On the Structure of
Some Lie Algebras of Kuznetsov

GORDON BROWN

1. Introduction

In [3] Frank showed the existence of two simple graded Lie algebras L =

r— _1®L; of characteristic 3 for which L, is solvable. In [4] Kuznetsov has
given a classification of simple graded Lie algebras L =Y!__;@®L; with L,
having a noncentral radical. In this investigation he encountered algebras of
characteristic 3 of what he called series 7and ®, which are described in terms
of Cartan prolongations of certain solvable Lie algebras.

It is our purpose here to give (in Section 2) a simple description of Kuznet-
sov’s algebras that will reveal many of their structural features, and then in
Section 3 to prove the isomorphism of the algebras of series 7" with those de-
scribed in [2] and to point out structural differences between those of series
® and contact algebras of the same dimension.

The author would like to thank the referee for several helpful suggestions.

2. Description of the Algebras

We shall regard the notation and terminology of [1] as standard and use it
without necessarily redefining it here.

Let F be a field of characteristic 3. Let R=W(2)®PHA(2), where A(2) is
the completed free divided power algebra in x;, x, over F, and W(2) is the
Lie algebra of special derivations of f{(2). R is an algebra under a product
[, ] such that for De W(2) and f,ge #(2), [D,f]=—[f,D]=div(fD)
(where, as usual, div(u; D) +u, Dy) =D u;+ Dyu5); [ f, g]1= D, — gD, where
Dr=(D, f)D,— (D, f)D,; and on W(2) [, ] is the usual Lie product.

Let fi* be the subset of f{(2) consisting of all formal sums

E E a,-jx,(")xéj) with a,-jeF,
O<i<10=<jy

and let W* be the subalgebra of W(2) consisting of all formal sums

E E b,-jxl(i)xéj)D1+ E Ck.Xék)Dz with b,‘j, CkEF.
0<i<20sj 0=k

T =w*® A" is a subalgebra of R under the product [, ] defined above.

Received May 21, 1990. Revision received July 29, 1991.
Michigan Math. J. 39 (1992).

85



86 GORDON BROWN

THEOREM 2.1. R and T* are Lie algebras over F.

Proof. Anticommutativity is clear from the definition of [, ]. For f, ge f(2)
and D, E € W(2), it readily follows from the definition of [, ] and the prop-
erties of derivations that [D, fE] = f[D, E1+(Df)E, div(fD) = f(div D)+
(Df), div[D, E] = D(div E) — E(div D), Dy, = fD, + gDy, and [D, D] =
Dps—(div D)Dy. From these it follows that

[[D, E], f1=/D(div E) - fE(div D) +[D, E1f,
[D, [E, f1]=f(div E)(div D)+ (Df)(div E)
+ fD(div E) + (Ef)(div D) + DEY,

[D, [f, 811 =fDp;—f(div D) D,
+ (Df)EDg—-gSDDf+g(diV D)fo— (Dg)ZDf,

[[D, f1, g]l=/(divD)D;— gDy, p—&(div D) D, +(Df) D, — gDpy,
and
[/, 8], hl=h(fdivD,—gdivDs+D, f—Drg) +(f D, — gDs)(h).

Therefore
[[D, f1,E1+[D,[E, f11=IID, E], 11,

(LS, gl, h1+1lg, h], f1+I1[A, f1,8]1=0.

Thus, since W(2) is a Lie algebra and since F has characteristic 3, the Jacobi
identity is satisfied and both R and its subalgebra T* are Lie algebras. [

and

In order to describe the algebras of [4] we consider a vector space V over
Fand a Lie algebra £ C gf(V). Let £7P=Vand £©9 = £, and inductively
define £ = {¢ e Hom(V, LY D) |p(x)(») = ¢(¥)(x), x,y € V} for i > 0.
The space L of all formal sums 3{> _,¢;, where £;€ £Y), becomes a Lie
algebra when supplied with the product determined by [£¢", £D] =0,
(¢, y]=—[y,d]1=¢(y) for yeV, ¢ £P, i >0, and (inductively) for ¢ €
£9, Yy e £Y) (i, j = 0) by [, ¥1(¥) = [d, ¥(»)] — [V, ¢(p)] for all ye V.
Following Kuznetsov, let ® _;=T_,; =F[x]/(x?),

_/d? d > d
(R0—<dx2 axdx’x adx,x’ 1>ng(m—l)9

and

To= <xc%,x2, %,x, 1) C ®,.
For £ V=R _((7T_,) and £© = R, (T},) we denote the corresponding L by
®(T) and £ by ®,(T;). We shall show that ®R(7T’) is isomorphic to R(TH).

Let a topological grading be defined on f{(2) and W(2) in which f{(2);; is
spanned by monomials # with degu =i+1 and W(2);; by elements u, D, +
u, D, for monomials u;, u, with degu; = degu, =i+ 1, where degx, =
deg x,=1. Then R has a topological grading in which R;;=W(2);;®H(2);}.
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The mapping o taking 1+ (x?), x+(x?), x>+ (x?) into D,, —1, D;, respec-
tively, and d?/dx?, x(d/dx), x?,d/dx, x,1into x,D,, x, Dy, —x; Dy, —X;, X2,
—x1D,—x, D,, respectively, determines an isomorphism from ® _;® ®,on-
to R|_;;®R|o; preserving the grading indicated by the subscripts.

Let ®;=®; for i =—1,0, and for i > 0 inductively define &; to be the set
of ¢,e Hom(®R _;, ®;_,) for ¢ € R;;, where ¢p(v) = by 4y fOr ve ®R_;and
¢ =0"1(0) for f € Ri_;j®R|p}- We readily observe that ®; is a subspace of
®; and that the correspondence £ — ¢, is one-to-one since [¢, Rj_;;] =0 only
for ¢ ER[_I].

Proof. By definition, ®; = ®&; for j <0. Therefore suppose j > 0, and assume
that (I),' = (Ri for all l<j. q),‘ = (I),"W®‘I),"g[, where (I)i,W= {¢g € q),' | fe W(Z)}
and &; g ={p,€ ;|{ € A(2)}. For p € ®; let po(G) =10 "(G) +¥,0"(G)
for GeW(2)(_1j» 07 (1) =0 1 (1) +¢,0 7' (1) where ;0 "1(G), ¥, (1) e
®;_; w and ¥,07'(1), ¥,07(G) € ®;_; &. Hence the condition ¢(x)(y) =
¢(y)(x) implies that Yy, ¢, e ®;. Therefore, for k=1, 2, Y0 (D) =
®ay, D, +ay, D, fOr some ay; Dy +ay, D, e W(2) ;) and Yo i) = ¢ for some
S € A(2);-1)- The definition of ®; requires D,a,, = Dyay;, and Dyay, +
Dya,=—Dy ffor k=1,2. Foray, (1<k,l<2)and fsatisfying these equa-
tions, there exists a unique g,D; + g, D, € R(j; such that a;, = —D; g, and
S =div(g,D,+g,D,). It is easily observed that y, = ¢¢, p, +¢,D,. For k =1, 2,
z//20"1(1)=¢>1110,+/121)2 and x/zza"(Dk):qbfk for some h Dy+hy D, e W(2),_y
and f € f1(2) ;. The definition of &, requires D, f, =D, f>, Dih, =D, fi,
D]h2= "—'lel, DZhl =D2f2, and D2h2= —'lez. Because J >0, these are
equivalent to f;=—h,, f>,=h,;, and div(h; D+ h,D,)=0. For such h, h,
there exists a unique g € R ;) such that D, g = h, and D, g = —h;. It is easily
observed that Y, =¢,. Thus ®;=®; ,, ®P; o = P;, and the lemma follows
by induction. L]

Let the map o defined above be extended to the linear map from ® onio R
determined by defining a(¢,) =/ for £ € R;;, i >0.

o([de, de,]) =[0(Pe,), 0(de,)] with €€ R, b€ Ry

has already been shown to hold if j or k is —1 or if j = k =0. Assume that it
holds whenever —2 < j+k < n, and suppose that j+k=n. ForveR_,,

[¢f’]s ¢’f72](v) = [(b(’p (b?z(v)] - [¢l’23 d’f’](v)] = [d)l’]s d)[fz,ﬂ(v)]] - [d)l’zs (?5[!’1,0(0)]]-
Thus, by induction and Theorem 2.1,

[, D0, 1(0) = 0 1[0y, [€2, 0 (0)]] = [£3, [£y, 0 (0)]])
=07 ([[1, €21, 5(0)]) = D(a;, 1,100 = Pl 01 (V)

Therefore [¢e,, dr,] = d(¢,, 0,1, and so by induction

o([Pe, D0, 1) =[0(de,), 0(Pe,)]
holds for all £, ¢, € R, and the following result has been established.
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THEOREM 2.3. R is a Lie algebra isomorphic to ®R.
THEOREM 2.4. T"is a Lie algebra isomorphic to T,

Proof. Simply modify the proof of Theorem 2.3 by replacing R and ® by
T# and T, respectively, and subspaces of R and ® by their intersections with
T* and T, respectively. Note from the restrictions on deg x, that

g1D\+g,D,eT* and geT?
in the proof of Lemma 2.2. Hence it follows that ¢(7)=T*. O

We now consider isomorphic copies of the algebras whose existence was
implied in [4]. Let R(2 : (n;, n,)) be the subalgebra of R spanned by
W(2:(ny,n,)) and H(2: (ny, ny)), and let T(n)=R2: (L, n))NT*,

Clearly the derived algebra R(2: (n;, 1))V is spanned by W(2: (ny, n,))
and {x{'x{)e A(2: (n, ny))|i+j<3"+3"—2}, and hence has dimension
3”l+”2+1 1; T(n) has dimension 23"+,

3. Some Properties of R(2:(n,,n,)) and T(n)

We first show that the algebras 7(n) are isomorphic to the algebras studied
in [2]. Thus they are simple and also have gradings for which their 0-com-
ponent is isomorphic to gf(2).

THEOREM 3.1.  T{(n) is isomorphic to the algebra T(3: n) of [2].

Proof. The linear mapping sending x§"*VD;, —x®x{~YDy, x,x{’D,, x$*VD,,
x§D, —x %87 into @y 1y, bagi—1ys Cais dais €2i 41> f2i—1 TESPeCtively, for the
values of i for which these elements are defined, is the required isomorphism.

[l

THEOREM 3.2.  R(2:(ny, ny)) is simple for all positive integers ny, n,.

Proof. A nonzero ideal I of this algebra contains a nonzero element ¢ ¢
R;_y). Either £ € {((2) or [x;D;—x;D,,01e W(2);_)\0. If £ € A(2)[_y), then
[x1, £1€ W(2)—11\0. Therefore I contains a nonzero element of W(2)_y,
and so the simplicity of W(2: (n,, ny)) implies its inclusion in 7. Because
the Cartan subalgebra {x;D,, x, D,) C I, so are the root-space elements

xl‘3n1_”x§3"2“2) and x,‘3n1_2)x§3n2“”,
whence also all of H(2)NR(2: (ny, )P C I Thus I=R(2: (ny, ). O
THEOREM 3.3. R(2:(ny, ny))\V is restricted if and only if nj=n,=1.

Proof. Because W/(2) is invariant under ad ¢ if and only if ¢ e W(2),
R(2: (ny, 1))V cannot be restricted unless W(2: (ny, ny)) is; that is, n,=
n, = 1. Conversely, for fe f((2), (adf)*=0, and if ny=n,=1and ge
(2 : (1, 1)) then (gDy)? = (g(Dyg)*+ g%(DFg)) Dy for k=1, 2, and so
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(ad gD;)> =ad((g(Dyg)*+g%(D}2g))Dy) on W(2:(1,1)); this is also seen to
hold when applied to A(2)NR(2: (1, 1)), O

THEOREM 3.4. There exists a toral element te R(2: (ny, ny))V such that
the kernel of ad t is solvable of dimension 3"+ "2—1,

Proof. t=x,D;—x,;D, is toral. The kernel of ad ¢ is N =(x{"x{/)Dy, i — j =

1 (mod 3); x('x{D,, i — j = —1 (mod 3); x{'x{, i — j =0 (mod 3)). Thus

NS, x,D—x, D))+ NN'Y Ry, NP Dy—x, D) +NNY Ry,
i>0 i>0

and N¥ <3, Ry;. Hence N must be solvable, and ¢ has the properties

stated in the theorem. 0l

Theorem 3.4 will enable us to show that R(2 : (111, 7,)){? is not isomorphic to
any of the contact algebras of the same dimension, that is, K(/7: q)" where
m=2r+1, 3 divides m, and X/L,q;=n;+n,+1.

THEOREM 3.5. R(2:(ny, n,))\V is not isomorphic to any of the contact
algebras K(m: q)".

Proof. For any Lie algebra M of prime characteristic p, define 7(M) =
{DeM|(ad E)’De[M, D] VE € M}. Since the formulas for (ad f)* and
(ad gD, )? used in the proof of Theorem 3.3 are valid in R(2 : (1, 1,))"" when
applied to R(2: (1, 1)), it is readily observed that

T(R(2: (m, mp) ) =R(2:(1,1)) if (my,m3) #(1,1),

while clearly 7(R(2: (1, 1)) = R(2: (1, 1))V. By similar reasoning we have
r(K(m:q)M)y=K(@(m: 1) if g1, and 7(K(m:1)P)=K(m:1)P. Therefore
any isomorphism between R(2: (n;, n,)) and K(m:q)" must induce an
ismorphism between R(2: (1, 1))!” and K(m:1)V. Thus by comparison of
dimensions this requires m = 3. By Theorem 1.3.1 of [1] every toral element
of K(3: 1)V is a conjugate of one of the following: ¢, = Dg(x;x3), t; =
D (x3), 13 = Dg(x1x2 + x3), 14 = Dy (x1x2 —Xx3), 15 = Dg(x3+1), or £, =
Dy ((x;+1)x,). It is readily verified that the algebra A4; (1 <i <6) is con-
tained in the kernel of ad ¢;, where

Ay = (D (1), Dy (x3), Dy (x§2)),
Az = As=(Dg(x?), Dg(x1x3), Dy (x$2)y,
Az =(Dg(x)), Dg (X1, X2), Di (x1x57)),

A= (D (x3), D (x1x2), Dy (x{Px,)y,
and
Ag= (D (1), Dg(x3—x1x3), Di ((x3—x1x2) D).

Since each of these algebras is simple, the kernel of ad ¢ for a toral element
te K(3:1) cannot be solvable. Thus, by Theorem 3.4, R(2: (1, 1))!? can-
not be isomorphic to K(3:1)Y and so R(2: (ny, n,))'V is not isomorphic to
any of the contact algebras K(m: q)". O
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