Extensions of Projective Varieties
and Deformations, II

S. 'VOVSKY

0. Introduction

0.1. In the author’s paper [L1], an upper bound on the number of steps of
a nontrivial extension of a projective variety V was obtained under the addi-
tional assumption that V is linearly normal and can be defined by quadratic
equations (see the definitions that follow). In this paper we show that the
main result of [L1] is valid (at least over C) without this assumption.

0.2. DEFINITIONS AND STATEMENT OF RESULTS. Throughout the paper
the base field will be the field C of complex numbers. We say that a smooth
projective variety V S P” can be extended k steps to a projective variety W<
P"+* (or that W is a k-step extension of ) if V=WwnNP", Wissmooth along
V and transversal to P”, and P" is imbedded in P"** as a linear subspace. If
W is not a cone, such an extension is called nontrivial.

If Npny is the normal bundle of a smooth projective variety V<P, set
a(V)=hO(Npny(—1))—n—1(cf. [L1]). The main result of this paper is the
following theorem.

THEOREM 0.1. Ifa(V)<n, V#P", and V is not a quadric and is not con-
tained in a hyperplane in P", then V cannot be nontrivially extended more
than a(V') steps.

If Ty is the tangent bundle of V, set ', = (P'(Oy (1)))* where P!(L) denotes
the sheaf of principal parts of the first order of the sheaf L [K, IVA]. The

following corollary can be easily derived from our theorem in the same way
as in [L1].

COROLLARY 0.2.

(a) If dim V=2, then the theorem holds with o (V) replaced by h'(I'y).
(b) If dim V =3, then the theorem holds with (V') replaced by h*(T, (—1)).

In [L1] it was shown by examples that the bound in our theorem is in a sense
sharp for varieties of dimension = 2: For each pair of numbers o =0 and
d = 2, there exists a variety V for which the hypotheses of Theorem 0.1 hold
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and such that a(V) = «, degV = d, and V can be extended « steps (to a
smooth variety).

0.3. Our argument is a refinement of that contained in [L2], the first part
of this paper, where a new interpretation of the invariant «(}) in terms of
deformation theory was obtained.

0.4. NOTATION AND CONVENTIONS. We will say that a projective vari-
ety in P" is nondegenerate if it is not contained in any hyperplane in P". By
Gr(k,P") we mean the Grassmannian of k-dimensional projective subspaces
(k-planes) in P". By P(E) we mean the space of /ines in the vector space E.
If p is a smooth point of a projective variety V'S P”, then 7,V is the tan-
gent space to Vat p, and if p e V' is any point, then 7,V S P" is the imbedded
Zariski tangent space (projective tangent space) to V at p.

If X, Y S P"are projective varieties, then X * Y is their join (closure of the
union of lines joining points of X with points of Y). If SSP”, then (S) is
the linear span of S (intersection of the linear subspaces containing S).

0.5. ACKNOWLEDGMENTS. I am grateful to F. L. Zak for his concern
and for many helpful discussions. I would like to thank the Mathematics
Department of the University of Arkansas and particularly D. Khavinson
for providing a pleasant atmosphere during the writing of the first draft of
this paper and for help in its distribution.

1. Preliminaries

Let V< P” be a projective variety and H < P” a hyperplane transversal to V;
set X = VN H. Denote the Hilbert scheme of closed subschemes of P” con-
taining X by Zy and the group of projective automorphisms of P” fixing all
points of H by Gy (see [L2] for details). If the homogeneous coordinates
(xg:---:x,) in P” are chosen so that H is defined by the equation x,=0,
then one may consider Gy, as the set of (n+1)-tuples (ay, ..., a,) of complex
numbers such that a,, % 0. The image of a point (xg: ---: x,,) € P” under the
action of (ag,...,a,) € Gy is (xo+agX,: -+ Xyp_1+a,_1X,: a,X,) €P". Gy
acs on Zy: informally speaking, an element g € G sends a subscheme Y2 X
to g ~1Y. If ¢: Gy — Z is the morphism informally defined by g — g~V (cf.
[L2]), let d¢ be its derivative at the identity of G.

PROPOSITION 1.1 [L2]. The dimension of the cokernel of d¢ is a(V).

Since Gy is reduced as a group scheme, its action on Zy induces the action
of Gy on (Zx)eq- What we will need from the deformation theory is con-
tained in the following evident corollary to Proposition 1.1.

COROLLARY 1.2. [f & is the point of (Zy).eq COrresponding to V, then the
codimension of the Gy-orbit of £ in the component of (Zy),.q that contains
¢ is less than or equal to o (V).
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2. An Elementary Lemma

LEMMA 2.1. Let SCGr(l,P") be a closed family of [-planes, 0 <l <m.

(a) If dim S >dim(Gr(/,P" 1)), then the union of all planes in S is the
whole of P".

(b) If dim S > 1+dim(Gr(/, P"~2)), then the union of all planes in S is
either the whole of P or a hyperplane in P'"".

REMARK. Thebound in the lemma is sharp. Indeed, if /<m—2and Z <P"”
is a hypersurface ruled by P”?~?’s, then Z contains a 1+dim(Gr(/, P ~2))-
dimensional family of P*’s.

Proof. Without loss of generality, we may assume that S is irreducible. De-
note the assertion of the lemma by A, ,, and let us prove it by induction on
[ and m.

It suffices to prove assertion (b), since (a) follows from it immediately.
Suppose that the union of all /-planes in S is a variety Z< P, Z#P", and
dim Z =¢. We must prove that Z is a hyperplane. Indeed, if M is the family
of /-planes of S passing through a generic smooth point p € Z, then

dim(M) = dim(S) +/—¢ =dim(Gr(/, P~ 2))+1—t +2.

The projectivizations of the tangent spaces at p to the planes from the fam-
ily M form a family of (/—1)-planes in P(7,Z) =P’~1 and the dimension
of this family equals dim M. Since t =m—1,

dim(Gr(/,P"2))+I1—t+2>dim(Gr(/—-1,P*7 1)),

and we see by A4;_; ,_; that the union of the planes of M is 7,Z. Hence
1,Z<Z,so Z=T,Z and Z is a linear subspace of P". Because dim(S)>
dim(Gr(/, P"~?)), Z must be a hyperplane. u

3. The Main Construction

LEMMA 3.1. Let V<= P” be a nonsingular and nondegenerate projective
variety, and suppose that W < P"*X js its k-step extension. Assume that
a(V) <k and that H<P" is a hyperplane for which the following hypotke-
ses hold:

(a) there is no nontrivial automorphism of P" fixing all the points of H
and mapping V into itself;

(b) H is transversal to V; and

(¢) Vis nondegenerate in H.

Then there is a point pe W\P" such that W2 p* (WNH).

Proof. Choose the homogeneous coordinates in P” and P"*¥ so that the
equation of H in P" is x,=0 and the equations of P” in P"*¥ are x,,, ;=
-+ =x,,4,=0. For each u = (u,;...; u;) € C¥ define an n-plane H,cP"*¥
by the equations x, . ;=u;x, for 1<i=<k.
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' Define the projection p: P"** - P” by the truncation of the last k coordi-
nates, and consider the family over C* of subvarieties of P” in which the
variety V, =p(VNH,) lies over u e C*, Over a Zariski open subset U < C*
this family is flat. Set X =V N H, and consider the morphism a: U = (Zy)eq
defined by the restriction of this family to U (Zy, ¢, and Gy mean the same
as in Section 1). By Corollary 1.2, the codimension of the Gy-orbit of the
point corresponding to V in (Zy).q is less than or equal to «(V). Condi-
tion (a) of the hypothesis implies that the map ¢: Gy — (Zx)q 1S One-to-
one. Since a(V) <k, this implies that there is an affine curve I € C¥ such
that V,,=a(u)V for each ue I'NU (cf. [L2, Prop. 1.4]).

Let S be the normalization of the compactification of I'. By restricting to
I" and lifting to S we may regard a as a rational map from S to Gy and the
coordinate functions u; on C¥ as rational functions on S. Writing @ in matrix
form, one obtains rational functions a, ..., @, on S such that, for each point
(xg: -+ :x,) €V and each p e § where all a;’s and u;’s are defined, the point

(xo+ao(p)xy: -+ Xy_1+an_1(P) Xy Qy(P)Xy: Uy (D), (D)X
Dot p(P)ay(p)Xy)
belongs to W. Denoting u,,, ,a, by a, ., one may write this point as

(xo+ag(pP)xp: - i Xy 1+ @, ((P)Xp: @y(D)Xy: Qi (D)Xt oo Ly 1 (D) Xp).
Note that not all g;’s are constants, since a,,, ; = #;a, and not all u;’s are con-
stants. Hence some of the a;’s must have poles on S.

Let m be the maximal order of poles of a;’s, 0 <j <n+k, and suppose
that m is attained at a point £ € S. Choose an open imbedding A\: A — S of
the unit disk in the complex plane into S such that AN(0) =&, and set @; =a;°X\.
Set b;=lim, _, a"j(t)-t’”; all the b;’s are finite and not all of them are 0.

Now, by Lemma 3.1 of [L2], for each point (xy:---:x,:0:---:0)e Xand
each complex number ¢ 0 there exists a map h: A—-V, h:t—(Xp(t): -+
Xy_1(2):X,(£):0---0) such that ¥;(0)=x; for 0<i<n—1, %,(¢)/ct" —>1 as
t tends to 0. For each ¢ € A the point ~

(Xo () +ap(£)X,(2) 2 -+ 1 Xy () + 8y ()X, (0) 2 @ (1) X () 2 @y 11 () X, ()
Deee k(D F(0))
is in W. As ¢ goes to 0, this point tends to
(xo+chbgx,: -1 x,_1+cb,_1x,:chpXx, -+ :cby 1 X,) EW.

Because the choices of the point in X and of the number ¢ were arbitrary,
we conclude that W contains the cone over X with the vertex z=(bg: ---:
b,. ) € P If z e P”, then WNP" =V would contain such a cone, contra-
dicting the smoothness of V. Hence z ¢ P” and the lemma is proved. ]

4. Proof of the Theorem

Under the hypotheses of Theorem 0.1, suppose that V is extended to a vari-
ety WS P k> a(V). We must prove that W is a cone.
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To begin with, let us reduce the theorem to the case k = a(V)+1. To that
end, assume-that in this case the theorem is true and consider a generic lin-
ear subspace L CP"** of dimension n. The variety V’'=WNL is smooth,
and by the semicontinuity of cohomology we see that o’=«a(V’') <a(V).
Now consider a generic linear space P, containing L and having dimension
n+a’+1. The variety W’'=WNP is an (a’+ 1)-step extension of V', From
the case kK = o + 1 of our theorem, which we have assumed to hold, it follows
that W’ is a cone. If we denote the vertex of this cone by p and if we let the
linear subspaces L and P2 L U{p} vary, we shall see that W is also a cone
with the vertex p.

Observe further that V is not a hypersurface. Indeed, if V were a hyper-
surface in P”, then o(V) = hO(an|V)—n—1 would be greater than #n, since
deg V> 2. Note also that, since V is not a hypersurface, its extension W is
not a hypersurface either.

Assume now that k = (V) +1 and consider a generic n-plane L < P"*%,
Then the hypotheses of Lemma 3.1 hold; the hypothesis (a) follows from
Proposition 2.1 of [L2]. The variety V; = WNL is smooth and by semiconti-
nuity «(V;) <o(V). Since W is a k-step extension of V;, our main lemma
implies that for a generic (n—1)-plane H € L there is a point p € Wsuch that
Wapx(V,NH)=px(WNH). In other words, for a generic (r—1)-plane
H < P"*X there is a point p € W such that W2 p* (WN H).

Consider now the set of pairs (H, p) e Gr(n—1, P" %) x W satisfying the
condition W2 p* (W N H). It is clear this set is closed; as we have just proved,
it contains a component that projects epimorphically onto Gr(n—1,P"*%)
and hence has dimension no less than dim Gr(n —1, P"*¥). Denote this com-
ponent by I1 and the projection map (H, p)~ p by n: I1 - W. Setting dim V=
d, we consider two cases.

Case 1: = (II) contains a smooth point of W.
Let p be a generic smooth point of W in «(Il). I claim that

(%) dim(7~!(p)) —dim(Gr(n—1,P"**~2)) —1>0.
Indeed, since

dim(z~!Y(p))=dimII—dimW and dimII=dim(Gr(n—1,P"+*)),
the left-hand side of () is no less than
dim(Gr(n—1,P"*%)) —dim(Gr(n—1,P"**~2)) —d—k—1=2n—d —k —1.
Since k=a(V)+1=<n and d<n-—1(V is not a hypersurface), the inequal-
ity 2n—d —k—1> 0 holds and (*) is proved.

In view of Lemma 2.1, inequality (*) implies that the union of such #-
planes H for which W2 p* (HNW) is either a hyperplane in P"** or the
whole of P"*X Observe that if W2 p*(HNW) then T, W2 p* (HNWY;
because p is a generic point of 7 (IT), the variety H N W is nondegenerate in A
for almost all H € = ~!(p). Hence (HNW) = H for such H and T,W2p*H

for almost all H e x~!(p). Since the closure of the union of such H’s is
either the whole of P”** or a hyperplane in P"*X, dim 7T, W = n+k — 1. Since
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p is smooth on W, this means that W is either a hypersurface or the whole
of P"*X which is impossible. Hence the hypothesis of Case 1 cannot hold.

Case 2: w(II) is contained in the set of singular points of W.

Denote the set of singular points of W by X. Let p be a generic point of
w(IT). I claim that the union of the (n—1)-planes of = ~!(p) is P"**. Indeed,
since WNP" is smooth, ENP”"=#. Hence dim £ < k and

dim(7~!(p)) >dim I —k =dim(Gr(n—1,P" %)) —k.

The right-hand side of this inequality is no less than dim(Gr(n—1, P"+#~1)),
because dim(Gr(rn—1,P"**))—k —dim(Gr(n—1,P"**"))=n—k and k=
a(V)+1=<n. Hence dim(x ~1(p)) >dim(Gr(n—1,P"**~1)) and our claim
follows from Lemma 2.1. Since the union of all the H’s of = ~}(p) is P"*X,
it is clear that W= p % W; that is, W is a cone with the vertex p. The theorem
is proved. O
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