) \\ (dd^c \varphi)^n = g \, dV \\ \lim_{z \to \xi} \varphi(z) = h(\xi) \quad \text{for all } \xi \in \partial \Omega. \end{cases}$$

Proof. The estimates in Theorem 7 hold also in this case. For take a bounded strictly convex domain $\tilde{\Omega}$ containing Ω and extend $|g_1-g_2|$ by zero to an L^2 -function on $\tilde{\Omega}$. Then $-U_C(0, |g_1-g_2|)$ is dominated by the corresponding function relative to $\tilde{\Omega}$ and Theorem 8 now follows from Theorem 7.

REMARK. Let Ω be a bounded, strictly pseudoconvex domain in \mathbb{C}^n , $h \in C(\partial\Omega)$, and $H: \mathbb{R} \times \Omega \to [0, \infty]$ such that the function $z \mapsto \sup\{H(t, z): t \le \sup h\}$ is in $L^2(\Omega)$ and $H(\cdot, z)$ is continuous on $]-\infty$, sup h] for all fixed $z \in \Omega$. Then the following Dirichlet problem is solvable:

$$\begin{cases} \varphi \in \mathrm{PSH}(\Omega) \cap C(\bar{\Omega}) \\ (dd^{c}\varphi)^{n} = H(\varphi, z) dV \\ \lim_{z \to \xi} \varphi(z) = h(\xi) \quad \text{for all } \xi \in \partial \Omega. \end{cases}$$

Via Theorem 8, this is proved exactly as the theorem in [5].

References

- 1. E. Bedford, *Survey of pluripotential theory*, Proceedings of the special year on Several Complex Variables (Mittag-Leffler Institute, Sweden) (to appear).
- 2. E. Bedford and B. A. Taylor, *The Dirichlet problem for the complex Monge-Ampère equation*, Invent. Math. 37 (1976), 1-44.
- 3. L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, *The Dirichlet problem for nonlinear second-order elliptic equations II. Complex Monge-Ampère, and uniformly elliptic, equations,* Comm. Pure Appl. Math. 38 (1985), 209–252.
- 4. L. Caffarelli, L. Nirenberg, and J. Spruck, *The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation*, Comm. Pure Appl. Math. 37 (1984), 369–402.
- 5. U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185 (1984), 247-251.
- 6. ——, Capacities in complex analysis, Aspects of Math., Vieweg, Wiesbaden, 1988.

- 7. U. Cegrell and A. Sadullaev, *Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge–Ampère operator*, Math. Scand. (to appear).
- 8. B. Gaveau, Méthodes de contrôle optimal en analyse complexe, I: Résolution d'équations de Monge-Ampère, J. Funct. Anal. 25 (1977), 391-411.
- 9. D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, 2nd ed., Springer, Berlin, 1983.
- 10. M. Klimek, Pluripotential theory, Oxford Univ. Press, Oxford, 1991.
- 11. J. Rauch and B. A. Taylor, *The Dirichlet problem for the multidimensional Monge-Ampère equation*, Rocky Mountain J. Math. 7 (1977), 345–364.

Department of Mathematics University of Umeå S-901 87 Umeå Sweden