Lewy Unsolvability and
Several Complex Variables

LEON EHRENPREIS

I. Introduction

The history of surjectivity of linear partial differential operators L may be
thought of as beginning with the Cauchy-Kowalewski theorem, which shows
that if L has analytic coefficients then L maps analytic functions locally onto
analytic functions. Thus, in the local analytic realm, the equation

d-1) Lf=¢g

always has a solution.

Many “special” surjectivity € theorems were proved (e.g., for elliptic or
hyperbolic L), but it took the development of the theory of distributions by
L. Schwartz to yield a general surjectivity theorem independent of type. 1t
was proven by Malgrange [15] and Ehrenpreis [4] in 1953 that surjectivity in
(1-1) holds in the space of C® functions, locally or globally (at least on con-
vex sets), for operators with constant coefficients (see also [2]).

It was very surprising, therefore, that surjectivity on the C® level (even
locally) fails for an operator L that is first order and has linear coefficients.
This was discovered by Lewy [13] in 1956. Lewy’s operator is
d d

1-2 L=—+i—-=-2i(x+iy)—
( )' ax T 3 (x+ y)
in the three variables x, y, t.

Somewhat later, Mizohata gave the example in two variables:

ad ad

1-3 M=— —
(1-3) ax "%

Starting with Lewy’s original paper, many proofs have been given for the
unsolvability of (1-1). Some of these proofs, such as Hormander’s [10], have
led to vast generalizations.

In this paper we shall present two new proofs of the unsolvability of L.
We shall see that each proof puts L in a new setting and leads to an interest-
ing theory.
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(a) The first proof depends on the theory of holomorphic functions of
several complex variables. The unsolvability of (1-1) results from the exis-
tence of peak points in the topological algebra that is the kernel of L. The
proof yields a removable singularities theorem for L.

(b) The second proof also depends on several complex variables. It is
now the extension property of Hartogs type which accounts for the non-
solvability.

Both proofs (a) and (b) have ramifications in the area of topological alge-
bra. They use the fact that L is first order so its kernel is an algebra.

Although our proofs are formally different and depend on different as-
pects of several complex variables (peak points vs. Hartogs’ extension), there
is an important principle underlying both proofs: Suppose we try to solve
(1-1) for a g that satisfies an operator equation of the form

(1-4) Ag=0,

where A is an operator that commutes with L. (In our applications A4 is a
multiplication.) Then (1-1) gives

(1-5) LAf=0.

That is, Af is in the kernel of L.
Suppose now that A4 has a right inverse R. Denote by Q the commutator
of L with R. We might wonder whether RA f = f. Note that

(1-6) ARAf-/)=0
because AR is the identity. Moreover,
(1-7) L(RAf—f)=RLAf+QAf—g=QAf-¢g

because LAf=Ag=0.

Call a =RAf—f. Thus « is in the kernel of A and (1-7) computes La. In
our applications we can compute the kernel of A4 explicitly because A is mul-
tiplication by a simple function. Also, A f has a certain nice behavior because
it is in the kernel of L. What is crucial is that the commutator Q is “nice”.
Thus L« is nice and this is impossible for something in the kernel of A un-
less a=0.

This yields g = QA f. Thus g must be in the range of Q on the kernel of L.
If this kernel has special properties such as Hartogs’ extension, this limits
the possibilities for g. This is proof (b).

For proof (a) we use duality; that is, we study the equation L’f = g. Now
it is clear that if A4g =0 then for suitable / the value of g-RA should be for-
mally co. On the other hand,

(1-8) L'f-Rh=f-LRh=f-RLh+f-Qh.

If Lh=0 and Q is nice then the left side of (1-8) is nice, contradicting the
“non-niceness” of g-RA. This suggests that we find an appropriate approxi-
mation R, to R and then apply (1-1) to R 4 to obtain a contradiction. This is
proof (a).
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In our paper [3] we study two other proofs of the nonsurjectivity of L.
Our first proof is vaguely modeled after Lewy’s original proof. In that paper
he shows that if g = g(#) then g must be real analytic to be in the range of L.
Lewy’s idea also uses commuting operators. In fact, call s =x2+y2 and
the angle in the x, y plane, so that z =x+iy =52,

Lewy introduces the transformation

(1-9) Tu=ijzu do,

so Tu is a function of s and ¢. We call w=¢+1s. It is clear that T(g/z) =g if
g depends only on £. Moreover,

0 17l
(1-10) pe Tu—TZLu
and
(1-11) Tu=0 on s=0.

Lewy’s equation Lf =g becomes, for g = g(¢),
(1-12) 5‘%V_-Tf=g with 7=0 on s =0.

We call 4 the operator d/ds, so Ag =0 and A commutes with d/dw. Thus
ATS is holomorphic in w and this implies, by our above ideas (proof (b)),
that g is real analytic.

Thus Lewy’s original proof fits into our ideas concerning commuting op-
erators. In terms of the original operator L, the commuting operator is given
formally by

9 1
1-13 O r_7l
(1-13) oW zL’
SO
9 7l
ow Z
and
9 0
A9 -9
| e
becomes
AT =Tl 714
Z Z
or
(1-14) %L(T‘*A“IT) - (T‘IA‘IT)<—;—L).

The second proof given in [3] depends on the discrete series for semi-
simple Lie groups. The operator 4 should be something like projection on
the discrete series. (This commutes with the enveloping algebra.) But I can-
not yet fit this precisely into the above framework.
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Actually, in the case of semi-simple Lie groups, the enveloping algebra
should map locally surjectively on the “projection on the most continuous
series” for groups with a Cartan subgroup that is a vector space, and the
nonsurjectivity should be determined by “projection on discrete-like series”.
But I have no idea how to make this idea precise.

The interpretation of Lewy’s equation as given by Hérmander [10] and
many authors following is in terms of the commutator of L and L rather
than of L and R. Of course L and A4 have a simple commutation relation and
perhaps this accounts for the interchangeability of L and R.

II. Use of Peak Points

Let Q be a piece of smooth (real) hypersurface in C? (with coordinates z, w).
Let p € @ and suppose that the Levi form is definite near p (we allow it to de-
generate at p). It is standard that there is a unique (up to left multiplication)
smooth operator

@-1) L=A(z,w)2 +B(z, w)->
07 aw

that is tangent to @ near p. Another way of saying this is: If Q is defined by
¥ (z, w) =0 then Ly =0 near Q. Thus we can choose

d )
L=yYz——y¢Y;—.
i 0z & ow
We call L the Lewy operator on Q.
In the particular case
w—w
(2-2) Y(z,w)= ———zZ2=Imw—23,

21

the operator L is exactly Lewy’s (1-2) if we use the coordinates f =Rew, x =
Re z, and y =Im z on the surface ¢ =0.

We shall make some remarks about the case of C” for n > 2 at the end of
this section.

We choose some smooth measure dw on € and we call L’ the formal adjoint
of L with respect to this measure. Our results do not depend on w, which
means that they hold for L +\ where \ is a more or less arbitrary function.

Since the Levi form is definite, we can consider the “inside” A of Q as being
the (local) pseudoconvex part of C?bounded by Q, that is, A is the envelope
of holomorphy of .

As mentioned in the introduction, the proof given here depends on the
fact that the points in Q are peak points for the algebra defined by the ker-
nel of L, which is the same as the algebra of restrictions of functions holo-
morphic on A to 2. Another way of putting this is that the whole of Q is the
Shilov boundary of this algebra.
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We claim there is no distribution f on 2 such that
(2-3) L'f=s,.

We shall explain in Section III how to replace §, by a €* function.

Let » be a small number and let x be a cut-off function on (, that is,
x(x)=1for |x—p| =<7 and x(x) =0 for |x —p|=2x. It is assumed that the
defining function ¢ for Q is defined at least in the ball |(z, w) —p| <35 s0
that this makes sense.

Since Q is strictly pseudoconvex near p we can construct peak functions
h;, that is, /; are restrictions to Q of holomorphic functions, and for each N

(2-4) |hi ()= J,
with
|h}”(x)|sl for n<|x—p|=<27n and |/|=N+1.

By adjusting 5 to be small enough it is easy to construct 4; explicitly. For
example, if p is a strictly pseudoconvex point then there is a quadratic poly-
nomial P on C? whose zero set intersects Q exactly at p. Then set

(2-5) h; =

for suitable ¢;, c;.

To put this construction in the format of Section I, A4 is multiplication by
the function P so R =1/P. In our case Q is formally identical to 0. The /4 in
(1-8) can be chosen = 1. To make things work precisely we had to use 4; and
even xh; in place of 1/P. If the Levi form degenerates at p, then we choose
h; of the form ej(ij—cj)_', where p; € Q, p;— p, and Pp, is the quadratic
polynomial associated to p;.

We claim that there is no solution of (2-3) for f a distribution of order N.
Since N is arbitrary, this proves our result.

Suppose that f did exist. Then we deduce from (2-3) that

(2-6) L'f-xhj =8y xh;.

The right side of (2-6) is 4;(p) and — oo. The left side of (9) is f- Lxh;. Now,
by Leibniz’s formula,

__ | bounded and so are its
2-7) Lxhj= derivatives of order =N if p=<|x—p| =2y,

0 if |x—p|=29.

In particular, the set {LxA;} is bounded in the space of test functions of or-
der < N. Thus the left side of (2-6) is bounded, which is a contradiction.
Hence the unsolvability of (2-3) is established.



422 LEON EHRENPREIS

One can push the theory still further. Suppose Q is real analytic. It is easy
to estimate the size of the derivatives of (P —c;)™" or (Pp,—c¢;)"' on n=<
|x — p| = 29, thereby establishing the following lemma.

LEMMA 2.1. Suppose the Levi form is nondegenerate at p. There are con-
stants A, B such that, for all sufficiently small c, we have

(2-8)

{
%(P——c)“‘lsBl!Al”

on n<|x—p|<2y. (A and B depend on 1.)

A similar property holds for real-analytic Q if the Levi form degenerates at
D, but we have to suitably normalize the Pp; so we shall omit this. (Or else
we can use polynomials of degree greater than 2 and proceed as before.)

Let {M;} be a sequence of positive numbers such that M, > (b/)! all for
some b, a with b >1. We form the space D({M;}) of functions Y with sup-
port near p so that

(2-9) Y O(x)| < B.Mel’l

for all e > 0 (see [2]). The topology of D({M,}) is defined in the natural man-
ner. We assume that {M,} is nonquasi-analytic, that is, there are plenty of
functions in D({M;}). We assume also that D({M;}) is a ring.

From Lemma 2.1 we deduce exactly as before the following theorem.

THEOREM 2.2. Let Q be strictly pseudoconvex at p. Then equation (2-3)
has no local solution fe D'({M;}).

REMARK 1. We could replace the right side of (2-3) by 8§ for any /. Thus
the cokernel of L’ has infinite dimension.

REMARK 2. Avariation of the above argument shows that there is no local
hyperfunction solution f.

We have shown that there is no distribution solution f of L’f =6,. Suppose
we know that f is a distribution defined in the neighborhood of p such that
L'f =cb,. Then it follows that ¢ =0 and f is actually a solution of L’f =0 in
a full neighborhood of p.

The strongest form of this result is given in the following theorem.

THEOREM 2.3. Suppose {Q is real analytic and strictly pseudoconvex at p.
Suppose fis a distribution in the neighborhood of p such that L'f = 0 excep!
at p, that is, the support of L'f = {p}. Then we can modify f by adding a dis-
tribution supported at p to obtain a solution in a full neighborhood of p.

Our result can be formulated as follows: Suppose L’f = g has support at p.
Then g =L’f, where support f = {p].
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REMARK. Theorem 2.3 can be extended to the case where f belongs to
D'({M,;}) for {M,} nonquasi-analytic. As such, we can think of our result
as being in the same spirit as that of Riemann’s removable singularities the-
orem, since being a distribution can be thought of as imposing a type of
growth condition at p.

PROBLEM 2.1. Is Theorem 2.3 true without any growth condition at p;
that is, if f is a distribution defined (near p) on the complement of p and
L’f =0 there, can we redefine the value of f at p to make it a solution in a
full neighborhood of p?

Problem 2.1 involves several difficulties; for example, what is meant by re-
defining f at p? A positive solution to Problem 2.1 would constitute a sort
of Hartogs extension theorem for the kernel of L.

Proof of Theorem 2.3. In order to prove Theorem 2.3, we need to know
when a distribution g supported at p is of the form L’f. For simplicity we
assume p =0.

As the case of general Q involves some technical complications, we shall
give the complete proof in the case of Lewy’s original example (2-2). The
complex 3-dimensional tangent space to {2 at the origin is easily seen to be
spanned by

_0 _5; 0
L=5z 2%y

(2-10) L=2312iz 9 and
s 74 aw

_1 4 , a4

M_Zi[’ | aw T ow

Note that M, L, L form a Heisenberg Lie algebra H.

Now suppose that L’f = g has its support at the origin. Then we can write
where P is a polynomial. By rearranging terms using the bracket relations
in H, we can write P in the form
(2-12) P=Xa;M/L¥L'.

CLAIM. Consider the map sending P— P4, where P4 is the “analytic part”
of P, obtained from P by replacing /07 and 8/0w by zero. Then PA=0 if
and only if P= PyL for some polynomial P in the enveloping algebra of H.

Proof of Claim. Note that, by (2-12),

Lk,

A_ a’
2-13) PA=Tajo-

This vanishes if and only if all terms in P contain a factor of L on the right,
whence our claim is established.
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Thus, to complete the proof of the theorem, it suffices to prove that if
L'f=P’§ then P4=0. For, if we knew this, then P'=L’P}§ so P'6=L'P45
and L'(f—Pj6) =0.

To show that L’f = P’s implies P4=0, we proceed just as in our proof
that we cannot solve L’f = 6. Namely, if P40 then we claim that we can
construct “peak” holomorphic functions #4; so that, instead of (2-4), we have

(2-4%) [(P4)h;(0)| = J,
with
|A{(x)|<1 for n=|x|=<2y, [[|SN+L.
The proof is essentially the same as in case P =1because P“is a differential
operator in d/dz and d/dw. '

The proof of the impossibility of solving (2-3) now shows that we cannot
solve

(2-3%) L'f=P’%
because
2-14) P’6-xh; =[P(xh;)](0)

= [(P")(x4)1(0) - oo,

since P = P on boundary values of holomorphic functions and xh; is holo-
morphic near the origin.

Thus L’f = P’ implies P=0 and, as we have noted, this completes the
proof of Theorem 2.3 for the case of Lewy’s original example (2-2). For the
general case the Heisenberg algebra must be replaced by a more complicated
Lie algebra that is still nilpotent. We shall develop these ideas elsewhere. [

REMARK. The proof shows some relation between nonsolvability of in-
homogeneous equations like L’f =g and removable singularities, that is,
extendability of solutions of L’f = 0. For, when L is not surjective then there
are few g in the range of L’. Thus this set of g should be “controllable” and
this is the nature of our proof of Theorem 2.3 (namely, the g supported at
the origin can be determined).

One might be puzzled by the following example. Let k£ be a holomorphic func-
tion whose zero set meets {2 exactly at p and which has no zeros in Q. Then
for any / we have Lk ~/ =0 on Q except at p. By choosing a suitable measure
for defining the adjoint (e.g., in Lewy’s original example use dxdydt), we
find also that L’k ~/ = 0 off p since L’ is essentially the same as L. This means
that L’k ' is some distribution p; supported at p. By Theorem 2.3 we expect
that u;=0. In fact, it is easily seen that u; =0, since k~'-is the limit in the
sense of distributions of the holomorphic functions k! obtained by “sliding”
the zero set of k off Q. This computation uses one definition of k.. It would
be interesting to compute g, using other definitions of X/, for example, the
principal value definition.

As we have noted, the proof of the nonsurjectivity of L depends on the exis-
tence of “peak” points for the kernel of L, that is, the whole of Q constitutes
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the Shilov boundary for this algebra. (Of course, we are speaking somewhat
loosely since the algebra is the algebra of €* functions in the kernel of L.
This is a topological, not a Banach, algebra, so the notion of Shilov bound-
ary may not be precisely defined.)

We can formulate things precisely as follows.

THEOREM 2.4. Let M be a subset of the algbra §(U) of C* functions on
the smooth manifold U. Suppose p € U is a peak point for M, meaning that
there are functions fe M with f(p) — o but f— 0 in the C% topology of the
open set Uy C U, where one component of U—U, is a compact neighbor-
hood of p. Let A be a local continuous linear map of &(U) into &(U) that
annihilates M. Then there is no solution of

2-15) AT=35
for Te D'(U).

The proof of Theorem 2.4 is contained in our above ideas.

We can formulate a similar result in case A is a semilocal operator. Then
we need an estimate on the size of U,.

The fact that Q is the Shilov boundary would seem to indicate that the
kernel of L is large since for each p € Q it contains a peak function at p. A
similar property is true of the kernel of L. Now, L’ is a map of

‘(:DI
2-16 Ly —— .
(2-16) kernel L' D
The nonsurjectivity of L’ would seem to be a consequence of the fact that
kernel L’ is large so that ©’/kernel L’ is small. However, in a linear sense
D’/kernel L’ is not smaller than 9, as is shown in the next theorem.

THEOREM 2.5. When A is the unit ball, there exists a linear isomorphism

DI
2-17 = P
( ) 4 kernel L’ D

Proof. A basis for D’(2) can be found using the fact that the unitary group
G =U(2) acts on A and on . In fact, it is well known that Q can be identi-
fied with the special unitary group G°=SU(2) under the identification

o ()= D))

for
= < _w
& w Z

an arbitrary element of G°. Thus we can decompose the representation of
G on the functions on Q to obtain a basis for D(Q).

The decomposition of the representation of G° on the holomorphic func-
tions is easily obtained. The homogeneous polynomials of degree / constitute
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an irreducible representation space of dimension 2/+1. These representa-
tions are all the irreducible representations of G°. On the other hand, the
representation of G® on D'(Q) is the regular representation, so each irre-
ducible representation of degree 2/+1 occurs 2/+1 times.

If we use a natural basis of representation functions {a/t}, where i =1, 2,
..., 2141 indexes the representations of degree 2/+1 and j, k represent the
corresponding matrix coefficients, then we can arrange things so that a dis-
tribution 7" in O’ has a Fourier series

(2-19) T=ZXaj o},
where the a* are slowly increasing in the sense that
(2-20) la/¥| < Cc(1+1)E.

The kernel of L’ contains those 7" which involve only the holomorphic rep-
resentations, say the ones corresponding to i =1. Thus the quotient can be
thought of as the space of all slowly increasing sequences with /1. It is
clear that this quotient is linearly isomorphic to the space of all slowly in-
creasing sequences. This proves the result. Ll

The analog of Theorem 2.5 holds under great generality. The general proof
is of a similar (albeit less explicit) nature. We use the theory of kernels of
Schwarz or, rather, the proof of the Schwarz kernel theorem (see e.g. [8]) to
obtain a basis for D’(2) that contains the kernel of L’ as a suitable sub-basis.
The completion of the proof is as before.

It should be noted that in complex dimension 1 there is an analog of the
Lewy operator. This is the operator L that projects functions on Q onto
those which are antiholomorphic on A. Of course, L is not a local operator
so there does not seem to be any analog of a removable singularities theorem;
however, the other results of this section are easily established in this case.

Thus we see that it is the multiplicative structure in D’ and the kernel of L
that prevent L’ from being surjective. In fact, Theorem 2.4 shows that no
differential operator ¢ of any order whose kernel contains the kernel of L
could define a surjective map of »’/kernel L onto O, because of the Shilov
property of the kernel of L; namely, that for each p, N, n there exist func-
tions A; that satisfy the peak property (2-4).

Not only can ¥ not be a differential operator, but ¢ cannot even satisfy
any of a series of “weak” behaviors with respect to multiplication in place of
the Leibniz formula. The situation reminds one of the extension theory in
topology where the multiplicative structure in the cohomology ring is often
decisive.

PROBLEM 2.2. Put the nonsurjectivity in the framework of topological
algebra. More precisely, let 4 be a function algebra and B a subalgebra whose
Shilov boundary is the whole maximal ideal space of A. Can the nonsurjec-
tivity of L’ be formulated purely in terms of the topological algebraic struc-
tures of 4 and B?
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All of our discussion up to now has concerned the case of n =2 complex vari-
ables. If we go to n > 2 then the same argument (or Theorem 2.4) shows that
no tangential Cauchy-Riemann operator is surjective on D’'(Q) if Q is (lo-
cally) the boundary of a strictly pseudoconvex domain A.

Actually much more is true. We can study the tangential d or Lewy co-
homology; that is, if L,,...,L,_; form a basis for the tangential Cauchy-
Riemann complex, then to what extent can we solve

(2-21) Lif=g;i j=1,...,n—1
given that the g; satisfy the compatibility conditions
(2-22) Ligi—L;gi=Xafg?

Here the a,»’j are the structure constants for the Lie algebra formed by the
vector fields L;,

(2-23) [L;,Lj1=Xa}Ly.

We define higher cohomology groups in a similar manner.
Our method shows simply that we cannot solve

(2-24) TLf; =86,

for p a peak point. But we do not know how to study the general (2-21) (with
L; replaced by L7). In fact, it is easily seen that there is no nontrivial coho-
mology class supported at one point so long as there are nontrivial compat-
ibility conditions.

In particular, when © is defined by a single equation ¢ =0 then we can
choose, for Lj,

d d
2-25 L:=y- — - .
( ) J ‘lbz" 32,- ¢zj 0Z,

III. Lewy’s Operator and Hartogs’ Extension

When I was first made aware of Lewy’s example, I assumed that he had pro-
ceeded as follows: Let A, be a crescent in A, that is, let A, C A be bounded
by @ and some similar surface €, (see Figure 1). The shaded area is A,. As-
sume the Levi form is nondegenerate at all points of 2 and Q..

Figure 1
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Now, A, is not a domain of holomorphy because we have taken out A—A,
from the domain of holomorphy A. Thus, by standard theory, the coho-
mology group H'(A,, A) # 0, where A is the sheaf of germs of holomorphic
functions. The size of H!(A,, A) should be in “proportion” to the size of
A—A, since this cohomology measures the departure from being a domain
of holomorphy. Thus as A, — Q the cohomology group should grow. (This
growth can be seen by a simple exact sequence.)

By Dolbeaut’s theorem, the cohomology group of A, is measured by the
lack of possibility of finding functions (or distributions) f on A, satisfying

af . of .
(3-1) =8 and a3 82
where
g, 098>
3'2 —_— = —
(3-2) aw i 74

We might hope that the groups H'(A,, A) have some limit as A, — Q. The
only meaningful equation one could derive from (3-1) and (3-2) on Q is the
Lewy equation (1-1). Thus the cokernel of L is our only hope for a reason-
able description of this limit. Hence, in particular, L has a large cokernel.
Theorem 3.4 and the remark following show a precise relation between this
cokernel and a limit of H'(A,, A).

This viewpoint of the Lewy example is in conformity with my functional
analysis solution of the Lewy problem for domains in C” (see Chapter XI
of [2]).

Professor Lewy has informed me that he never thought along these lines.
This seems very strange to me because, as we shall see, the main ingredient
of the proof is Lewy’s theorem characterizing the kernel of L as the set of
functions on Q that have holomorphic extensions to A. Qur proof uses dis-
tributions while Lewy’s does not.

As a “warm-up” to showing the nontriviality of the cokernel of L, we con-
struct the simplest cohomology classes in H'(A,, A). In situations such as
that given by (2-2), we can arrange coordinates so that the sets w=c for a
certain range of constants ¢ meet A, in an annulus 4., which we assume con-
tains z = 0in its interior. We assume that the interior of A4, is contained in A.
Let k(z) be holomorphic on A, but such that £ cannot be extended to be
holomorphic near z =0. We use k to define the cohomology class (3 closed
form)

(3-3) AN=k(2)b6,=.dWw+0dZ.
Note that d[k(2)6,,~.1/0Z=0o0n A, so X is closed.

CLAIM 1. \ is not cohomologous to zero in H'(A,, A).

Proof of Claim 1. Suppose that A = dh for some distribution /# on A,. Then
dh =0 outside {w=c} so 4 is holomorphic in A, off {w=c}. Consider the
function (w—c)h. We claim that (w—c)# is a holomorphic function on A,.
For, by Leibniz’s formula,
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d (w9 _
-4 Zlw—hl=w=c)7==0
while

3 ey Oh
ﬁ[(W—C)h]—(w C)aw

(3-3) =(w—c)k(2)8 =
=0.
Since (w—c)h is holomorphic on A, it follows from Hartogs’ extension

theorem (see e.g. [2]) that (w—c)h extends to a holomorphic function / on
all of A. We want to use /4 to extend k over the interior of A4,.

CLAIM 2. h=h/(w—c).

Proof of Claim 2. Since 1/(w —c) is the fundamental soluti0~n for /0w with
singularity at w =c, it follows from the holomorphicity of / that

a _h

(3-6) —a—w w—C

=hd, .

(Here and in the following we use a suitable normalization as in [2], so that
factors of = do not appear.)
We have shown that #—h/(w—c) satisfies the equations

(3-7 (w—c)[h——i;—] =0

and

(3-8) —a:[h——L]=[k(z)—fi]6w=c on A,.
ow w—cC

Equation (3-7) says that « = & — //(w—c) is in the kernel of multiplication
by w—c. This kernel is readily described; for simplicity we give the descrip-
tion for ¢ =0. Then wa =0 means that we can write « in the form

o’/
(3-9) a=X FrYLk
where p; are distributions on w =0 that are uniquely determined by «. (The
definition of distribution on w =0 is clarified below.)

The proof of (3-9) is an easy consequence of the fact that support(a)C
{w = 0}. Note that, for such an «, do/dW can never be a distribution on
w =0 unless o =0. This gives Claim 2. From Claim 2 and (3-6) we see that
h provides an extension of k over the interior of w=c. This completes the
proof of Claim 1. O

Note how this construction fits into the framework set forth in Section I. A is
multiplication by w—c¢, so R=1/(w—c) and Q is multiplication by -6, _.

Next we want to pass from H'(A,, A) to the cokernel of L. For this we
must assume that {w = c} meets Q “nicely” (i.e., transversely). This enables
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us to define the product of §,,_. with 6g. Certainly we have a nice intersec-
tion in Lewy’s original example (2-2).

In order to clarify things let me make some precise definitions. Let us re-
call that in one dimension we can write 6,_y=1im P,,(x). The polynomials
P, (x) are thought of as distributions by multiplying by dx. We then define
6g=1lim P,,(¥), where Q is defined by ¢ =0. Again we identify P,,(y) with
distributions by multiplying by the Euclidean measure. (We really care only
about what happens locally near some point in 2.) Thus dq is actually the
Euclidean measure on { divided by |grad ¢|. The product of distributions,
when it exists, can be defined using the product of approximations. The exis-
tence of products can be defined in terms of wave front sets, but we shall not
need such ideas here.

The important point about our definition is that it (generally) agrees with
our geometric intuition. Even more important for us is the fact that it allows
us to make constructions and calculations on the boundary by means of A..

The distributions we consider are in the space D’(A,), that is, they are
in the dual of @* functions on A, which have C* extensions to the “upper
boundary” that is Q. (The other part of the boundary of A, is irrelevant be-
cause we care only about what happens near 2.)

An Se D’(A,) is called a distribution on Q if S =0. A smooth function f
in A, is identified with the distribution fég on Q. A function on € is identified
with the distribution géqg on , where g is any extension of g to a neighbor-
hood of Q. This distribution is g/|grad y | times the Euclidean measure on {2.

A differentiable operator M in Euclidean space is said to be a differenti-
able operator on Q (or tangent to ) if M annihilates the ideal 9g of smooth
functions that vanish on . Thus M is defined on the quotient of C* by 9
which is €®(Q). (M is also defined on D’(Q).) In particular, L is a differential
operator on {.

As in the previous case of A,, we define

(3-10) N =47k ()0 =00,

where k(z) is holomorphic on {w=c} near {w=c}NQ but k(z) does not
have a holomorphic extension to the whole interior of {w=c}N{. Thus A
can be thought of as a distribution on Q. Here §,,—.0q is the product of
0, = With 8q, which exists by our assumption. We assume that y; does not
vanish identically on {w=c}NQ.

The main result of this section is the following theorem.

THEOREM 3.1. \ is not in the range of L.
To prove Theorem 3.1, we need some facts relating Q to the ambient space.

LEMMA 3.2. Let M be a smooth first-order operator on C? of the form
M =Xa;(3/3x;) which is tangent to Q; then, for any distribution S defined
near ) which restricts to Q (i.e., Séq is defined), we have

(3-11) M(S|g) = (MS)|q.
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Proof. S|y means S6q. Thus the left side of (3-11) is
M(Séq) = (MS)dg+ SMbdg = (MS)dq

because Méq=lim MP,,(¥) =0 on {, since M annihilates y (hence all pow-
ers of ¢) and constants because M has no constant term. ]

It is readily verified that any distribution 7 on  is the restriction of some T
to Q, that is, 7= T6q. Thus MT is the restriction of MT by our lemma. In
particular, if T=#A is a function on © and / is an extension of 4, then we
associate with /4 the distribution 4 = /A8g. The function M#h defines the dis-
tribution (M#h)6q = Mh by the lemma.

In [12] Lewy proved a sharp form of the Hartogs extension theorem in
which he characterized functions on  that are boundary values of holo-
morphic functions on A. It is not difficult to extend his result to distributions
by a regularization or other approximation argument. (Note that, by our
above remarks, if f is a function on {2 then the vanishing of Lf as a function
is the same as the vanishing of L f as a distribution.)

We can state Lewy’s result in the following form.

THEOREM 3.3. The kernel of L on distributions on  is exactly the set of
distributions that have holomorphic extensions to A.

Let us return to the proof of Theorem 3.1. Suppose that A = LA (see (3-10)).

By Leibniz’s formula and the fact that L is first order, we deduce that for

hl = (W—C)h

(3-12) Lh =0,

since L annihilates holomorphic functions (or else use Lemma 3.2). By The-

orem 3.3 this means that 4, extends to a holomorphic function 4, on A.
Let us denote by 4, the meromorphic function A;/(w—c). We can use

(3-6) to compute k5. It is clear that 8/, /0Z = 0; thus, calling L the operator
Vz(3/0w) —¥;(8/08%Z) considered as an operator on functions on A,

(3-13) Lhy=y;hd, ..
By Lemma 3.2 this gives
L(h3)g)=(Lhy)dg
(3-14) =Yz by =09
=Yz =c-

(Recall that / and h are distributions on {.) Note that #,5,, . makes sense
because h; and hence /4, have restrictions to .
On the other hand,

(w—c)[h—hydq] =hy—h;6q
=0 in D'(Q),

sinceﬁlég is (by definition) the distribution that the function #, defines on Q,
and A, is the function whose boundary value on Q is the distribution #,.

(3-15)
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As in the above case of A, let o =h—h,6g and think of « as a distribu-
tion on Q. Then equation (3-15) says that (w—c)a =0, while (3-14) says that

(3-16) Lo =[(k(z)—¥z/1)0 =]q.

We analyze equations (3-15) and (3-16) as we did equations (3-7) and (3-8).
Equation (3-15) says that « satisfies

(3-17) (w—c)a=0 modulo 9,

where 9 is the ideal of Q. Because of the smoothness of { we can extend o to
a distribution & in the kernel of w—c. Letting, for example, ¢ =0 we obtain
an expression like (3-9) for a.

Next we apply L and use Lemma 3.2 to obtain a contradiction as in the
proof of Claim 2, unless o =0. Theorem 3.1 is thereby proven. ]

Extensions of the Construction

Extension 1. 'We have used curves w = c. Naturally the same idea works for
smooth holomorphic curves I' that intersect A, in a similar manner. We de-
scribe I' by z = u(s), w = v(s), with s in the unit disc. The image of |s| =1lies
outside A, the image of the origin is in A— A, and some annulus-like region
A gets mapped into A,.

The analog of 6,,_. is the measure 6p. By using functions k(s) that are
holomorphic near I'N A, but cannot be continued analytically near s =0,
we construct nontrivial cohomology classes in H 1(AE, A). Then, as in the
case of w=c, we use k(s)d0rdq to construct elements in the cokernel of L.

It should be noted that as e — 0 the number of curves I" and the number of
functions & increase. In another work we shall show how the cohomology
classes constructed here generate the cohomology group, so this shows again
why HY(A,, A) increases as e — 0. It also shows why the cokernel of L con-
tains the limit of these cohomology groups.

Although our result on the generation of H'(A,, A) is difficult, let us show
why the cokernel of A is larger than the H!(A,, A). The basic tool for this is
the following theorem.

THEOREM 3.4. Suppose { is real analytic. Use coordinates y, 0 near (,
where 0 represents coordinates on ). Then for any given g on Q there are
Jformal power series

(3-18) a=Xa,(0)y" and B=LB,(0)y"
such that

(3-19) oy =Pz

and

(3-20) VYsa—y¥:8=g modulo multiples of .

Proof. The proof is a computation. We express « and § as in (3-18). We
write ¥, ¥z, 05, and 0; in a similar fashion, say

Ya=S YT O, 0= 67(0)y,
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and so forth. Then the coefficient of ¢” in (3-19) is
n _ n _
2 (o)) + 2 (n—j+ Do, j1¥)
= i=0

@3-21) J=0 =0, o ]
= .EO(Bn——j)Bef'{' ‘Eo(n —j+1)an—j+l‘|bf-
J= J=

The coefficient of ¢” in the left side of (3-20) is
n — -
(3-22) _EO( Vo =¥ Bu_j)-
J =

We use this expression for n =0 to determine «, and 3, by means of

(3-23) Yeoo— Y580 =g,
which can be solved since ¥ and y; have no common zero on {2.

Note that the highest subscript of « in (3-21) is n+1and the coefficients of
o, 41 and B, are respectively ¢ and ¥/§, so that we can determine o, ; and
8,41 respectively. Theorem 3.4 is thereby proven. L]

REMARK. Theorem 3.4 relates the cokernel of L to the formal cohomol-
ogy that we denote by H'(Ay, A). For it is clear that, for «, 8, g as above, if
adZ + B dw is formally d exact then g is in the range of L. Conversely, if g=
Lf then we could take some extension f of f and let «, 8 be the respective
formal power series of fz, f». Thus there is some formally exact o dZ + 3 dw
that satisfies (3-20).

All this shows that the map («, 8) — g of (3-20) sends

C™(Q)
_—
LC=(Q)
We have already remarked that H(A,, A) grows as e — 0. In fact, H'(A,, A)
can be regarded as the limit of H'(A, A).

(3-24) HY(Ay, A) - 0.

PROBLEM 3.1. To what extent is the cokernel of L smaller than the limit
cohomology group; that is, what is the kernel of the map in (3-24)?

Extension 2. 'We mentioned at the end of Section II how to study the case of
dimension # > 2. We have a basis of n— 1 tangential d vector fields L,, ..., L,_;
given, for example, by (2-25), and we want to study the cohomology prob-
lem defined by (2-21), (2-22), and (2-23). Our first task is to find {g;} satisfy-
ing these compatibility conditions.

PROPOSITION 3.5. Let Th;dZ; be a d closed 1-form on C" (locally near
Q). Define

(3-25) gj=vz,hj— ¥z, .

Then the g; satisfy the compatibility conditions (2-22) and the analogous
higher commutation relations.

Proposition 3.5 is a simple computation. It depends on the fact that (2-22) is
a consequence of the formal (Leibniz) property of differentiation, and this is
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basically the origin of the d closure of L4; dZ;. (In fact, if we write the form
X h; dZ; locally as du then the result is obvious.)

We can now use Proposition 3.5 to construct nontrivial cohomology classes
for d, in much the same way as we constructed elements of the cokernel of
L in case n=2. For simplicity we give the construction for n =3, but there
is no difficulty in passing to n> 3.

Let us use coordinates (z, s, w). We want to construct a domain that plays
the same role as the domains used for »=2. The crucial property we used
for n=2is that {w=0}NA, is an annulus which, together with its interior,
belongs to the envelope of holomorphy of €.

To obtain a similar situation in case n=3, we want {w=0)NA, to be a
neighborhood of a torus (say, |z|=a,, |s|=b,) which, together with its in-
terior, is contained in the envelope of holomorphy of the “outer boundary”
Q of A or A,. To get a precise example, start with  as a piece of the bound-
ary of a convex set in C3. By scaling we can imagine that Q looks like the up-
per hemisphere of the unit sphere. Remove from @ a small neighborhood N
of the torus {w=1, |z| =3, |s|=1}. Call A=A—N, where A is the convex
hull of Q; see Figure 2. (We are using a single N here rather than a family
of N, as in case n=2. There is no difficulty in using a family N, for which
A—N.—-Q)

Figure 2

Consider a form like

_ k(z,w)
T ozw

(3-26) A 8y =172 d5+0dZ+0dWw,

where & is holomorphic on the torus.
It is clear that d\ =0. However, we cannot write
(3-27) A\ =0h

because (by Leibniz’s formula) we deduce, for h=(w—3)h, that 3A=0 on
A. Thus, by Hartogs’ theorem, / extends to be holomorphic on all of A and,
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as in case n =2, this is impossible. Using Proposition 3.5 and our method
for n =2, this construction yields a nontrivial class in the first 3, cohomol-
ogy group on 2.

To study higher cohomology groups we must use the analog of Hartogs’
theorem (and Lewy’s form of it, which is Theorem 3.3) for the extension of
closed /-forms, where / > 1. (The first results of this nature appear in [7]; see
also [2].)

There is no difficulty in extending Theorem 3.4 to the present case of n > 2.

Results starting from Lewy [14] give analogs of the Lewy-Hartogs exten-
sion theorem from manifolds M of real codimension > 1. These results can
be used to prove nonvanishing results for the cohomology defined by tan-
gential d operators on M.

For example, if M is a 4-dimensional subvariety of C3, say M defined by
Y = ¢ =0, then there is a single tangential d operator L, namely

) ) )
(3-28) L=ABE+Ba_w+CEs:’
where
A=p¥s—ds¥y,
B = ¢spz — ¢z Y5,
and
C=dz¢n—da¥z.

Extension 3. We should like to find the extension of the above to higher-
order operators and systems. The result we have in mind is the following:
Given an overdetermined system Df =0 for a single unknown function f,
there exists—at least if D has constant coefficients and has some unique
continuation properties and if  has a certain type of convexity property—
a boundary system |D,| that is a matrix of operators acting on f, which con-
sists of f and some “normal derivatives” on @ so that [D;] f, = 0 if and only
if f—;, is the “Cauchy data” of a solution in A near . This is the analog of the
Hartogs phenomenon (see [2]).

In case |D,| is not first order, so there is no Leibniz formula, the relation
of Hartogs phenomena to unsolvability is not clear.

Extension 4. All the above applies to solutions of (1-1) when g (hence f)
are distributions. How about allowing g to be a C* function (as Lewy al-
lowed in his proof)?

The two proofs given above can be modified so as to produce such a g.
For simplicity I shall treat the second proof (the one given in this section),
as it is more instructive. Presumably one could also derive the C* result
from the distribution result by use of functional analysis. In order to avoid
complicated notation, we shall use only curves I"' of the form w = c; this
curve is denoted by I'...
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Let k(z) be holomorphic on I'y near I',yN A (which we can think of as
something like |z| <1; in any case, for Lewy’s original example we could
actually make I'yNQ = {|z| =1}). We consider restriction to Q of the function

k
(3-29) g=ve" Daw);

where « is a C® function of support close to w=0. We claim that for suit-
able k and « there is no C% (or even distribution) f satisfying Lf=g. We
sometimes write f* instead of f.

Suppose such an f existed. Then Lf =0 except on the neighborhood N =
U T, NQ for wesupport(a). We need the following sharpening of Lewy’s
Theorem 3.4 which can be thought of as a propagation of singularities.

LEMMA 3.6. fextends to be holomorphic on

(3-30) A— U T..
cesupp(a)

Figure 3

At the beginning of this section we used the form of this lemma when N is
replaced by I'yN Q. In that case we multiplied f by w and applied the usual
Lewy theorem.

Before proving Lemma 3.6 we need a preliminary construction. We need to
know something about the behavior of f in terms of «. This can be analyzed
in various ways; the simplest for us is derivable from the following lemma.

LEMMA 3.7. If the distribution f exists then it is the restriction to Q of
f1+h/z, where h is holomorphic on A and

a(w)dw' Adw’
w—w’ )

(3-31) fi(zw) = kf) i
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More precisely, fi+ h/z is defined on a neighborhood of 1 in A and its re-
striction to Q is f.

Proof. 1t is clear that
(3-32) — =ad;_g

and

af; _ k(z)a(w)

w0z
in A. Here a = { {(a(w’)dw’AdWw’)/(w—w’). Thus Lf] restricts to g on Q off
z=0. By Lemma 3.2 it follows that L(f— f;) =0 on Q—{z =0}. Moreover,
Lf=0near z=0on Q because « has small support (see Figure 3) so that by
(3-31) we have Lz(f—f;) =0on all of Q. Hence z(f—f;) = / is holomorphic
on A. This shows that

(3-33) f=fi=

where p is as in (3-9). Now, Lf =0near {z=0}N{Q, so f extends to be holo-
morphic near {z=0}NQ. By the explicit formula for fj, it is of the form
h;/z near {z=0)NQ, where A, is holomorphic. Hence g =0. This is Lem-
ma 3.7. O

We can now complete the proof of Lemma 3.6. By Lemma 3.7 and the ex-
plicit formula for f, it follows that the singularities of f are only on U T,
and z=0. But Lf =0 on  near z=0. Thus, by standard several complex
variables arguments, f cannot have any singularity on z =0 off U I',. This
proves Lemma 3.6. O

Now we have good control over f}, so we want to “factor out” the annoying
holomorphic term 4. We do this by applying the Cauchy integral in the w
variable; that is, we form

(3-34) H flz, w)dw= S fi(z, w)dw.

The path of integration surrounds the support of «; for example, |w|=e.
This makes sense for z when (z, w) is near QNI',. We now integrate (3-34)
around a z path of the form [z|=1—¢". Since w in (3-34) is outside supp(x),
the function f is regular in z inside the z contour. Hence, by changing orders
of integration, we get zero. We have proven

(3-35) [| A wyawdz=0

for all c.

We know from the explicit formula that f; = f;* depends nicely on «. As
a — 8,,— o=’ we still have (3-35). But for a®=§,, _o we know from explicit
calculation that f*°= k(z)/wz. The integral in (3-35) is then
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S k(z)dz

(3-36)
rd

which can be assumed not to vanish if k& is properly chosen. This proves the
result on the unsolvability for C*® right sides.

REMARK 1. We needed to use f; since the behavior of f in terms of « is
unclear.

REMARK 2. It might happen that f exists for some «. But the determina-
tion of those o for which f exists seems difficult.

REMARK 3. It is interesting to compare the above ideas for d with a cor-
responding construction for d. Of course the local d cohomology is trivial,
so the closest we can come must involve a global construction. The d analog
of holomorphic function is a constant. For the analog A of A we use the unit
disc in R? and A.-is the annulus 1—¢ < |x| < 1. The analog of k is the func-
tion on x, =0:

~ +1 for l<x, <1
3-37 k = 2 ~1=0
(3-37) (1,0) {—1 for —1>x=-1.

Then the restriction of £éx,=¢ to the unit circle € is §; g—6_; o. Strangely
this is in the range of

d d ad

30 2ox, ! 0x,’
whereas if we had replaced k by the actual constant £ =1 on the x; axis then
the restriction to € would be 61,0+ 61,0, which is not in the range of a/a0.
I do not understand why it is the locally constant k rather than the actual
constant k& whose restriction to Q is in the range of /96, while the locally
holomorphic k£ on w=c discussed above has a restriction to Q that is not in
the range of L.
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