Intersection Homology and
Free Group Actions on Witt Spaces
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1. Introduction

The study of free G actions of a finite group on manifolds has been of great
interest to topologists for many years. The space form problem is just one
of many problems involving free G actions on manifolds. Poincaré duality
has played an important role in studying free G actions on manifolds.

It is natural to try to study free G actions on spaces with singular ses.
Witt spaces are a class of PL spaces with singularities that satisfy a Poincaré
duality theorem using the intersection homology of Goresky and MacPher-
son ([7], [8], [24]). Irreducible complex projective varieties are an important
class of Witt spaces. Thus Witt spaces are a natural candidate to choose to
study free G actions on spaces with singularities. We obtain several intersec-
tion homological restrictions on Witt spaces admitting a free G action. All
group actions in this paper are assumed to be groups acting through PL
homeomorphisms.

The first result is a restriction on the Euler characteristic. If a compact Witt
space X" of dimension # has a free G action that acts trivially on the intersec-
tion homology of X, then the Euler characteristic 37_o(—1)’ dim(ZH™(X; Q))
is zero.

Another restriction is given on the semicharacteristic. Suppose X #**!is a
compact Witt space of dimension 4n+1, G acts freely on X, and G acts
trivially on the intersection homology of X; then either the semicharacteris-
tic 327 o(—1) dim(JH/*(X; Q)) is even or G is the direct product of a cyclic
2-group and an odd order group.

Another result is a restriction on the higher signature of a compact Witt
space X. Let L(X) denote the L class of X as defined by Goresky and Mac-
Pherson, and let f: X — B classify the universal cover of X. Then f,(L(X)) €
H.(Bt; Q) is the higher signature of X. Suppose X has a free G action such
that G acts trivially on the fundamental group and trivially on the inter-
section homology of X with any local coefficient system. Consider a rep-
resentation p: 7 — Sp(2/,R) of the fundamental group of X into the real
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symplectic group in 2/ variables, that is, the group of automorphisms of
R? preserving the alternate form X/_(x;¥;4;—X;4; ;). We will abbrevi-
ate Sp(2/,R) by Sp. Let Bp: Bw — BSp be the induced map on classifying
spaces. Then {(Bp)*(u), f«(L(X))) =0 for all ue H*(BSp; Q).

Davis, Rosenberg, and Weinberger ([4], [22], [25], [26], [27]) have studied
homological restrictions on manifolds admitting a free G action.

I express special thanks to my thesis advisor, S. Weinberger, for all his
help, suggestions and valuable discussions.

2. Preliminaries

In this section we give a few preliminary definitions and show how to ex-
tend some well-known results about closed Witt spaces to noncompact Witt
spaces and Witt spaces with boundary. We assume the reader is familiar with
the basic results of intersection homology as given in [7]. The vanishing of
the Euler characteristic of a pseudomanifold admitting a free intersection
homologically trivial G action is then given as an application of the inter-
section homological Lefschetz fixed point theorem.

DEFINITION 2.1. A PL stratified pseudomanifold X of dimension »n is a
PL space X with a filtration

X=X,0X;1=X,20X,-3D-- DX D XD X =0

by closed PL subspaces such that
(1) S,_x=X,_x\X,,_x_is a PL manifold of dimension n—k (if S,,_ is
not empty);
(2) X\ X, _,is an oriented PL manifold of dimension # that is dense in
X; and .
(3) for each xe€ S, _;, there is a compact PL stratified pseudomanifold of
dimension k£ —1 with stratification

L=Lk_1:)Lk_3:) tee DL()DL_1=Q

and a PL homeomorphism #4 of an open neighborhood U of x (called a
distinguished neighborhood of x) on the product B X éL, where B is an
open ball about x in S,,_; and ¢L is the open cone L X [0, ) /(x, 0) ~
(x’, 0) over L. Moreover, A preserves the stratification; namely, # maps
UN X, _; PL homeomorphically onto BXéL,_,;_; (by definition, the
cone over the empty set is just a point).

The subset X,,_, is usually called the singular set X of the PL stratified pseu-
domanifold X. In the relative situation, where we have a boundary, we place
a collar condition on a neighborhood of the boundary.

DEFINITION 2.2. The pair (X, A) is an n-dimensional stratified pseudo-
manifold with boundary if
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(1) Ais an (n—1)-dimensional pseudomanifold with singular set X(A);

(2) there exists a closed subspace (X)) such that X\(AUX(X)) is an
oriented n-dimensional manifold that is dense in X; and

(3) A has a collared neighborhood: for a stratification

X=X,0E8(X)=X,_,D:-DXyDX_=0
of X and a stratification
A=A, 1 DX(A)=A,_3D:-+DAyDA_=0

of A, each satisfying the conditions of Definition 2.1, there exists a
closed neighborhood N of A4 in X and a PL homeomorphism #4:
N—[0,1]1x A such that /(X;NN)=[0,11XA4;_;.

We let ITH ;’7’ /(X; Q) denote the Borel-Moore intersection homology groups
of X. The main interest in studying intersection homology is the following
Poincaré duality theorem.

THEOREM 2.3 ([7]; [10] for the noncompact case). Let X be an n-dimen-
sional pseudomanifold, i+ j = n, and p+ q=1t. Then the augmented pairing

IHP(X; Q)X IH?(X;Q) B IH{(X;Q) - Q
is a nondegenerate bilinear pairing.

DEFINITION 2.4. A Witt space X" is a pseudomanifold satisfying the fol-
lowing link condition: Let x € S, _ ;- 1= Xp_ 16 =1\ Xn—1(x)-2, for /(x)
even. Suppose B" /¥ ~1Ix ¢L/%) s a distinguished neighborhood of x. Then
TH %) 2(L"*); Q) =0, for each x in an odd codimensional stratum. A Witt
space X" with boundary is a pseudomanifold with boundary such that both
X\0X and d.X are Witt spaces.

There is an isomorphism between the intersection homology groups with
middle perversities for Witt spaces.

THEOREM 2.5. Suppose (X,0X) is an n-dimensional Witt space with
boundary. Then, for all i, we have the isomorphisins:

() IHMX;Q)=1H](X;Q),

) IH™Y(X;Q)=IH(X;Q),

(3) IH™(X,3X;Q)=IHI(X,dX;Q), and
(4) IH™U(X,0X;Q)=IH"(X,3X;Q).

This theorem was proved by Siegel [23, Prop. 3.7] in the closed case. One need

only replace TH™(X; Q) with either the Borel-Moore analogue TH/™/(X;Q)

or the relative analogues TH/™(X, 30X;Q) or IH™ (X, 3X; Q) in Section 3

of [23] to extend the result to the noncompact and relative cases.
Lefschetz duality takes the following form.
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THEOREM 2.6 (Lefschetz Duality). Suppose X is an n-dimensional pseu-
domanifold with boundary, i+ j = n, and p+ g =f. The augmented intersec-
tion homology products on intersection homology with rational coefficients

IHPY(X; Q)X THI(X, 0X;Q) 2> IH{(X;Q) 5 Q
and
IHP(X; Q)X IHFY(X,0X;Q) ™ TH{(X;Q) - Q

are nondegenerate pairings.

The proof of this theorem is similar to the proof of Poincaré duality given
by Goresky and MacPherson [7]. The main difference is a fuller use of
McCrory’s general position theorem [14]. See [3] for details.

Let G be a finite group. We consider free actions of G on a compact Witt
space X that induces a trivial action on IH/"(X; Q). There is a restriction on
the Euler characteristic.

THEOREM 2.7. Suppose X is a compact n-dimensional Witt space. Sup-
pose G is a finite group which acts freely through PL homeomorphisms on
X and which induces a trivial action on the intersection homology groups
ITH™(X;Q) for all i. Then Ix(X;Q)=3/_o(—1)'dim(JH"(X;Q))=0

Proof. Let g#1€ G. Since G acts freely, g has no fixed points. By the inter-
section homological fixed point theorem [9, Thm. I], IL(g) =0. Because G

acts trivially on the intersection homology of X, we have Ix(X)=IL(g)=0.
]

3. The Intersection Semicharacteristic

For an odd-dimensional Witt space X 2k+1 without boundary, the Euler char-
acteristic Ix(X; Q)= X241 (—1)! dim(JH(X; Q)) is zero. However, one is
naturally led to consider the intersection semicharacteristic le »(X;Q)=
S5 _o(—=1) dim(ZH™(X; Q)). Weinberger and Davis ([4], [26], [27]) obtain a
restriction on the semicharacteristic for manifolds which admit a free ho-
mologically trivial action. This was subsequently generalized by Davis and
Milgram [5]. In order to extend this restriction to the semicharacteristic of
a Witt space using intersection homology, we need to consider an L-theo-
retic semicharacteristic. Let QV'(BG) be the bordism group of compact »n-
dimensional Witt spaces that admit a free G action. We define a bordism in-
variant semicharacteristic that takes values in the symmetric L-theory group

L}(QG):
Ixy: QV(BG) - LY(QG).

This allows us to use the fact that Q%" is a generalized homology theory. We
play off the difference of transfer and induction in bordism theory and L-
theory to extract a homological restriction on the ordinary intersection semi-
characteristic 7}1 2(X;Q).
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Suppose G acts on a Witt space X. This action makes ITH™(X; Q) into a
QG module. Because TH™(X;Q) is a finitely generated QG module, the

semicharacteristic
k

Dap(X; Q)= 3 (~D/UHX; Q)€ Ko(QG)

is a well-defined element in the projective class group of QG. We push this

further into the reduced projective class group K,(QG) of QG. Consider
the Rothenberg exact sequence [19]

() = LFHHQG) - HY(Z,; Ko(QG)) = L HQG) - LFFHQG) — -

for the projective and stably-free L-theory groups of QG. A calculation of
HY(Z,; Ky(QG)) shows that
{[P1e Ky(QG)|[P)=[P*]}
([P®P*]|[Ple KyQG)}
We use Theorems 2.3 and 2.5 to observe that

k k

HY(Z,; K,(QG)) =

Ix1/X; Q) = Ix1/2(X;Q)* = _;0(—1)i[1Hi'ﬁ(X; Q)I- .E)O(—l)"[IH,ﬁ*(X; Q)*]
2k+1

= 3 UH[(X; Q)] =0€ Ry(Q0).

This calculation shows that I'x;/,(X; Q) is an element of H YZ,; Ky(QG)).By
composing with the map in (*) we further push I'x;,(X; Q) into LI*1QG).

DEFINITION 3.1. Suppose X is a Witt space of dimension 2k + 1. The inter-
section semicharacteristic of X is the element

k

Ix2(X; Q) = g)o(—l)"[IH,-’T’(X; Q)le Li*1(QG).

Davis has shown that the utility of this semicharacteristic is limited to n=1
(mod 4) because L}*3(QG) =0 [4, Cor. 2.5(a)]. Cobordism invariance is a
useful property of the intersection semicharacteristic. The proof is essen-
tially the same as that of Proposition 3.2 of [4].

PROPOSITION 3.2. Let (X,03X) be a compact Witt space with boundary
of dimension 2k+2 which admits a free orientation preserving G action.
Then Ix,/5(3X;Q)=0€e L;**1(QG).

We consider the bordism theory defined by compact Witt spaces and pairs.
Denote the Witt space bordism group of X by QV'(X). We will show that
Witt bordism theory is a generalized homology theory. Thus Brown Repre-
sentation will give us a spectrum that represents reduced Witt cobordism
Q%;.. We then show that the Witt spectrum M Witt, is a module spectrum
over the ring spectrum MSO,.
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PROPOSITION 3.3. Witt space bordism is a generalized homology on the
category of topological pairs.

The verification of functoriality, naturality, homotopy invariance, and ex-
actness are straightforward. We need the next lemma to verify the excision
axiom.

LEMMA 3.4. Suppose P and Q are closed disjoint subsets of the compact
n-dimensional Witt space X with boundary. There exists a compact Witt
space YC X such that PC Y \9Y, QNY =@, and 3Y is bicollared in the
interior of X.

Proof. Since X is normal, there exist open subsets U and V of X such that
PcUcvVcX\Q, UcV, and VC X\Q. For each xe U, let éL, be a dis-
tinguished neighborhood of x such that ¢L, C V. Let éLY2C éL, be the dis-
tinguished neighborhood of x whose join lines emanating from x are half
as long as those of ¢L,. Similarly, let ¢L¥*C éL, be the distinguished neigh-
borhood of x whose join lines emanating from x are three fourths as long
as those of éL,. Since U is compact, there is a finite subcover of U by open
cones ¢LY% ¢ L,l/zz, ..., 6LY2. Choose a triangulation T of X that contains
cLl/ 2 L?/“, and ch , for i=1,2,...,r, as subcomplexes. Each closed cone
cL-"/4 is a Witt subspace of X such that 3(cL¥* = L¥* is bicollared in the
1nter10r of X.

We inductively replace cL* with a distinguished neighborhood cL,, of x;
that is PL homeomorphic to cL3’/4 such that Y =U/_; cL,, has the desired
properties. Let Y; = cL¥* Then Y, is a compact Witt subspaée of X such that
cL}/IZC Y CéLy,, and 6Y1 is bicollared in the mter10r of X. Suppose Y;_;isa
compact Witt subspace of X such that Ujzh eLy?Cc Y, CUjZ} ¢L,; and
dY;_,is bicollared in the interior of X. Con81der the collection C of snmphces
Ain 8Y;_;UcL¥* with respect to the triangulation 7 such that 8(Y;_,U cL¥*)
is not bicollared in the interior of star(A). Choose a subtriangulation T
of T such that d(star(A)) is bicollared in X for every AeC. Let cf,,
cLy*\U Aecmt(star(A)) Then Y;=Y;_,UcL,, is a compact Witt subspace
of X such that Uj=1 ch/ cY,cU! j=1C€Lx; and dY; is bicollared in the inte-
rior of X. Let Y=Y,. Then Y is a compact Witt subspace of X such that
PcUcYcVcX\Qand dY is bicollared in the interior of X. O

Proof of Proposition 3.3. Let i: (B\U, A\U) — (B, A) be the inclusion map
for an open set U with U Cint(A). We will show that i: Qv B\U, A\U) -
QYit(B, A) is surjective. The proof that i, is injective is similar. Let

[(X,0X), f1e QV(B, A).

Consider the closed subsets P = f~!(B\int(A4)) and Q= f"1(U) in X. By
Lemma 3.4 there exists a Witt subspace YC X such that PC Y \dY, YNQ=
@, and Y is bicollared in the interior of X. Hence, 3(X X I )U (X \int(Y)) x1
is a Witt subspace of d(X X I) because dY is in the interior of X. Let
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T XXI->X
be the projection onto the first factor. Then
[(XxI,0XxTU(X\int(Y)) x1), fem]
is a cobordism in (B, A) which yields i,.([(Y,3Y), f|y]) =[(X, dX), f1. U

We will show that there is a spectrum corresponding to this generalized ho-
mology theory which has the structure of a MSO module spectrum. The
importance of this structure is a result of Browder, Luilevicius, and Peter-
sen [2].

THEOREM 3.5. Any module spectrum over MSO becomes a generalized
Eilenberg-MacLane spectrum after localizing at 2.

THEOREM 3.6. There is a spectrum M Witt associated to the Witt bordism
theory which is a MSO module spectrum.

Proof. Let D denote the Spanier-Whitehead duality functor on the cate-
gory of spectra. Then Q%,,(—) = QY (D(~)) is a generalized cohomology
theory. Let M Witt,, be the associated spectrum that represents this theory.
There is a natural pairing Q30(A4) x QVit(B) - QWVilt (4 x B) due to the fact
that M x X is a Witt space whenever M is a manifold and X is a Witt space.
Consider the diagram below:

QS0 (D(MS0)) x OV D(M Witt)) — QVI(D(MSO) A D(M Witt))

II ||

Q% (MSO) x Qi (M Witt) Q% (MSOA M Witt)

| Il

[MSO, MSO} x [M Witt, M Witt] [MSOA M Witt, M Witt].

Consider the homotopy class of maps between spectra induced from the
identity map on M Witt and the identity map on M SO. Following the dia-
gram around yields a pairing on spectra p: MSOA M Witt - M Witt. Notice
that the MSO ring spectrum pairing pu: MSOA MSO — MSO is obtained
from the diagram below by starting with the identity map on M SO and fol-
lowing the diagram:

QSO (D(MS0)) x 832 (D(MS0)) — Q3%(D(MSO) A D(MSO))

Q%0(MSO) X Q%(MSO) (2o (MSOA MSO)

[MSO, MSO] x [MSO, MSO] [MSOAMSO, MSOJ.

There is a diagram corresponding to (M XN)XX =M X (N X X):
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Q30X x QO (Y)x QY(Z) — BO(XAY)x QY (Z)
) i
BOX)xWViyyazy — OV XAYAZ).

The corresponding diagram on the spectra level and an application of the
Yoneda lemma yields the following homotopy commutative diagram:

MSOAMSOAMWitt 228 AMSOA M Witt
pALL e
MSOA M Witt £, M Witt.

The ring spectrum unit 5: S— MSO is obtained on the MSO bordism
theory level by the fact that pr X M =M = M X pt. An argument similar to
the previous argument shows that

SAMWitt 224 MSOA M Witt

=] }e
MWitt —»  MWitt

is homotopy commutative. O
COROLLARY 3.7. M Witt,, is a generalized Eilenberg-MacLane spectrum.

We apply Corollary 3.7 to group actions on Witt spaces. Let i: G, G be
the inclusion of a 2-Sylow subgroup. There is a commutative diagram

. I
QVit(BG) 5y —2> LIQG)

i‘l i*l
. I
QY"(BG,) 2 LN Li(QG,)
i | i
Ix1/2

Q};Vi“(BG)(Z) — Lj(QG),

where i* is the map defined by restricting the G action to a G, action, i.(X)=
GXg,X=GX X/(gh,x) ~ (g, hx), and i.(V') = QG ®qg, V. The groups on
the right have exponent 2, so there is no loss of semicharacteristic informa-
tion by localizing the bordism groups at 2. Because M Witt ) is a generalized
Eilenberg-MacLane spectrum, the bordism groups 93''(—),,, behave like
ordinary homology with respect to restriction and induction. Thus a transfer
argument shows that
iyoi*: Q" (BG) - Q)" (BG)

is multiplication by |G: G,|. Because L}(QG) has exponent 2 when 7 is odd,
we obtain the following proposition.

PROPOSITION 3.8. Let G act freely and orientation-preservingly on a com-
pact Witt space X" of odd dimension n. Then

1X1/2(X; Q) = ix(Ix2(iI*(X); Q)).
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We obtain restrictions on the intersection semicharacteristic for free inter-
section homologically trivial actions. In our first proposition we need no
assumption about the action being trivial on intersection homology.

PROPOSITION 3.9. Suppose Z,XZ, acts freely through PL homeomor-
phisms and orzentanon—preservmgly on a compact Witt space X of dimen-
sion 4n+1. Then 1X1/2(X Q) is even.

Proof. Consider the free Z, action on X by restricting to a factor of Z, X Z,.
The diagram below commutes

X/Z2 "—> BZzXEZZ BZ2 “" BZZXEZZ
l = lI L=

X/Z2XZ2 ——* BszBZQ_ —> BZ2 —> BZ2XBZ2,
where p; and p, are projections onto the first factors, w: BZ, X EZ,—
BZ,x BZ, is the 2-fold covering projection, and j and j are the inclusions
into the first factors. Let 4,: BZ,X EZ,— BZ,X EZ, be a deformation re-
tract of BZ,XEZ,to BZ,X pt (EZ, is contractible). Let k,= woh,. Then
k:w=jop;. Let try: QMY (BZ,xBZ,)— Q¥ (BZ,xEZ,) denote the
transfer map associated to the covering projection «. Then 7etr, is multi-

plication by 2. '
The image of tr, is divisible by 2. Let a € Q¥ ,(BZ,X BZ,). Then

tro(@) = (Jeo D) otra(a)
= (JeoP1x)o(JxoP1a)otra()
= (JeoD1e)o(meotry) ()
=2:(Jsopp)(@).
Notice that the image of the intersection semicharacteristic
Ixyo: QS (BZy) - LI (QZy) = Z,

is detected by the ordinary intersection semicharacteristic 1X1/2(X Q=

>27 (=1 dim(JH(X; Q)) (mod 2). Since [X/Z2,¢]GQ}‘,',‘$1(BZ2) comes
from the image of tr,, the ordinary intersection semlcharacterlstlcﬁl /2(X;Q)
is even. ]

A similar argument to that given in Example 1.5 in [5] yields the following
proposition.

PROPOSITION 3.10.  Suppose D, acts freely through PL homeomorphisms
and intersection homologically trivially on a compact (4n+1)-dimensional
Witt space X. Then f}l /A X; Q) is even.

An argument similar to that of Theorem 8.1 in [4] yields the following
theorem.
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THEOREM 3.11. Suppose G acts freely through PL homeomorphisms and
intersection homologically trivially on a compact (4n+1)-dimensional Witt
space X. Then either the intersection semicharacteristic f)?l /2AX; Q) is even
or G is a direct product of a cyclic 2-group and an odd order group.

We note that there is a minor error in the proof of Theorem 8.1 in [4]. It is
not shown that G is a semidirect product of its Sylow 2-subgroup G, and an
odd order group H. One needs to apply the Schur-Zassenhaus theorem [6,
Thm. 6.2.1] to the short exact sequence

1-G,»-G-H-1.

The Schur-Zassenhaus theorem applies because (2, |H|)=1and G, is solv-
able.

4. Restrictions on Higher Signature

We consider the restrictions on the higher signature of a Witt space that ad-
mits a free G action which acts trivially on the intersection homology of X
with any local coefficient system. Let f: X — B classify the universal cover
of X. Consider a representation p: w — Sp(2/, R) of the fundamental group
of X into the real symplectic group in 2/ variables, that is, the group of auto-
morphisms of R* preserving the alternate form 3! _,(x; v, —X14+15:). We
will abbreviate Sp(2/, R) by Sp when no confusion will arise from doing so.
Let L(X) e H,(X; Q) be the L-class of a Witt space X. Then

((Bp)*(u), fx(L(X)))=0 forall ue H*(BSp;Q),

where Bp: Bw — BSp is the induced map on classifying spaces. Our methods
follow those of Lusztig [12] and Mis¢enko [16].

Let V be a finite-dimensional complex vector space with a nondegenerate
hermitian form 4. A homomorphism ¢ : # = GL (V') such that the hermitian
form 4 is invariant allows us to define a local coefficient system for the inter-
section homology of X. Let X be the universal cover of X. Then IC/*(X; Q)
is a free Qm module. We use the homomorphism y to make Vinto a left Qn
module. Hence, IC/"(X; Q)®q.V is the i-chains of X with the local coeffi-
cient system induced by the homomorphism .

DEFINITION 4.1. The intersection homology of X with local coefficients ¢
is the homology of the complex

ICM(X;Q)®q.V, I®id.
We denote these homology groups by TH™(X; y).
REMARK 4.2. We induce a Hermitian form on IH(X; ) by the induced
Hermitian form (¢ ®v, rTQw) =€’(cdN7)-h(v, w) on the chain level for all

ceIC(X,Q), 7elIC]_;(X;Q), and v,weV, where N is the intersection
product and €’ is the augmentation homomorphism ¢’: IC§(X; Q) — Q. From
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Theorems 2.3 and 2.6 we obtain Poincaré and Lefschetz duality for Witt
spaces on the intersection homology with local coefficients. In particular,
the intersection products

IHP (X )< IHT (X3 4) D> THH(X; ¢) < C
and
THP(X, 0X; V) X IH™ (X5 ¥) D> IH{(X; ¥) 5 C

are nondegenerate Hermitian pairings when X has no boundary and X has
boundary, respectively.

DEFINITION 4.3. Suppose X is a Witt space of dimension 4x. The signa-
ture with local coefficients y will be the signature of the intersection product

THP(X* ) X IH 5, (X *"; ¢) - C.
We will denote this local coefficients signature by sign ,(X).

LEMMA 4.4.  The local coefficients signature sign,(X) is a bordism invari-
ant in Q3N (B).

Proof. Suppose X =9Y is a boundary of a Witt space Y withamap g: Y —
B that restricts to f on X. By Remark 4.2, the long exact sequences

IHS, (Y, X3 9) = THE(X,¥) > IHL(Y;Y)
1= l = } =
IHE(Y; ) D IHEX ) S THE, (Y, X §)*

are paired by the nondegenerate intersection products. As in the usual proof
of the bordism invariance of the signature for manifolds, we see that im i* is
a submodule of TH(X; ¥) of half the dimension for which the intersection
product is zero. Hence, sign,(X)=0. O

We define the L-class for a Witt space X. Our method follows that of Goresky
and MacPherson [7, §5.3] who define the L-class of a Whitney stratified
pseudomanifold with even codimensional strata. This element lies in the
rational homology of X, L(X) e H.(X;Q). When X is a manifold, L(X) is
the dual of £(X), the Hirzebruch L-class of X. The signature o(Y) of a
4n-dimensional Witt space Y is a well-defined integer. Siegel [23] has shown
that it is a Witt bordism invariant. If dim(X)=0 (mod 4) then we define
o(Y)=0.

Let pe S be a point in the interior of a k-simplex. We say that a sim-
plicial map f: X — S¥is transverse if there exists a regular neighborhood N
of p such that £ ~!(/V) is’PL homeomorphic to f ~!(p) X N. For each trans-
verse simplicial map f: X — S* we get a stratification of f ~!(p) that makes
f Y p) into a Witt space. Then the signature o(f ~!(p)) is defined. This
signature depends only on the homotopy class of f: X — S*, by the follow-
ing lemma.
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LEMMA 4.5. There is a unique map 0:[X,S*1—Z such that 6([f]) =
o(f ~Y(p)) for each transverse map f: X — S.

The proof is similar to the proof of Lemma 5.3 of [7].

DEFINITION 4.6. The L-class Li(X)e Hy(X;Q) is the homomorphism
0®Q: H*(X;Q)— Q, where we apply the isomorphism

[X,S¥1®Q =H*X:;Q) when 2k>n+1.

As noted in [7], the restriction 2k > n+1 can be removed by suspending X
with a sphere, as in [15].

DEFINITION 4.7. Suppose f: X — B classifies the universal cover of X.
We define f.(L(X))e H,(Bw; Q) to be the higher signature of X.

LEMMA 4.8. The higher signature f.(L(X)) is a bordism invariant in
QY BT).

Proof. Suppose that X=4Y and that g: Y — Bx restricts to f on X. We
need to show that f.(L(X))=0. Consider a transverse map /: Y — S¥ and
let hy: X — S* be the restriction of 4 to X. Then A~!(p) is a Witt space of Y
that bounds A5 '(p) in X. Thus a(h5 ' (p)) =0. Hence L(X) =0®Q =0, and
therefore f(L(X))=0€ H,(B7;Q). 0

COROLLARY 4.9. Let ve H*(Bw; Q). Then (v, f(L(X))) is a bordism
invariant in Q% "(B7).

We apply this higher signature to group actions on a Witt space. Consider a
smooth connected manifold M. We state a result of Lusztig [12, §5.2].

THEOREM 4.10. Suppose that « is the fundamental group of a smooth
closed manifold M and that p: ©— Sp is a homomorphism. For any ue
H*(BSp; Q), there exists a positive integer m as well as two representations
of Sp, E and F, with invariant nondegenerate Hermitian forms (possibly
indefinite) such that

mu—ch(¢(E)* —¢(E)7)+ch(@(F)"—o(F)7)

is zero in degrees <dim(M). Here, ¢(E) is the associated Hermitian bun-
dle over the classifying space BSp and ¢(E)=¢(EYT @ ¢(E)~ is the split-
ting of the induced Hermitian metric such that the metric is positive defi-
nite on ¢(E)* and negative definite on ¢(E)~. Also, ch(¢(E)t — d(E)7) €
H*(M; Q) is the Chern character of the bundle $(E)*—¢(E)~ over BSp.

Suppose f: M — B classifies the universal cover of M. Let A= Bp-f. Then

h*(mu) = h*ch(¢(E)" —¢(E)™)—h*ch(¢(F)* —¢(F)7) e H*(M;Q).

Now E and F give rise to flat Hermitian bundles on M, denoted by £ and
F, whose Chern characters are ch(E+*—E~)=h*ch(¢(E)t—¢(E)™) and
ch(Ft+—F7)=h*¢(F)T—¢(F)™). Thus
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(h*(mu)L(M), [M])
=(h(Et—E")L(M), [M])—(ch(Ft—F)L(M),[M])
=sign(M, E) —sign(M, F).

This last equality is obtained from the Atiyah-Singer index theorem. Here,
sign(M, £) is the signature of the cohomology of the chain complex of smooth
forms on M with values in £. The vector bundles £ and F are equivalent to
representations of the fundamental group = into GL(£) and GL(F'), respec-
tively. These representations of 7 factor through Sp. Let ¢:Sp — GL(E)
and 0: Sp — GL(F') be the representations of Sp such that yep: 7 — GL(E)
and fep: m — GL(F) are the representations of = which classify £ and F, re-
spectively. Let C*(X; yop) and C*(X;0-p) denote the cochain complexes
of the chain complexes C.(X; Q)®q, E, d®id and C.(X; Q)®q, F, dRid,
respectively, as defined in 4.1 (with ordinary chains in place of intersection
chains). The proof of the usual de Rham theorem can be extended to show
that the chain complex of smooth forms on M with values in £ and F are
chain homotopic to the chain complexes C*(X; Y ¢p) and C*(X;0¢p), re-
spectively. Thus

(e (mu) £(M ), [M 1) = sign y.,(M ) —sign . (M).

THEOREM 4.11. Suppose that « is the fundamental group of a smooth
closed connected manifold M and that p: w — Sp is a homomorphism. Then,
Jor any ue H*(BSp; Q), there exists a positive integer m as well as repre-
sentations y: Sp - GL(E) and 6: Sp —» GL(F) such that

(Bp*(mu), f*(L(M))) =sign,.,(M)—sign,.,(M).

Proof. By dualizing the Hirzebruch L-class to the rational homology L-
class we obtain
sign . (M) —signg, (M) = { f*(Bp)*(mu) L(M ), [M])
= ((Bp)*(mu), f(L(M)N[M]))
={(Bp)*(mu), fo(L(M))). O

We extend this theorem to Witt spaces.

THEOREM 4.12. Suppose that f: X — B classifies the universal cover of
a compact connected Witt space X and that p: = — Sp is a homomorphism.
Then, for all ue H*(BSp; Q), there exists a positive integer m as well as rep-
resentations Yy : Sp - GL(E) and 6: Sp - GL(F) such that

(Bp*(mu), fH(L(X))) =sign y.,(X) —sign.(X).

Proof. Siegel has shown that Q)" (pt) =0 if n# 0 (mod 4), and that
Qi pty = W(Q) if k >0, where W(Q) is the Witt ring of symmetric bilin-
ear forms over the rationals [24, Prop. IV.1.1]. Now W(Q)=Z®T, where T
is an infinite torsion group and the Z factor is detected by the signature of a
symmetric bilinear form over the rationals. On the other hand, Q52 (p#)®Q
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has rank p(k), the number of partitions of k [15, Thm. 18.8]. Thus the nat-
ural map 25°(pr)®Q - QV'(pr)®Q is a surjection.
The Atiyah-Hirzebruch spectral sequences for

Q50(BT)®Q and QV(B7T)®Q
both collapse, and we obtain

QS (BT)®Q = erk)Hn_uc(Bw; QR ®Q).

Hence, the map 23°(B7)®Q - QVY(Bx)®Q is a surjection. Thus a posi-
tive integral multiple of X is Witt bordant to the image of a manifold M in
OV B7r)®Q. By Lemma 4.4, Corollary 4.9, and Theorem 4.10, for some
positive integer r we have
r(signy,,(X)—signg,,(X)) =sign,.,(rX) —signg.,(rX)
=signy. (M) —signg.,(M)
=(Bp*(mu), f*(L(M)}))
={Bp*(mu), f*(L(rX)))
=r{Bp*(mu), f*(L(X))).

Hence, sign ., (X) —sign,.,(X) = (Bp*(mu), f*(L(X))). O

DEFINITION 4.13. A free G action on a Witt space X is said to be unex-
tended if the exact sequence for covering spaces

- 7(X)->7(X/G)-G—1

is such that 7(X) — 7(X/G) is a split monomorphism.

REMARK 4.14. The map m;(X/G) — G is a split surjection and n{(X/G) =
T (X)X G.

THEOREM 4.15. Suppose that G acts freely through PL homeomorphisms
and unextendedly on a compact connected Witt space X, and that p: © — Sp
is a representation. Suppose f: X — B classifies the universal cover of X
and Bp: Bw — BSp is the induced map of p on the classifying spaces. If G
acts trivially on the intersection homology of X with any local coefficient
system, then

{(Bp)*(u), fL(L(X)>=0 forall ue H*(BSp;Q).
Proof. Consider the relation of X and X/G in the bordism of B

X — Brw
Pl ()
X/G = X/G.

This can be done because G is an unextended action. We show that

(*) [X1=|G|[X/G]e Q" (BT)®Q.
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The analogous result is true for manifolds in the bordism group 25°(B7)®Q
(see [27, Thm. 2.9]). By the proof of Theorem 4.12, the map

230(B(r X G))R®Q - QY *(B(7 X G))®Q

is a surjection. So there is a manifold M with a_free unextended G action
such that [M]=[X] and [M/G]=[X/G] in Q)'"(B7)®Q. Hence, [ X]=
[M1=|G|[M/G]=|G|[X/G]. Applying Lemma 4.4 to () yields

(%) signg(X) = |G| signg(X/G),

where 3: 7 — GL(V) is any representation of =. However, G acts trivially
on the intersection homology of X with local coefficient system 8. Then the
following transfer argument shows that ITH(X; 8) = IH(X/G; 3).

Let p: X — X/H be the covering projection, where H is any subgroup of
G, and let

tr= ¥ h®id: IC/(X/H;Q)®q.V - IC/(X;Q)®q¢.V
heH

be the chain map that induces the transfer map
tr.: IH™(X/H; 8) —» IH"(X; ).

Then a calculation yields p,eotr,=|H|: IH/"(X/H;B) —» IH"(X/H; ) and
troep.=|H|: IH(X; B) —» IH(X; 8) because G acts trivially on the inter-
section homology of X with any local coefficient system. Since | H| is invert-
ible, tr, is an isomorphism. Hence,

(x%) sign g(X) =signg(X/G).

Combining (*) and (++*) yields sign g(X) =0. By Theorem 4.12, for all u €
H*(BSp; Q), there exists a positive integer m and representations y: Sp—
GL(E) and 6: Sp —» GL(F’) such that

(Bp*(mu), f*(L(X))) =sign.(X) —signg.,(X)=0.
Hence, {(Bp)*(u), f+(L(X)))=0. O

The following result due to Matsushima [13] shows that for some fundamen-
tal groups 7 the cohomology classes (Bp)*(u) € H*(B#; Q) are nontrivial.

THEOREM 4.16. Let I" be a discrete, torsion-fre_’e subgroup of Sp such that
Sp/T" is compact. Then the homomorphism H'(BSp;Q)— H(BT'; Q) in-
duced by the inclusion T’ C Sp is surjective for i <(I+2)/4.

This gives us the following corollary.

COROLLARY 4.17. Suppose that G acts freely through PL homeomor-
phisms and unextendedly on a compact connected Witt space X, and that
p: @ — Sp is a representation. Suppose that f: X — Bx classifies the universal
cover of X and Bp: Bw — BSp is the induced map of p on the classifying
spaces. Suppose that w is a discrete, torsion-free subgroup of Sp such that
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Sp/= is compact. If G acts trivially on the intersection homology of X with
any local coefficient system, then fo(Li (X)) =0 ¢e€ H(Bw; Q) forall k <
(/+2)/4.
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