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0. Introduction

When studying how much the distribution of an N-point subset wy of the
unit interval [0, 1)—or, equivalently, the unit circle in the complex plane—
deviates from uniform distribution, we are led to a natural measure of devi-
ation called the discrepancy D(wy) of wy. A classical result of Erdos and
Turdn relates this number to the maximum modulus M(wy) of the corre-
sponding polynomial p(z,wy) on the unit circle, that is, the monic poly-
nomial whose zeros are the points of wy.

Roughly speaking, the Erdos-Turan inequality states that a “small” value
of M(wy) implies a certain degree of uniformity of the point set wy, ex-
pressed by a “small” value of D(wy). In the present paper we prove similar
inequalities for a large class of distance functions defined for finite subsets
wy of the unit sphere S9! in d-dimensional Euclidean space (d =2). In es-
sence, these inequalities relate the spherical cap discrepancy to certain “po-
tentials” and also to certain “energy sums” generated by the set wy.

In Section 1 we prove two refinements of the classical Erdos-Turan in-
equality. First, by studying the L'-norm of the function log| p(z, wy)| instead
of its maximum, an inequality is obtained which is best possible in some
sense. Secondly, by considering the discrepancy function of the given set,
we are in a position to account properly for irregularities of distribution that
are “global” rather than “local”.

In Section 2 we discuss the asymptotics of 7w (wy), the product of mutual
distances between points of sets wy which are obtained by letting wy:=
{z1,-..,2n}, that is, the set of the first N terms of a fixed infinite sequence
on the unit circle. We prove that, among all sequences, the van der Corput
sequence essentially shows the best behaviour.

In Section 3 the classical Erdos-Turan inequality is generalized to an arbi-
trary dimension d = 2: We replace one-dimensional discrepancy by spherical
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cap discrepancy, and the function log|p(z, wy)| by a rather general distance
function U,,.

Finally, in Section 4 we study the relation between spherical cap discrep-
ancy and the energy sums E, which correspond to the distance functions U,,.
From another point of view, E, may be considered as a generalization of
log 7 (wy) as discussed in Section 2.

1. On the Classical Erdos-Turdn Inequality

Let wy ={zy,...,2n), |2;| =1, be an N-point set on the unit circle. Denote by
Anla, 8) the number of points z; satisfying the inequality o« <arg z <8,
where 0 =a <3 <27. Let

D(wy)= sup [Ax[e,B)—

O=sa<fB<2rm

B—a
N
27

denote the so-called discrepancy of the point set wy. The number D(wp) is
a natural measure for the deviation of the distribution of the points of wy
from uniform distribution.

With the set wy we associate the polynomial p(z, wy) =TI/ ,(z —z;). The
following result relates the number M(wy):= max|z|=1] P(z, wy)| to the dis-
crepancy of wy.

THEOREM (Erdos and Turén [4]). For some constant ¢ >0,
) M(wy) Zexp(c-D*(wy)/N).

The original proof of (1) uses the theory of orthogonal polynomials and is
rather intricate. A much simpler approach was discovered by Hlawka [6].
Furthermore, Ganelius [5] proved estimates for the logarithmic potential
generated by a measure on the unit circle, which contain (1) as a special case.

In [4], Erdos and Turdn conjectured that (1) might be best possible, but
this has never been proved. We shall see, however, that a variant of (1) is
indeed best possible in some sense.

It is more convenient to consider the function log|p(z, wy)| instead of
p(z,wy). Passing from the unit circle to the unit interval [0, 1), we intro-
duce the notation z =exp(2wit) and zj=exp(2wit;), with ¢,1;€[0,1). Thus
we have

N
log|p(z, wn)|= X log|2sinw(f —1;)| =: U(t, wy).
j=1

Next we shall refine the concept of discrepancy by considering the so-called
discrepancy function A(¢, wy) instead of the number D(wy):

N
At on)i= 3 f(E—1)),
J=1

where f is the 1-periodic sawtooth function
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1/2—t for 0<t<1,
)=
S0 {0 for t=0.

The function A(¢, wy)/N equals (up to a constant) the difference between the
“empirical” distribution function associated with the discrete measure as-
signing the weight 1/N to each point /;, and the “theoretical” uniform distri-
bution on the unit interval. Some properties of the function A(¢, wy) are ex-
pressed by the following proposition. We write | f]; = f3| f(¢)|d¢ and | f .. =

sup;epo, 17]f(¢)|.

LEMMA 1.

(@) A(t, wy) is 1-periodic, piecewise linear with constant negative
slope —N, and has jump discontinuities at the points t,, ..., {x
with jump heights A(t]", o) —A(t7, 0n) =1 (j=1,...,N).
Furthermore, () A(t, wn)dt =0.

(b) 3D(wy) <supg<, <1 A(t, wy)| < D(wp).

© A, wn)|i=1/4. (

(d) If we divide the interval 0,1) into L =48N subintervals I,, ..., 1,
of equal length, then there is a subset Q of {1, ..., L} such that

2 inf A(t,wN)ZsupA(l‘,wN)>0 for re @,
tellu teI#
and

S |, atemdizZjacoml:

pe@ 1y

Proof. Assertions (a) and (b) are obvious from the definition of A(¢, wy).
(The reader may wish to draw a picture.) Part (¢) is an immediate conse-
quence of Lemma 1 in [12].

For the proof of (d), we put

M, =supA(t,wy) and m,=inf A(¢, wy),

tely Ielﬂ

where I, =[(n—1)/L,pn/L), p=1,..., L.
We partition the index set £ ={I,..., L} into three subsets as follows:

Q:={pe L|m,=53M,>0},

®:={pe L|M,> & and m, < iM,},

e:= L\ (QU®).
Denoting the nonnegative part of A(Z, wy) by A* (7, wy) =max(0, A(¢, wy)),
we obtain, noting that [} A(z, wy)dt =0, the relation

1
[A( o) = 250 A*(t, wy) dt
(2
=2( 3 S; A (tyon)di+ S o+ 3 )
u

ne@ ne® uneC
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By the definition of C we have the estimate

@3 2 | st omar=Lt.
pee 1 16
Now we consider the case ue . Writing I, ,;=1; for convenience, we

obtain, using (a), the inequalities

N 1 1
M =M-Y=M-—->_"
pHI= k48 7 24
and
N 1 1
#_*.I_M L _Mu+] 48 2Mﬂ+1.

This means that we have p+1€ @. Moreover, m, =M, —5; > $M,. Thus,
the estimate

@) D S At o) dt <3 S S A*(t, wy) dt
pe®@ v, re@ vl
follows. Combining relations (2), (3), and (4) with (c) yields
At onli=g+8 3 | Ao dr

Hne@

351|A(:,w,\,)||1+8 > S A*(t, wy) dt,
re@ /

u

from which the assertion follows. O

The following modifications of (1) are true.

THEOREM 1.
1
(5) (a) SolU(t,wN)|dt>>—]1\—’D2(wN).
6 by [ 1!
©) ® | v, anlar> logNSO|A(t,wN)|dt.

Before giving a proof of this theorem, we make the following remarks.

¢ Inequality (5) is slightly stronger than (1): Recall that S}) U(t, wy)dt =0.
Hence (5) implies that

max U(t, wn) = Sl max(0, U(t, wn)) dt = LU, wp)]y 3> - D2(wp),
te[0,1) 0 2 N
which is (by taking logarithms) an equivalent version of (1).

e Inequality (5) is best possible, as is shown by the following example:
Remove from the set {1, ¢, ¢2, ..., V71, ¢ =exp(2wi/N), the points
1L ¢, ..., £2¥N1: replace them by the single point ¢ ™V 'with multiplicity
2[+/N]+1; and denote the resulting point set by wy. A straightforward
calculation shows that D(wy) >> /N but still {§|U(¢, wy)|dt < 1.



Erdés-Turdn Inequalities for Distance Functions on Spheres 21

e Comparing (5) with (6), we see that the value of j(')|U (¢, wp)|dt is rather
stable with respect to “local” irregularities of distributions but very sen-
sitive to “global” irregularities.

e For many point sets wy, relation (6) holds even if the factor 1/logN is
omitted, but we could not prove this in general.

Proof of (6). Using the same notation as in the proof of Lemma 1(d), we
define the “test function” 7(¢) on [0, 1): Let

20t  for 0=t=<1/2L,
r(t)=4 2—2Lt for 1/2L<t=<1/L,

0 otherwise;
7(t—(u—1)/L) for tel, with pe@,
T(t)= )
0 otherwise.

From Lemma 1(d) and the defining property of @, it follows that

§;A(z‘, o T(t)dt =3 5 Aty o) T()dE =S, m, L T(t)dt

pLE(i ly. [J.EG‘,
1 11

) >lypylsly g A(t, wn) dt
2,5 "2L T 4 Sl N

1
26—4||A(f, )1

Now we use the basic fact that

1 & N1
A(t,on) ~— XY X —sin2wn(t—t;)
Tp=1j=1M
and

1 & N1
U(t,wN)~—~— E E —C0527rn(t—tj)
n=1j=1"1

are conjugate functions. If T(¢f) ~ag+ X7~ (a, cos 2wnt + b, sin 2wnt) is the
Fourier expansion of the test function, and if 7(¢) ~ X ;—(—b, cos 2ant +
a,sin 27nt) denotes its conjugate, we have

®) S;A(t, wn)T(t)dt = S; U(t, o) T(t) dt <|U(t, on)]1 -] T -

In view of (7) and (8), it suffices to prove the inequality ||T|loo<< log N.
Direct calculation shows that

(1) = i+2L(F(I)—2F(t——?IZ>+F<t—%)),

where F(t)=—(1/2x%)37-(1/n*)cos 2xnt is the l-periodic continuation
of the polynomial
1 1 1

_ 4 v, 1.2
12+2t 2t, O0<r<l1.
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Hence the conjugate 7(¢) has the representation

1 1
7(1) —2L(<I>(t) 2¢(t—ﬁ—) +4>(t——£)),

where ®(¢) = F(¢) = —(1/27%) X 2_(1/n?)sin 2wnt is a primitive of the
function log|2 sin 7¢|.
For arbitrary f € [0, 1) we have the estimate

1 1
t__
n—1n2 sin? 2 51n27rn( > )‘

_<_412' © sin®(wn/2L) _4L< Tty )

2 )
n=1 n ( n<L n>L

|7 (t)l———

©)

4L 1
< (4L+L)<<1.

For 2/L<t<1-—1/L, and 6,,6, € (0, 1) suitably chosen, Taylor’s formula
yields the relation

1 0, ” 1, 0
70)l=5; (’ z‘zj"i)*“’ (’ 2L+2L>

<<—1— cotm l‘—l
L L

where |¢| denotes the distance from ¢ to the nearest integer.
Combining (9) with (10) and using the definition of 7 in terms of 7, for
N =2 we obtain the estimate

2= (=) )

<K 1+log L <logN,

(10)
+|cot 7rt|) < (L-|th7h,

|T(1)]=

which completes the proof. £l

Proof of (5). This result follows already from the proofs in [5] or [6]. For
completeness, we sketch a proof based on the same idea as above.

By Lemma 1, (a) and (b), there is an interval 7 =[a, b) C [0, 1) of length
<< D(wp)/N such that A(¢, wy) does not change sign on 7 and also satisfies
|§; A(t, wy) dt|>> D*(wy)/N. Defining the test function

_ | 7((t=a)/L(b—a)) for tel,
o= {O otherwise,

we proceed as above, obtaining

DZ -~
Dien) gIA(t,wN>det]s||u<z, o) i1 o-

Inequality (9), adapted to the modified test function, establishes the resuit.
]
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In [3] Erdos asked the following question: Is there an infinite sequence of
points w=(z;, 22, ...) on the unit circle such that for wy ={zy,...,25} the
corresponding sequence M (wy) is bounded? As is well known, there exist se-
quences w satisfying D(wy) <<log N and |A(t, wy)|; <<log N. Hence neither
(5) nor the stronger inequality (6) can be used to solve this problem. Using a
direct approach, the author [13] answered the question of Erdds in the nega-
tive by proving that, for any sequence w, the inequality

(11) M(wy) Z ¢ (log N)®

holds for infinitely many N and suitable positive constants ¢, and é. It is be-
lieved, however, that this is true even with NN instead of log N in (11).

In the next section we shall completely solve the corresponding problem
for the product of mutual distances between the points of wy.

2. On the Product of Mutual Distances
on the Unit Circle

For a given set wy ={z, ..., Zx} of points on the unit circle, let

m(wn) =11 |zj—24| and y(wy)=logm(wy).
j#k

It is not too difficult to establish the natural inequality
(12) Y(wy) =NlogN,

with equality holding if and only if wy is geometrically congruent to the set
of Nth roots of unity.

We shall study the relation between the distribution of the points of wy
and the value of y(wy). In analogy to Theorem 1, the following inequality
of the Erdds-Turan type holds:

D*(wy)
N og(esN/D(ow))

Here N=2, and c|, ¢, ¢; are positive numerical constants. The proof will
be given in Section 4. Note that, in view of (12), nontrivial estimates can be
obtained from (13) only if D(wy) is of larger order than A/N log N.

Although (13) shows some similarity to the classical Erdos-Turan inequal-
ity (1), the behaviour of y(wy) with respect to irregularities of the set wy is
quite different from that of |U(¢, wy)|;. The following examples may serve
to illustrate this.

(13) 'y(wN)SNlOgN+C1

e If two neighbouring points of wy are identified, the product «(wy) col-
lapses to its minimal value zero. Hence y(wy) is very sensitive to “local”
irregularities.

e Let N=2n and cut the unit circle into two half-circles C; and C,. Ar-
range n — [yn] points equidistantly on C;, and do the same with n+[vn]
points on C,. Obviously we have |A (¢, wy)|; >> VN. Nevertheless we ob-
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tain (by an elementary but lengthy calculation) the inequality v (wy) >
Nlog N—cN with a constant ¢ > 0. Thus y(wp) is more stable with re-
spect to “global” irregularities.

Consider also the following situation. Let w = (zy, 25, ...) denote the clas-
swal van der Corput sequence; that is, z,, =exp(2wis,) for (s,) = (0, 1 2 . 4 , ﬁ,
8 , 8 ,...) (see e.g. [7]). If N =2 has the dyadic expansion N =¢,2°%+¢,2' + -
+e,.2’ ej€{0,1}, e, =1, then the following relation is easily established by

induction:

(14) v(oN) = 2 1271082742 3 €;¢,27 log 2.
j<k

Hence we have, with some constant ¢ > 0, the relation

r . .
v(wn)—Nlog N> 'Eo €;2/ log 2/ —N(log 2" +log 2)
J:

r .
=2" Y €2/7"(j—r)log2—Nlog2=—cN.
ji=0
On the other hand, for N=2"+2""! there exists a constant ¢’> 0 such that
v(wy)—Nlog N=2""llog(16/27) < —c'N.

Now let w = (2, 22, -..) denote an arbitrary sequence on the unit circle, and
consider the sequence (y(wpy)) associated with the sections wy = {zy, ..., Zn]-
What can be said about the behaviour of y(wy) as N tends to infinity? It
turns out—see the following theorem—that, as is often the case, no se-
quence can behave essentially better than the van der Corput sequence (14).

THEOREM 2. There exists a constant ¢ >0 such that, for an arbitrary se-
quence w =(2y, 22, ...) Of points on the unit circle, the inequality

Y(wy)<=<NlogN—-cN
holds for infinitely many values of N.
We shall need the following elementary inequality.

LEMMA 2. Let vy,...,0, denote unit vectors of a (real or complex) inner
product space V with inner product {-, -y and norm |v| = (v, v)'/?. Then the
Gram determinant G(vy, ..., v,) satisfies the inequality

n—1
G(vy, ..., v,) =det({v;, v)); ;-1 <11 —0,'2),
=1

J=
where o;:=[Kv;,v; )| for j=1,...,n—1.

Proof of Lemma 2. We proceed by induction. The assertion is trivial for
n =1, so let us assume that n =2. By a Gram-Schmidt process we introduce
an orthonormal basis {w,,...,w,} such that v;=X7_,a;w, fori=1,...,n,
with a lower triangular matrix A = (a;;).
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From the induction hypothesis we obtain

n-=2
G(vy, ..., v,) =|det A|*=|a,,|*G(vy, ..., V1) = |ap,|* TT 1= 3P).
ji=1
An application of the Cauchy-Schwarz inequality yields

n—1 2 n—1

— 2
01‘12—1= 2 Ay 1,k k 51'2 |ank|2=1'—|ann| s
k=1 =
which completes the proof. ]

Proof of Theorem 2. We show that for fixed N = 2 there is at least one value
of ne {N+1,...,2N} such that y(w,) < nlog n—cn, with a positive constant
¢ appropriately chosen.

Consider the points z,, ..., 25, noting that each of them occurs in each of
the products 7(wp41), ---, T(w,n). Without loss of generality we may assume
that z; =exp(2wit;) with 0= <f,<--- <ty<L.

With each point z; we associate the vector v; = (l,zj,zjz, ...,z}’“') eV=
C", endowed with the usual inner product (v, w) =% % _ v, wy. There are at
least r = (N—1)/2 indices p;, | <y <p,<--- <p,<N-—1, for which the in-
equality #,; +1—12,; <2/(N—1) holds.

We let a;=[Cvy;, vy;+1)| for j=1,...,r and apply Lemma 2. Noting that
|v;| = Vi for all j and omitting some factors less than or equal to 1, we obiain

r g2\

m(w,) = [T |z; — 24| =|det(vy, ..., v,,)|2= G(vyy...,0,)=n" 1] <1-——f2 )
Jjzk j=1 n<

Taking logarithms and using the inequality log(1 —x) < —x, we get

(15) y(wn)snlogn—hl—z > of.
Jj=1

An easy calculation shows, now explicitly denoting the dependence on n,

(sz)n = Kn(t#j“l‘ 1= tﬂj)’
where K, (1) =sin? wnt/sin® «t is the Fejer kernel of degree n.
Calculating the average,

_ 1 Nsin wt —sin wNt -cos(3N + 1) wt
Kn(t)=— 2 K.(1)= (

Nn::N+l 2Nsin37rt ’

shows that Kn(#) =c¢;N? for |t|<2/(N—1), where ¢, > 0 is an absolute con-
stant. Thus we have, by the definition of g,

1 2N r 5 r _ 2
N E E (Uj In= 2 KN(t/‘-j'*'l_t#j)zclN r.
Nﬂ=N+lj‘—"1 j=1
Hence, for at least one value of ne {N+1,...,2N}, the estimate
r
> (6P, =c;N*r>n?
“

holds. In view of (15), the assertion follows. d
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3. Distance Functions on a Sphere

Let wy ={x, ..., Xn} be an N-point set on the unit sphere S=S9"!={ueE’|
lu| =1} in Euclidean d-space E9, d =2. (|-| denotes the Euclidean distance
in E9)

For a variable point x € S and a real parameter « >1—-d, « #0,2,4, ...,
consider the distance function

N
U, (x,wn) =Y |x=x;|*=N-m(a,d).
j=1

Here m(«, d) is the mean value

1 a
m(a,d)=mgij—x0[ do(x),
where ¢ denotes the (d —1)-dimensional surface measure on S.
For a €{0, 2,4, ...} the definition of U, must be slightly modified as fol-
lows:
N
Use(x, wpy) = |x—x;|* log|x —x;|—N-m(2k,d) for k=0,1,2,....
j=1
For the L-norms

1
U0 oml = s | U, @)l do o)
the author [15] established the “natural” (and best possible) lower bounds
(16) [Ua(en)li = c(a, d)-N =2/,

Studying the relation between |U,(x, wy)|; and the uniformity of distribu-
tion of the point set wy, we prove an inequality of the Erdds-Turan type
which contains Theorem 1(a) as a special case. In the general case the rule
still holds: a “small” value of |U,(x, wy)|; implies a “uniform” distribution
of the points xi, ..., x, over S9-1,

First, we introduce the concept of so-called cap discrepancy for finite sub-
sets of S?~!. Let « be a spherical cap on S¢~! (i.e., the intersection of $9~!
with some half-space) of area measure o(x). Denote by A4, (wy) the number
of points x;, j =1, ..., N, lying in . Define the discrepancy D(wy) by

D(wN)=§l£ A(wn)—N Z((g)) .

(This definition generalizes the one given in Section 1 for the special case
d =2.) Then we have the following result.

THEOREM 3.
D(wN)d+oz

(17) "Ua(x:wN)"lZC(a’d) Nd_1+a .

Here c(«, d) is a positive constant which does not depend on N or wy.
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Let us make a few remarks before proving this theorem.

Actually, we shall prove an inequality which is for d = 3 somewhat sharper
than (17) in the sense that values of D(wy) which arise from “local” irregu-
larities will be given stronger influence than values of D(wy) due to “global”
irregularities of the set wy. This phenomenon should not be seen as a con-
tradiction to our remark following Theorem 1. It is mainly due to the fact
that the above definition of D(wy) attributes equal importance to each cap
k, regardless of its size. As it turns out, however, the size of the boundary d«
—which for d = 3 depends on the size of « itself—plays an important role.

Note that, in view of (16), inequality (17) yields nontrivial results only if
D(wp) is of larger order than N, B:=(d—2)/(d—1)+1/(d +a)(d—1). We
should mention the following facts:

e By a result of Beck [1] there exist point sets wy on S9! such that

D(wy) << NY/2d=2/d=1_ floeN |

hence the critical exponent § is at least twice as large as the minimal
exponent.

e The constructions in [16], however, show that there exist point sets wy
such that D(wy) >> N@-2)/(d=1) for which the opposite inequality

UL (x, o)1 < E(er, d)N~/=D

is still true, even with L-norm replaced by maximum norm (for «a > 0)
or by one-sided maximum norm (for o <0).

¢ In the special case a =2 —d (“Newtonian case”) Sjogren [9] proved very
general results for sufficiently smooth closed surfaces which contain (16)
and (17) (see also the remarks following the proof of Theorem 3).

e Some results involving the concept of cap discrepancy may also be found
in [2, Chap. 7].

Proof of Theorem 3. We introduce spherical coordinates (8,,6,, ...,0,_5, ¢)
on S9-1in the usual way. If f(x)=f(6,) is a function on S9! whose value
at a point x depends on the distance between x and the north pole §,=0
only, we denote by f(x|y) its translation with the point y as its new “pole
of reference”. For any such function f and an arbitrary function g (or mea-
sure ) on S9!, we define the convolutions S#*g and f*du by

(S0 = f(yI0gNdo(y) and (fxdu)(x) =] f(yIx)du(r).

Let wy ={x), ..., x5} be the given set. Denote by (v, y) the spherical cap
which is the intersection of S¢~! with a ball of radius 2 sin(y/2), 0 <y <,
centered at y € SY~!. By the definition of D(wy), there exist an angle v, and
a point y, such that D/(wy) := A, (wn) — N(o(k)/o(S)) is = %D(wN) or <
—%D(wN), where «:=«(yq, o). Without loss of generality, we may assume
that

D(wp) 1/(d—1) -
18 <vo=<—.
(18) Cl( N ) Syo= >
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(The constants ¢; introduced here and in the following may depend on d and
o, but not on N or wy.)
If D/(wpn) >0, then we replace « by a larger cap «’(vy, yy), where

D
(19) vi=yo+Ay and Ay=c,— (""N)
N’yo
Choosing ¢, > 0 small enough we have, by (18) and (19),
(20" N-a(x’'\k) < 1D(wp)o(S).

Similarly, if D/(wy) <0, we replace x by a smaller cap «”(y, yo) with y:=
— Ay and Ay as above. Again we have
(20 N-a(k\«") < 1 D(wp)a(S).

We continue the proof using «’ or «”, respectively, instead of «, but writing
again « for simplicity.
For /=1, 2,... we define the “test functions” 7,(6,) by

(61 = (Ay)* cos?(w/Ay)8, for 0=<6,<(Ay)/2,
U710 otherwise.

Note that A’r;<<1 (where A denotes the spherical Laplace operator) and
that A”7, has vanishing normal derivatives along the boundary {6, =(Avy)/2}
for v=0,1,...,/—1. Furthermore, for /=1, 2,... we introduce the kernel
h;(6,) by the property
(21) Alh(x)=—-1 for xeS971\{6,=0},
and the expansion as a series of spherical harmonics,

n+A
1 (n(n+2N))!

Clearly, the kernel /,(8,) is uniquely determined by (21) and (22). Its asymp-
totic behaviour near the value 8, =0 is like

const.(sin(6,/2))%' ~9+! if 2/—d+1%0,2,4,...,
const.(sin(B,/Z))zl“d“|10gsin(01/2)] if 21—d+1=0,2,4,....

Let Hy(x)=3%% hj(x]|x;), and define the signed measure

N
a gl T (8"

where 0y, is the discrete measure assigning weight 1 to the point x;. By (20")
and (20”), respectively, we obtain

PM(cosdy), r=Z_1.

(22) hy(0) ~c(\, 1) 2 >

23) SK(T,*dM)(x)do(x) >>D(wN)SS 7(x) do(x).

On the other hand, using Green’s formula and the asymptotic properties of
h;, we have
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(24) (r;%dp)(x) = (A'r;* H)(x) for all xeS9 ..
Now we use the fact that for 2/—1—d <o <2/+1—d the kernel

k,(8)):= (2 sin %)a—m(a, d)

has an inverse with respect to A, (see [15]). More explicitly, there exists a ker-
nel k; ! satisfying

(25) k'xk,=h
and admitting a representation }
(26) ki'=dikyr-2a—at +dikaisii-2d—atRs,

with A’R; bounded and continuous if s is chosen sufficiently large.
From (25) we have H, =k, '* U, and thus from (23) and (24),

(27) D(wN)SST,(x)a'a(x)<< S (Al x k7Y% U, do| << |Uy |- [|A7 % kY,

An estimate for the norm |A7, % k;!|; will complete the proof. A straight-
forward computation, using (26) and Green’s formula, yields

(A% k) (01)] << (Ay)* 4 minf(Ay)2 7277 (2sin(6,/2))2 77 ;
hence
(28) |Af7 %k | << (Ay)?
Now (27) yields
Diwn) | 71(x)do(x) < [Uali- (A7)~

Noting that {7, do >> (Ay)**9~! by definition, and that Ay has been chosen
subject to (19), we Obtain

D d—1+a
29) U, wN)||1>>D(wN>( “"N’) ,

Nn§—2

which is stronger than the assertion since vy < 7/2. L]

REMARKS. (1) The sharpening contained in (29) may be illustrated by the
situation in which M of the N points x; coincide. We may choose v, =
c;(M/N)Y¥=D thus obtaining from (29) the estimate
M)l-i-a/(d—l)

U,(x, > M| —
Ui, ol M (47

instead of

d—1+a

M
U,(x, > M| — .
|Ua (x5 o)y (N)
(2) In the proof of Theorem 3 we may take any subset B< S instead of

considering a spherical cap «, provided that the boundary dB is such as to
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allow the transition from B to B’ or B” (as in (20’) or (20”), respectively) with
a sufficiently small value of Ay. For example, if we choose B =U }\;1 k(Y, X;),
where y << N @~ we proceed in exactly the same way as above, obtain-
ing again the natural bound (16). (See also [5], where this method yields esti-
mates for logarithmic potentials on the unit circle.) In the same way we may
prove the analogue of [9, Thm. 1] for the sphere with an arbitrary oo >1—d.

(3) Sjogren [9] starts from a relation similar to (23). As the solution of a
Dirichlet problem with boundary values on the given closed surface, a “test
function” is obtained which corresponds to our function A’z * k. Then
Sjogren uses deeper results on the asymptotic behaviour of this solution near
the boundary which are rather easy to prove in the case of a sphere. An ex-
tension of his results to exponents satisfying 1 —d <a <3 —d (the “Riesz
case”) seems possible.

4. Mutual Distances on a Sphere

Recalling the notation introduced in Section 3, we consider the functionals

N N
E(on) =Y X (xj—x¢|*—m(a,d)) for 0<a<?2,
Jj=1k=1

E(on) =2 2(|x;—x¢|*—m(a, d)) for 1-d<a<0,
J#k

Ey(wy) = 2313 (log|x; —xx|—m(0,d)) for a=0.
J
Natural lower and upper bounds for these quantities were derived in [15].
Again we shall establish inequalities of the Erdds-Turan type. In the un-
bounded case o < 0, however, we restrict ourselves to the “Newtonian case”
a =2—d. In principle, our method works for any o < 0, but certain technical
problems seem difficult to surmount.

THEOREM 4. The following inequalities are valid:

d+a-2
@ Ea(“’N)S_C(aad)Dz(wN)(D(l(:/)N)) for 0<a<2,
(b) E;_y(wn) = —c(d)N'Hd-2/d-D
D*(wy) _
+C2(d)10g(c3(d)N/D(wN)) for a=2—-d <0,

DZ(‘*’N)
N 2 o N/D (o)

(All the constants are positive and do not depenZl on N or wy.)

(©) Eo(wny)<NlogN+c Jor d=2.

REMARKS. (1) Again the reader should compare these results with the
corresponding natural bounds
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E (oy)<—c'(a, d)N'=%/@=D  for 0<a<2,
Er_gon) = —c(d)N'T@=2/d=-D for >3,
Ey(wny)<NlogN for d=2.

(2) At this point we should mention a direct relation between E(wy) and
the distribution of the points of wy: We introduce the discrepancy function

N
A (X, 0n)= 3 v (x]|X;)—No(k) (xeS, 0<y<m),
i=1

where v, (-] x;) denotes the indicator function of the spherical cap (1, x;).
For d =3, Stolarsky [10] proved the remarkable identity

(30) —Ewm =c@)| _ | A3(x,ondo(x)sin'~2ydy,

T

’Y —
which in a somewhat different form is also valid on the unit circle. One might
attempt to use this equation in order to prove Theorem 4(a) in the case o =1,
but the connection between (30) and (a) does not seem to be straightforward.

Proof of (a). For 0 <a <2, we have the identity

N 2
@D ~Euton) = [ ( 2 8.(x11%)) doo),
p2

where 6,(0;) is a distance kernel which for 6, — 0 behaves asymptotically
like the kernel kg(6;) with 8=p8(a)=}(1+a—d) introduced in Section 3
(see [15]).

We use the expansion as a series of spherical harmonics,

(32) 5.(0) ~ Y by(c)PV(cosy), A= g— 1,

n=1

observing that the coefficients b, () satisfy lim,,_, (b, (a)/n®~¢=/2y >0,
and the expansion

(33) 0,0 —a(x) ~ T a,PM(cos ).

n=1

An explicit calculation yields (integrating by parts in the case d = 4)
XS 0, (61) P (cos 0,) do << v *n* 2,

by use of classical results on ultraspherical polynomials (see e.g. [11, §4.7,
§7.33]). Noting that {(P™(cos 0,))* do >> n**~2, we obtain

A
(34) la,| < (l) .
n

In the case d =2, A=0, the P™’s being the Chebyshev polynomials of the
first kind, (34) may be established as well; in the case d =3, A= %, where the
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P are the Legendre polynomials, an explicit calculation yields |a,| <<
7"“111 instead.
Finally, we introduce the Poisson kernel p,, 0 <r <1,

pr(cos8)=N1—-r3)(1+r?>—2rcos ) !
(35) w0
=3 (n+N)r"PM(cos §)).
n=0
Let wy ={xy,...,xyN} be the given point set with discrepancy D(wy). By an
argument quite similar to the one given in the proof of Theorem 3, there

are angles V-1
D(wy) N D(wy)
'}/ZEI( N ) and A'Y:GzW-_—z
(where €, €, are suitable positive constants) and a point £ € S9! such that
the inequality |A. (x, wy)| = %D(wN) holds for all x in the cap «(Av, £). Then
we have, using decay properties of the Poisson kernel,

(36) [ A+0x, NP (x1£) do(x)| > Dean),

provided r is chosen so that 1—r = e3 Ay with e3> 0 sufficiently small.
Using expansions (32), (33), and (35), and proceeding quite technically,
we obtain the relation

2
(S A, (X, 0n)D (x| £) do(x))

(n+Na, 2
(37) =({, 2 putx1 3 T "P‘“<x|z)do(x))
2

n=1 bp(c)
aﬂ

Ss(,-a (x13) d: 5 nd
The last sum can be estimated as

oo a2 o v 2
2 d— 2 2n 2" < E nd—2r2n<_> nrx+d—3
n= bi(a) n=1 h

© 2n 2—d—«a
_d=2 r a—2f D(wn)
=y X ima—d <Y (N,Yd—2> )

n=1

by the definitions of Ay and r, in the case d # 3, and with the last expression
replaced by v*(D(wy)/N)~ 7% if d =3.
Hence from (31), (36), and (37) we obtain the estimates

D d—2+a
—E(0y) > Dz(wN)'Yz—d(N(c:[ji> for d#3,
Y

D((.ON) 1+a
)

which in either case is a sharpened version of (a).

for d=3,

—E, (wn) >>D2<wN)v‘“<
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The formal steps in the derivation of (37) may be justified by first replacing
A, and ¢, by their harmonic continuations

> a,0"PM(x|x;) and 3 b,(a)p"PM(x]|x)),

respectively, and then letting p — 1, using well-known properties of the solu-
tion of the Dirichlet problem with boundary values on S9!, 1

Proof of (b). We make use of an approximate representation of E (wy)
which is derived in [15]. For 1—d <« <0 and arbitrary p € (0, 1), one has

N N
(38) Eoz(wN) = _ng(o)_Nz(ml -mp)+ 2 E (gp(lexk)_’np)a
ji=lk=1
where g,(0;):=(p+p~1'—2cos 0,)%/? and m,:= (a(S)) ! fs 8,(x)do(x).

It is essential for our proof to estimate the asymptotic behaviour of the
coefficients in the spherical harmonics expansion of g,(6,), and it is for this
reason only that we restrict ourselves to the case oo =2 —d. In this case we
have

g,(0)=p"3 p"PM(cosb,).

n=0

As all the coefficients p"**, n =1, are positive, the last sum in (38) may be
replaced by

N 2
I 2 Gotxl)) oo,
S\ j=1
where

G,(0;) =const.- > /n+\p"TN/2pM(cos 9)).

n=1

Proceeding as in part (a), we may derive the inequality

o0 1 2 n
D*(wy) <<(E(g,,(x,-|xk)—mp))-v"‘2 > —(f—)
Jok H p

n=1
2
log(1—-2-}].
ox(1-5)

We choose p=1—-N"Y=D and r=1—¢,(D(wpn)/Ny?~2), thereby tacitly
assuming that e,(D(wy)/Ny9=2)>N-1/(d-D_(Otherwise inequality (b) is
trivial in view of the natural bounds for E,_ (wy).)

Relations (38) and (39) together yield

(39)
— (. . .)'Yd_z

2
Es_a(wn) = —cy(d)NHE=D/a=D 1 ) () Dltew) ,
v log(c3(d)——DM)
N,Yd—z
which proves the assertion (b).
Case (c) d =2 may be handled in a completely analogous way. ]

FINAL REMARKS. (1) The method used in the proof of (a) also applies to
the situation of Theorem 3 and yields the same result. However, the proof
involves certain rather cumbersome estimations.
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(2) On the other hand, we may apply Theorem 3 (which also holds for the
modified kernels §,,) directly to the representation of —FE_(wy), thereby ob-
taining an inequality that is slightly weaker than assertion (a) of Theorem 4.
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