On the Structure of Some Lie Algebras of Kuznetsov

GORDON BROWN

1. Introduction

In [3] Frank showed the existence of two simple graded Lie algebras $L = \sum_{i=-1}^{r} \oplus L_i$ of characteristic 3 for which L_0 is solvable. In [4] Kuznetsov has given a classification of simple graded Lie algebras $L = \sum_{i=-1}^{r} \oplus L_i$ with L_0 having a noncentral radical. In this investigation he encountered algebras of characteristic 3 of what he called series T and \Re , which are described in terms of Cartan prolongations of certain solvable Lie algebras.

It is our purpose here to give (in Section 2) a simple description of Kuznet-sov's algebras that will reveal many of their structural features, and then in Section 3 to prove the isomorphism of the algebras of series T with those described in [2] and to point out structural differences between those of series \mathbb{R} and contact algebras of the same dimension.

The author would like to thank the referee for several helpful suggestions.

2. Description of the Algebras

We shall regard the notation and terminology of [1] as standard and use it without necessarily redefining it here.

Let F be a field of characteristic 3. Let $R = W(2) \oplus \mathfrak{A}(2)$, where $\mathfrak{A}(2)$ is the completed free divided power algebra in x_1, x_2 over F, and W(2) is the Lie algebra of special derivations of $\mathfrak{A}(2)$. R is an algebra under a product $[\ ,\]$ such that for $D \in W(2)$ and $f,g \in \mathfrak{A}(2)$, $[D,f] = -[f,D] = \operatorname{div}(fD)$ (where, as usual, $\operatorname{div}(u_1D_1 + u_2D_2) = D_1u_1 + D_2u_2$); $[f,g] = f\mathfrak{D}_g - g\mathfrak{D}_f$ where $\mathfrak{D}_f = (D_2f)D_1 - (D_1f)D_2$; and on W(2) $[\ ,\]$ is the usual Lie product.

Let $\mathfrak{A}^{\#}$ be the subset of $\mathfrak{A}(2)$ consisting of all formal sums

$$\sum_{0 \le i \le 1} \sum_{0 \le j} a_{ij} x_1^{(i)} x_2^{(j)} \quad \text{with } a_{ij} \in F,$$

and let $W^{\#}$ be the subalgebra of W(2) consisting of all formal sums

$$\sum_{0 \le i \le 2} \sum_{0 \le j} b_{ij} x_1^{(i)} x_2^{(j)} D_1 + \sum_{0 \le k} c_k x_2^{(k)} D_2 \quad \text{with } b_{ij}, c_k \in F.$$

 $T^{\#} = W^{\#} \oplus \mathfrak{A}^{\#}$ is a subalgebra of R under the product [,] defined above.

Received May 21, 1990. Revision received July 29, 1991. Michigan Math. J. 39 (1992).

THEOREM 2.1. R and $T^{\#}$ are Lie algebras over F.

Proof. Anticommutativity is clear from the definition of [,]. For $f, g \in \mathfrak{R}(2)$ and $D, E \in W(2)$, it readily follows from the definition of [,] and the properties of derivations that [D, fE] = f[D, E] + (Df)E, $\operatorname{div}(fD) = f(\operatorname{div} D) + (Df)$, $\operatorname{div}[D, E] = D(\operatorname{div} E) - E(\operatorname{div} D)$, $\mathfrak{D}_{fg} = f\mathfrak{D}_g + g\mathfrak{D}_f$, and $[D, \mathfrak{D}_f] = \mathfrak{D}_{Df} - (\operatorname{div} D)\mathfrak{D}_f$. From these it follows that

$$[[D, E], f] = fD(\operatorname{div} E) - fE(\operatorname{div} D) + [D, E]f,$$

$$[D, [E, f]] = f(\operatorname{div} E)(\operatorname{div} D) + (Df)(\operatorname{div} E) + fD(\operatorname{div} E) + (Ef)(\operatorname{div} D) + DEf,$$

$$[D, [f, g]] = f\mathfrak{D}_{Dg} - f(\operatorname{div} D)\mathfrak{D}_{g} + (Df)\mathfrak{D}_{g} - g\mathfrak{D}_{Df} + g(\operatorname{div} D)\mathfrak{D}_{f} - (Dg)\mathfrak{D}_{f},$$

$$[[D, f], g] = f(\operatorname{div} D)\mathfrak{D}_{g} - fg\mathfrak{D}_{\operatorname{div} D} - g(\operatorname{div} D)\mathfrak{D}_{f} + (Df)\mathfrak{D}_{g} - g\mathfrak{D}_{Df},$$

and

$$[[f,g],h] = h(f\operatorname{div}\mathfrak{D}_g - g\operatorname{div}\mathfrak{D}_f + \mathfrak{D}_g f - \mathfrak{D}_f g) + (f\mathfrak{D}_g - g\mathfrak{D}_f)(h).$$

Therefore

$$[[D, f], E] + [D, [E, f]] = [[D, E], f],$$
$$[D, [f, g]] - [[D, f], g] - [f, [D, g]] = 3(\operatorname{div} D)(-f\mathfrak{D}_g + g\mathfrak{D}_f),$$

and

$$[[f,g],h]+[[g,h],f]+[[h,f],g]=0.$$

Thus, since W(2) is a Lie algebra and since F has characteristic 3, the Jacobi identity is satisfied and both R and its subalgebra $T^{\#}$ are Lie algebras. \square

In order to describe the algebras of [4] we consider a vector space V over F and a Lie algebra $\mathcal{L} \subset \mathfrak{gl}(V)$. Let $\mathcal{L}^{(-1)} = V$ and $\mathcal{L}^{(0)} = \mathcal{L}$, and inductively define $\mathcal{L}^{(i)} = \{\phi \in \text{Hom}(V, \mathcal{L}^{(i-1)}) | \phi(x)(y) = \phi(y)(x), x, y \in V \}$ for i > 0. The space L of all formal sums $\sum_{i=-1}^{\infty} \ell_i$, where $\ell_i \in \mathcal{L}^{(i)}$, becomes a Lie algebra when supplied with the product determined by $[\mathcal{L}^{(-1)}, \mathcal{L}^{(-1)}] = 0$, $[\phi, y] = -[y, \phi] = \phi(y)$ for $y \in V$, $\phi \in \mathcal{L}^{(i)}$, i > 0, and (inductively) for $\phi \in \mathcal{L}^{(i)}$, $\psi \in \mathcal{L}^{(i)}$ ($i, j \geq 0$) by $[\phi, \psi](y) = [\phi, \psi(y)] - [\psi, \phi(y)]$ for all $y \in V$. Following Kuznetsov, let $\Re_{-1} = T_{-1} = F[x]/(x^3)$,

$$\mathfrak{R}_0 = \left\langle \frac{d^2}{dx^2}, x \frac{d}{dx}, x^2, \frac{d}{dx}, x, 1 \right\rangle \subset \mathfrak{g}\ell(\mathfrak{R}_{-1}),$$

and

$$T_0 = \left\langle x \frac{d}{dx}, x^2, \frac{d}{dx}, x, 1 \right\rangle \subset \Re_0.$$

For $\mathfrak{L}^{(-1)} = \mathfrak{R}_{-1}(T_{-1})$ and $\mathfrak{L}^{(0)} = \mathfrak{R}_{0}(T_{0})$ we denote the corresponding L by $\mathfrak{R}(T)$ and $\mathfrak{L}^{(i)}$ by $\mathfrak{R}_{i}(T_{i})$. We shall show that $\mathfrak{R}(T)$ is isomorphic to $R(T^{\#})$.

Let a topological grading be defined on $\mathfrak{R}(2)$ and W(2) in which $\mathfrak{R}(2)_{[i]}$ is spanned by monomials u with $\deg u = i+1$ and $W(2)_{[i]}$ by elements $u_1D_1 + u_2D_2$ for monomials u_1 , u_2 with $\deg u_1 = \deg u_2 = i+1$, where $\deg x_1 = \deg x_2 = 1$. Then R has a topological grading in which $R_{[i]} = W(2)_{[i]} \oplus \mathfrak{R}(2)_{[i]}$.

The mapping σ taking $1+(x^3), x+(x^3), x^2+(x^3)$ into $D_2, -1, D_1$, respectively, and $d^2/dx^2, x(d/dx), x^2, d/dx, x, 1$ into $x_1D_2, x_1D_1, -x_2D_1, -x_1, x_2, -x_1D_1-x_2D_2$, respectively, determines an isomorphism from $\Re_{-1} \oplus \Re_0$ onto $R_{[-1]} \oplus R_{[0]}$ preserving the grading indicated by the subscripts.

Let $\Phi_i = \Re_i$ for i = -1, 0, and for i > 0 inductively define Φ_i to be the set of $\phi_\ell \in \operatorname{Hom}(\Re_{-1}, \Phi_{i-1})$ for $\ell \in R_{[i]}$, where $\phi_\ell(v) = \phi_{[\ell, \sigma(v)]}$ for $v \in \Re_{-1}$ and $\phi_\ell = \sigma^{-1}(\ell)$ for $\ell \in R_{[-1]} \oplus R_{[0]}$. We readily observe that Φ_i is a subspace of \Re_i and that the correspondence $\ell \to \phi_\ell$ is one-to-one since $[\ell, R_{[-1]}] = 0$ only for $\ell \in R_{[-1]}$.

LEMMA 2.2.
$$\Phi_i = \Re_i$$
 for all $j \ge -1$.

Proof. By definition, $\Phi_i = \Re_i$ for $i \le 0$. Therefore suppose i > 0, and assume that $\Phi_i = \Re_i$ for all i < j. $\Phi_i = \Phi_{i,W} \oplus \Phi_{i,\Re}$, where $\Phi_{i,W} = \{\phi_\ell \in \Phi_i | \ell \in W(2)\}$ and $\Phi_{i,\mathfrak{A}} = {\phi_{\ell} \in \Phi_i \mid \ell \in \mathfrak{A}(2)}$. For $\phi \in \mathfrak{R}_j$ let $\phi \sigma^{-1}(G) = \psi_1 \sigma^{-1}(G) + \psi_2 \sigma^{-1}(G)$ for $G \in W(2)_{[-1]}$, $\phi \sigma^{-1}(1) = \psi_2 \sigma^{-1}(1) + \psi_1 \sigma^{-1}(1)$ where $\psi_1 \sigma^{-1}(G)$, $\psi_2 \sigma^{-1}(1) \in$ $\Phi_{i-1,W}$ and $\psi_1\sigma^{-1}(1), \psi_2\sigma^{-1}(G) \in \Phi_{i-1,\mathfrak{R}}$. Hence the condition $\phi(x)(y) =$ $\phi(y)(x)$ implies that $\psi_1, \psi_2 \in \mathbb{R}_i$. Therefore, for $k = 1, 2, \psi_1 \sigma^{-1}(D_k) =$ $\phi_{a_{k_1}D_1+a_{k_2}D_2}$ for some $a_{k_1}D_1+a_{k_2}D_2 \in W(2)_{[i-1]}$ and $\psi_1\sigma^{-1}(1)=\phi_f$ for some $f \in \mathfrak{R}(2)_{[i-1]}$. The definition of \mathfrak{R}_i requires $D_2 a_{1k} = D_1 a_{2k}$ and $D_1 a_{k1} +$ $D_2 a_{k2} = -D_k f$ for k = 1, 2. For $a_{k\ell}$ ($1 \le k, \ell \le 2$) and f satisfying these equations, there exists a unique $g_1D_1 + g_2D_2 \in R_{[i]}$ such that $a_{k\ell} = -D_k g_\ell$ and $f = \operatorname{div}(g_1D_1 + g_2D_2)$. It is easily observed that $\psi_1 = \phi_{g_1D_1 + g_2D_2}$. For k = 1, 2, $\psi_2 \sigma^{-1}(1) = \phi_{h_1 D_1 + h_2 D_2}$ and $\psi_2 \sigma^{-1}(D_k) = \phi_{f_k}$ for some $h_1 D_1 + h_2 D_2 \in W(2)_{[j-1]}$ and $f_k \in \mathfrak{R}(2)_{\{j=1\}}$. The definition of \mathfrak{R}_j requires $D_2 f_1 = D_1 f_2$, $D_1 h_1 = D_2 f_1$, $D_1h_2 = -D_1f_1$, $D_2h_1 = D_2f_2$, and $D_2h_2 = -D_1f_2$. Because j > 0, these are equivalent to $f_1 = -h_2$, $f_2 = h_1$, and $\operatorname{div}(h_1D_1 + h_2D_2) = 0$. For such h_1, h_2 there exists a unique $g \in R_{[i]}$ such that $D_1 g = h_2$ and $D_2 g = -h_1$. It is easily observed that $\psi_2 = \phi_g$. Thus $\Re_i = \Phi_{i,W} \oplus \Phi_{i,\Re} = \Phi_i$, and the lemma follows by induction.

Let the map σ defined above be extended to the linear map from \Re onto R determined by defining $\sigma(\phi_{\ell}) = \ell$ for $\ell \in R_{[i]}$, i > 0.

$$\sigma([\phi_{\ell_1}, \phi_{\ell_2}]) = [\sigma(\phi_{\ell_1}), \sigma(\phi_{\ell_2})]$$
 with $\ell_1 \in R_{[j]}, \ell_2 \in R_{[k]}$

has already been shown to hold if j or k is -1 or if j = k = 0. Assume that it holds whenever $-2 \le j + k < n$, and suppose that j + k = n. For $v \in R_{-1}$,

$$[\phi_{\ell_1},\phi_{\ell_2}](v) = [\phi_{\ell_1},\phi_{\ell_2}(v)] - [\phi_{\ell_2},\phi_{\ell_1}(v)] = [\phi_{\ell_1},\phi_{[\ell_2,\sigma(v)]}] - [\phi_{\ell_2},\phi_{[\ell_1,\sigma(v)]}].$$

Thus, by induction and Theorem 2.1,

$$\begin{split} [\phi_{\ell_1},\phi_{\ell_2}](v) &= \sigma^{-1}([\ell_1,[\ell_2,\sigma(v)]] - [\ell_2,[\ell_1,\sigma(v)]]) \\ &= \sigma^{-1}([[\ell_1,\ell_2],\sigma(v)]) = \phi_{[[\ell_1,\ell_2]\sigma(v)]} = \phi_{[\ell_1,\ell_2]}(v). \end{split}$$

Therefore $[\phi_{\ell_1}, \phi_{\ell_2}] = \phi_{[\ell_1, \ell_2]}$, and so by induction

$$\sigma([\phi_{\ell_1},\phi_{\ell_2}]) = [\sigma(\phi_{\ell_1}),\sigma(\phi_{\ell_2})]$$

holds for all $\ell_1, \ell_2 \in R$, and the following result has been established.

THEOREM 2.3. R is a Lie algebra isomorphic to \Re .

THEOREM 2.4. $T^{\#}$ is a Lie algebra isomorphic to T.

Proof. Simply modify the proof of Theorem 2.3 by replacing R and R by $T^{\#}$ and T, respectively, and subspaces of R and R by their intersections with $T^{\#}$ and T, respectively. Note from the restrictions on deg x_1 that

$$g_1D_1+g_2D_2 \in T^\#$$
 and $g \in T^\#$

in the proof of Lemma 2.2. Hence it follows that $\sigma(T) = T^{\#}$.

We now consider isomorphic copies of the algebras whose existence was implied in [4]. Let $R(2:(n_1, n_2))$ be the subalgebra of R spanned by $W(2:(n_1, n_2))$ and $\Re(2:(n_1, n_2))$, and let $T(n) = R(2:(1, n)) \cap T^{\#}$.

Clearly the derived algebra $R(2:(n_1,n_2))^{(1)}$ is spanned by $W(2:(n_1,n_2))$ and $\{x_1^{(i)}x_2^{(j)} \in \mathfrak{R}(2:(n_1,n_2)) | i+j < 3^{n_1}+3^{n_2}-2\}$, and hence has dimension $3^{n_1+n_2+1}-1$; T(n) has dimension $2\cdot 3^{n+1}$.

3. Some Properties of $R(2:(n_1,n_2))$ and T(n)

We first show that the algebras T(n) are isomorphic to the algebras studied in [2]. Thus they are simple and also have gradings for which their 0-component is isomorphic to $\mathfrak{gl}(2)$.

THEOREM 3.1. T(n) is isomorphic to the algebra T(3:n) of [2].

Proof. The linear mapping sending $x_2^{(i+1)}D_1$, $-x_1^{(2)}x_2^{(i-1)}D_1$, $x_1x_2^{(i)}D_1$, $x_2^{(i+1)}D_2$, $x_2^{(i+1)}$, $-x_1x_2^{(i)}$ into $a_{2(i+1)}$, $b_{2(i-1)}$, c_{2i} , d_{2i} , e_{2i+1} , f_{2i-1} respectively, for the values of i for which these elements are defined, is the required isomorphism.

THEOREM 3.2. $R(2:(n_1,n_2))^{(1)}$ is simple for all positive integers n_1, n_2 .

Proof. A nonzero ideal I of this algebra contains a nonzero element $\ell \in R_{[-1]}$. Either $\ell \in \mathfrak{R}(2)$ or $[x_1D_1-x_2D_2,\ell] \in W(2)_{[-1]}\setminus 0$. If $\ell \in \mathfrak{R}(2)_{[-1]}$, then $[x_1,\ell] \in W(2)_{[-1]}\setminus 0$. Therefore I contains a nonzero element of $W(2)_{[-1]}$, and so the simplicity of $W(2:(n_1,n_2))$ implies its inclusion in I. Because the Cartan subalgebra $\langle x_1D_1, x_2D_2 \rangle \subset I$, so are the root-space elements

$$x_1^{(3^{n_1}-1)}x_2^{(3^{n_2}-2)}$$
 and $x_1^{(3^{n_1}-2)}x_2^{(3^{n_2}-1)}$,

whence also all of $\mathfrak{A}(2) \cap R(2:(n_1,n_2))^{(1)} \subset I$. Thus $I = R(2:(n_1,n_2))^{(1)}$.

THEOREM 3.3. $R(2:(n_1, n_2))^{(1)}$ is restricted if and only if $n_1 = n_2 = 1$.

Proof. Because W(2) is invariant under $\mathrm{ad}\,\ell$ if and only if $\ell \in W(2)$, $R(2:(n_1,n_2))^{(1)}$ cannot be restricted unless $W(2:(n_1,n_2))$ is; that is, $n_1=n_2=1$. Conversely, for $f\in \mathfrak{A}(2)$, $(\mathrm{ad}\,f)^3=0$, and if $n_1=n_2=1$ and $g\in \mathfrak{A}(2:(1,1))$ then $(gD_k)^3=(g(D_kg)^2+g^2(D_k^2g))D_k$ for k=1,2, and so

 $(ad gD_k)^3 = ad((g(D_kg)^2 + g^2(D_k^2g))D_k)$ on W(2:(1,1)); this is also seen to hold when applied to $\Re(2) \cap R(2:(1,1))^{(1)}$.

THEOREM 3.4. There exists a toral element $t \in R(2:(n_1, n_2))^{(1)}$ such that the kernel of ad t is solvable of dimension $3^{n_1+n_2}-1$.

Proof. $t = x_1 D_1 - x_2 D_2$ is toral. The kernel of ad t is $N = \langle x_1^{(i)} x_2^{(j)} D_1, i - j \equiv 1 \pmod{3}; x_1^{(i)} x_2^{(j)} D_2, i - j \equiv -1 \pmod{3}; x_1^{(i)} x_2^{(j)}, i - j \equiv 0 \pmod{3} \rangle$. Thus

$$N^{(1)} \subseteq \langle 1, x_1 D_1 - x_2 D_2 \rangle + N \cap \sum_{i>0} R_{[i]}, \quad N^{(2)} \subseteq \langle x_1 D_1 - x_2 D_2 \rangle + N \cap \sum_{i>0} R_{[i]},$$

and $N^{(3)} \subseteq \sum_{i>0} R_{[i]}$. Hence N must be solvable, and t has the properties stated in the theorem.

Theorem 3.4 will enable us to show that $R(2:(n_1, n_2))^{(1)}$ is not isomorphic to any of the contact algebras of the same dimension, that is, $K(m:\mathbf{q})^{(1)}$ where m=2r+1, 3 divides m, and $\sum_{i=1}^{m} q_i = n_1 + n_2 + 1$.

THEOREM 3.5. $R(2:(n_1,n_2))^{(1)}$ is not isomorphic to any of the contact algebras $K(m:q)^{(1)}$.

Proof. For any Lie algebra M of prime characteristic p, define $\tau(M) = \{D \in M \mid (\operatorname{ad} E)^P D \in [M, D] \ \forall E \in M\}$. Since the formulas for $(\operatorname{ad} f)^3$ and $(\operatorname{ad} gD_k)^3$ used in the proof of Theorem 3.3 are valid in $R(2:(n_1,n_2))^{(1)}$ when applied to R(2:(1,1)), it is readily observed that

$$\tau(R(2:(n_1,n_2))^{(1)}) = R(2:(1,1))$$
 if $(n_1,n_2) \neq (1,1)$,

while clearly $\tau(R(2:(1,1))^{(1)}) = R(2:(1,1))^{(1)}$. By similar reasoning we have $\tau(K(m:\mathbf{q})^{(1)}) = K(m:1)$ if $\mathbf{q} \neq \mathbf{1}$, and $\tau(K(m:\mathbf{1})^{(1)}) = K(m:\mathbf{1})^{(1)}$. Therefore any isomorphism between $R(2:(n_1,n_2))^{(1)}$ and $K(m:\mathbf{q})^{(1)}$ must induce an ismorphism between $R(2:(1,1))^{(1)}$ and $K(m:\mathbf{1})^{(1)}$. Thus by comparison of dimensions this requires m=3. By Theorem 1.3.1 of [1] every toral element of $K(3:\mathbf{1})^{(1)}$ is a conjugate of one of the following: $t_1 = \mathfrak{D}_K(x_1x_2)$, $t_2 = \mathfrak{D}_K(x_3)$, $t_3 = \mathfrak{D}_K(x_1x_2 + x_3)$, $t_4 = \mathfrak{D}_K(x_1x_2 - x_3)$, $t_5 = \mathfrak{D}_K(x_3 + 1)$, or $t_6 = \mathfrak{D}_K((x_1 + 1)x_2)$. It is readily verified that the algebra A_i $(1 \leq i \leq 6)$ is contained in the kernel of ad t_i , where

$$A_{1} = \langle \mathfrak{D}_{K}(1), \mathfrak{D}_{K}(x_{3}), \mathfrak{D}_{K}(x_{3}^{(2)}) \rangle,$$

$$A_{2} = A_{5} = \langle \mathfrak{D}_{K}(x_{1}^{(2)}), \mathfrak{D}_{K}(x_{1}x_{2}), \mathfrak{D}_{K}(x_{2}^{(2)}) \rangle,$$

$$A_{3} = \langle \mathfrak{D}_{K}(x_{1}), \mathfrak{D}_{K}(x_{1}, x_{2}), \mathfrak{D}_{K}(x_{1}x_{2}^{(2)}) \rangle,$$

$$A_{4} = \langle \mathfrak{D}_{K}(x_{2}), \mathfrak{D}_{K}(x_{1}x_{2}), \mathfrak{D}_{K}(x_{1}^{(2)}x_{2}) \rangle,$$

and

$$A_6 = \langle \mathfrak{D}_K(1), \mathfrak{D}_K(x_2 - x_1 x_2), \mathfrak{D}_K((x_3 - x_1 x_2)^{(2)}) \rangle.$$

Since each of these algebras is simple, the kernel of ad t for a toral element $t \in K(3:1)^{(1)}$ cannot be solvable. Thus, by Theorem 3.4, $R(2:(1,1))^{(1)}$ cannot be isomorphic to $K(3:1)^{(1)}$ and so $R(2:(n_1,n_2))^{(1)}$ is not isomorphic to any of the contact algebras $K(m:q)^{(1)}$.

References

- 1. R. E. Block and R. L. Wilson, *Classification of the restricted simple Lie algebras*, J. Algebra 114 (1988), 115–259.
- 2. G. E. Brown, *A class of simple Lie algebras of characteristic three*, Proc. Amer. Math. Soc. 107 (1989), 901–905.
- 3. M. S. Frank, *A new simple Lie algebra of characteristic three*, Proc. Amer. Math. Soc. 38 (1973), 43–46.
- 4. M. I. Kuznetsov, *The classification of simple graded Lie algebras with non-semi-simple component L*₀, Mat. Sb. (N.S.) 180 (1989), 147–158 (Russian); translation in Math. USSR-Sb. 66 (1990), 145–158.

Department of Mathematics University of Colorado Boulder, CO 80309-0426