Boundary Behavior of Positive Solutions
of the Helmholtz Equation and
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1. Main Results

Let k> 0. Let n be an integer greater than 1. The Helmholtz equation on R”
is given by

(1.1) Au=2xu,

where A denotes the Laplacian, (8%/9x%+ -+ +3%0x}?).
The positive solutions of the Helmholtz equation on all of R” are precisely
of the form

(1.2) Kux)=| ,_ &P du(),
where \ = «/2«, (-, ') denotes the usual inner product on R*~1, §7-1=
{yeR":|y|=1] and p is a positive Borel measure on S"~ .,

The potential theory of the Helmholtz equation is described by means of
a Green’s function g(x, y) on R”"XR" which is given by

= exp(—|x—y|%/(2t)—«t)
1.3 , V)= .
(1.3) g(x,») SO )2 dt
A Helmholtz potential is an extended real-valued function on R” of the form
(1.4) Gr(x)= [ g(x, ) dv(»),

where v is a positive Borel measure on R” such that Gy # oo,

Let o denote unit Lebesgue surface measure on S”~ .. In this paper we
prove results concerning the behavior of Ku(x)/Ko(x) and Gv(x)/Ko(x) as
| x| - co.

Let Q be a subset of R” such that, as |x| - co within Q, |x/|x|—e|—0,
where e=(1,0,...,0). Let O(n) denote the set of orthogonal transforma-
tions on R”. Let 3={T,: be S"~'} be any subset of O(n) such that for each
be S""1, T, maps e to b. Let Q,=T,(Q). We think of Q, as being an “ap-
proach region to b” as | x| — oo in the direction of b. An example of such an
Q, is the parabolic set
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(1.5) Ao, b)=[{xeR": |x—|x|-b| < a-| x|"/?},

where o> 0.

We say a real-valued function f on R"has an (9, 3)-limit at e S”~lif the
limit of f(x) exists as | x| — o0, x€ Q,. In case € is invariant with respect to
all unitary transformations of R” which fix e, we simply use the term Q-limit.
Note that in this case 7°(2) is the same for all 7e O(n) such that T(e)=0b,
so for such an Q we define Q,=T(Q) for any such 7. For n=2 we shall al-
ways assume that Q satisfies this condition. The following result was proved
in [KT].

THEOREM [KT]. Let p be a positive regular Borel measure on S"~1. Let o
denote unit Lebesgue surface measure on S"~\. Then there is a subset E of
S™=1 having full ¢ measure such that, for all b in E and all « >0, Ku/Ko has
A(a, b)-limit equal to the Radon-Nikodym derivative (dp/do)(b).

One of the aims of this paper is to prove a similar almost everywhere limit
result with A(e, b) replaced by an approach region, €, which is largest pos-
sible in some sense. We shall call such a region admissible.

Before defining the admissible sets we first define the set C(«, x), where
o> 0 and x is a point in R” whose modulus is not 0:

1/2
Yy _ X SQ(L__l_) }
ly| x|

C(a, x) is a long and thin “balloon”-shaped set whose axis of symmetry ex-

C(a,x)={yeR":O<|ysx and -
I=bdand | T
tends from the origin to x. In case |x|=0 we let C(a, x) = {x}.

DEFINITION 1.6. (a) Let © be any subset of R”. Let £ > 0. The t-section of
Q is defined to be

Q)={beS" :bteQ].
(b) Let Q be any subset of R”. Let o > 0. Define the «-thickening of Qto be
2,=U{C(a,x): xeQ}.

DEFINITION 1.7. Let be S”"!and let Q be any subset of R”. We say that
Q converges to « in the direction of b provided that © is unbounded and
that whenever {x;} is a sequence in £ converging to o, we have

X
Tk _p

- 0.
| k]

REMARK 1.8. A simple computation shows that if y e C(«, x) then
C(a,y)CC(Q2a, Xx).
Thus (2,),CQ,,.

DEFINITION 1.9. Let Q be a subset of R” that converges to oo in the direc-
tion of e. We say that Q is admissible if there exists « >0 and M <oco (M
depending on «) such that
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(1.10) 0Q,(1)<sM-t~"~D/2 forall ¢>0.

REMARK 1.11. (a) We claim that if (1.10) holds for some « then it holds
for all o> 0 (where M varies with the choice of «). It suffices to show that
if (1.10) holds for Q, and 8> «, then it also holds for Q4. Indeed,

X

| x| —t>‘/ 2 }
——|=Bl—) ,xe}.
| x| ( t| x|
This is a union of balls in S”~1. By the covering lemma on page 9 of [S2] we

can extract a countable disjoint subfamily By, B,, ... of these balls such that
> 0By =coQg(t),
k

Q)= U {beS"“: ‘b

where ¢ depends only on the dimension n. If B} denotes the ball on S$”!
with the same center as B; but with radius decreased by a factor of «/g,
then U, B, C Q,(¢) and so

(84

n—1 n—1
o, (t)=0 |JB,= EOB;(=C(—-) EGBkZC(E) o5(1).
K 8 k B

Here c varies from step to step. This completes the proof of the claim. Thus
there is no need to define the concept of an «-admissible set.

(b) From this and Remark 1.8 it follows that if Q is admissible then €, is
admissible for each a> 0.

(c) In the next section we give examples of admissible sets that are not
contained in any set of the form A(«, e).

REMARK 1.12. Let Qbe a subset of R” that converges to oo in the direction
of e. We claim that @D {ze: ¢ > 0}. Indeed, let  >0. Let 0 < e < (o /2)¢ ~1/2,
Since ( converges to o in the direction of e, there exists s such that if s > s,
and sbe( for some be S”"~! then |b—e|<e. Choose s> max(sg,4¢/3)
such that sbe Q for some be §"~L, Then a(1/t—1/s)/?> (a/2)t V2> ¢>
|b—el|, so that tee C(a, sb) C Q. This proves the claim.

We shall prove the following result.

THEOREM A. Let u be a positive regular Borel measure on S"~ . Let o
denote unit Lebesgue surface measure on S"~1. Let Q be admissible. Let
3={T,: be S"™ Y} be a family of orthogonal transformations of R" such
that, for each be S"~, T, maps e= (1,0, ...,0) to b. Then there is a subset
E of S having full o measure such that, for all b in E, Kup/Ko has (2, 3):
limit equal to the Radon-Nikodym derivative (du/do)(b).

Results of this kind for functions defined by convolutions on the upper half-
space R%*1 were first considered in [NS]. For generalizations see also [C],
[MPS2], [MS], [Sul], [Su2], and [W].

We shall prove the following converse result.

THEOREM B. Let Q be a subset of R" that converges to « in the direc-
tion of e. Suppose that Q is invariant under all elements of O(n) which
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preserve the point e. If Q is not admissible then there exists a positive reg-
ular Borel measure p such that Kp/Ko has Q-lim sup equal to « at every
point of "1,

Note that, for n=2, Theorems A and B completely characterize the sets @
converging to o in the direction of e for which the conclusion of Theorem A
can be drawn; the sets are precisely those for which the cross-sectional mea-
sure condition (1.10) holds. In view of Remark 1.13(a) below, Theorem B
provides only a partial converse for Theorem A in case n = 3.

In the next theorem we give a necessary condition on certain types of
curves, v, in R% such that every function of the form Gv/Ko has a finite +-
limit as | x| — o along rotates of 1.

THEOREM C. Let Q be an open subset of R? which converges to o in
the direction of e. Suppose that Q is bounded by a continuous curve vy. If
limsup ¢26Q(¢) =0 as t — oo, then there exists a Helmholtz potential Gy
such that Gv/Ko has vy-lim sup equal to o at o-almost every point of S'.

By a v-limsup of « at a point { of S!, we mean a lim sup of « along the
rotate of the curve v by ¢.

REMARK 1.13. (a) Let n=3 and let Q be an admissible set which is invari-
ant under all elements of O(n) that preserve e. We show that € is necessarily
contained in A(B, e) for some 3> 0.

Let xo€ Q, xo/|xo| # e. Then Q contains D= {x: | x| =|xo|, {x, ) ={x0, &)},
where (-, -) denotes the usual inner product on R”. Let t =Xx,/2. Then

Q,(1)DD ()= U [be S" 1 |b—|x| x| = a| xo| 73}
xeD
The latter union has ¢ measure at least c|e—|xo| ™ xo|" 2| xo| =2 where ¢
depends only on » and «. Thus, by (1.10),

(n—1)/2 (n—1)/2

x _ _
o (1) =c|=2 le—]| x| ~xo|" 2| x0| V3,

2 2

which implies that |xo—|xo|e| =< (M2"~1/2/c) /(=D x V2 5o that Q is a
subset of A(B, e) with B=(M2#—D/2/c)l/(n=2)

(b) Let Q be any subset of R” which is invariant with respect to all ele-
ments of O(n) that fix e. Let ¢ > 0. Suppose tacQ, where ac S"~!, aZe.
Let Te€ O(n). Put {=T(a). Then, by definition, #{ € Q). We claim that
T(te) e,

To show this, let » be the element of S”~!lying in the 2-dimensional sub-
space determined by @ and e such that (b, e) = (a, e) (so that b =2{a,e)e—a).
By our assumption, ¢be . There exists Se O(n) such that S(b)=e and
S(e)=a, so T-S(e) = { and T-S(tb) = T(te). Thus T(te) € T-S(Q) = Q.
This proves the claim. We shall make use of this remark in the proof of
Theorem B.

M=
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2. Examples

Here we give examples of admissible sets.

(1) Let > 0. If x € A(a, e), it is a simple computation to show that
C(a,x)CAQ2a,e). Thus (A(a, €)) ,C A(2a, e). Since A(2a, e) has the cor-
rect cross-sectional measure, A(x, e) is admissible.

(2) Let {x;} be a sequence in R". Put ¢, =|x;| and by = x; /| xx|. Choose
the sequence so that

i) |bk~e| — 0 as k— oo,
(i) ¢ is increasing with limit oo,

(iii) t1/2 -|by—e| — oo as k— oo,

(iv) t}/2-|by,1—e| < c for all k and for some ¢ < co.

Condition (iii) says that {x;} is not contained in A(B,e) for any 8 > 0,
and condition (iv) says that the sequence {#; b} is entirely contained in
A(c,e). Since A(a, e) has the property that any line starting from the origin
must eventually leave A(q, €), it is easy to construct such a sequence {x;]}.

Let Q= {x;: k=1}. We show that Qis admissible. Let «, f > 0. Suppose that
bt is in Q,. Choose K so that #x_; <t and tx=¢. Thus if bt is in C(a, x;)
then & must be at least K. Suppose first that & is at least K +1. Then

1/2
1 1
|b bk|_<_oz(t tk> ’
and so
|b—e|=<|b—by|+|b;—e]

1/2
1 1
<ofi_L by~
a(f l‘k) el

<at V24t f?
<(a+c)t71?
since k = K+ 1 implies that ¢,_,=¢. Thu$
(beS" i bteQ ) CA(a+c),e)UC(a, xx).

This completes the proof that Q is admissible.
Example (2) thus provides an example of an adm1531ble set that cannot be
contained in A(B, e) for any 3>0.

3. Maximal Functions

In this section we fix « >0, @ an admissible subset of R”, and J = {T}:
be S" !} a family of orthogonal transformations of R” such that T, maps
e=(1,0,...,0) to b. For each be S"~! define

#,= {5,057 1x(0, %) e @),
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and
b= {(r, £)e §"1x (0, 00): ;i—e(ﬂb)za}

(recall Definition 1.6(b)). In case b =e we will not use a subscript in these
definitions.

PROPOSITION 3.1. Fix beS"1.

(@) Let (%g,20) € . Suppose € S" Land t > ty. If | — ol < alt—ty),
then (¢, t) e ®j,.

(b) Let ({,¢t)ePy. Then (§,5)e ®y forall s>t.

(c) There exists M < oo (depending on «) such that, for all t >0,

t=D.glee S™ 1 ¢ — | <t forsome (%o, 1) € By} <M.

Proof. (a) |¢—¢o| = a(t—1ty) < a(t?—1t3). Thus

Se c(a, -;‘Og)c (2o C (D) 20
giving us (¢, ¢) € ®;,.

(b) This follows from the fact that (£2;), is starlike with respect to the
origin of R”.

(c) Let ($o,¢) be an element of &, and suppose that |{— {o| <¢. Then
|¢— tol <a((1+a~1)¢—t). By part (a) of this proposition, (¢, (1+a~1)¢) is
an element of ®}. Thus

o{s€S" 11| ¢ —¢o| <t for some (&, t) € D)

= 0{§'€ sl [(1+a§;1)-l‘]2 € (Qb)Za}'

The result follows from Definition 1.9 and Remark 1.11. L

We now define a Hardy-Littlewood type maximal function on S”~1.

DEFINITION 3.2. Let » be a regular Borel measure on S”~ 1. For be §"~!
let

My(b)y=sup{t~""DpB(s,1): (5, 1) € D),
where B($o, 1) ={¢eS" 1| {— ol < 1.

Proposition 3.1 allows us to apply Theorem 1.5 of [Sul] and deduce the fol-
lowing.

PROPOSITION 3.3. M is weak-type; that is, there exists ¢ <o such that
for all regular Borel measures v and \>0

ofbe S 1 | My(b)|> N} < (%)l .
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4. Proof of Theorem A

LEMMA 4.1. Ko(x)=eMN|x|0="/2 g5 x - 0, where ~ means that the
quotient of the right and left sides is bounded above and below by positive
constants.

Proof. Since ¢ is rotation invariant,
Ko(x) Sl eNxla—r3? r2g
o(X)=\ ——————r r.
o (1—r2)1/2

Making the substitution 1—r2=s2and then 1—s=u/(\|x|) gives
Ko(x) = e)\]x|()\|x|)(l_”)/2 lexl e~ Uy n=3/2 gy
0

As the latter integral remains finite as x — o for n=2, the proof is com-
plete. 0

Proof of Theorem A. In the proof, ¢ denotes a constant which may depend
on other constants and which may vary from occurrence to occurrence.
By the lemma we may replace Ku/Kos by

(4.2) u(x) = | x|r=D/2g=Nix] ge"""b) du(b).

Define the maximal function N by
Np(b) =supfu(x): xe Q}.

By a standard argument it is enough to show that N is weak-type and for
this it is enough (by Proposition 3.3) to show that Nu(d) < cMu(d) for all
be S"!, where ¢ does not depend on p or b.

Let be S"!and suppose x = t£ € Q;,, where ¢ =| x| and £ = x/|x]|. In what
follows, [V7 ] denotes the greatest integer less than or equal to v#. Then

u(x) = f=1/2g—M Ke)\t(é, > du(§)

— =12 Se—x(r/z)lr—slzdﬂm

[vrl

< t(n-l)/2( e—Mt/Z)Is“—EIZdIL(;)

K=o Sk/v't_<|§'-—$|5(k+l)/\/t_
2
+S e ~M/2){s—¢] d#(“)
1<|r—¢]<2

e ) (B (ke D/NTY)
k=0 ((k+1)/¥E)n-1
<c(Mp(b)+|p|)
<cMu(b).
This completes the proof. O

+|,u]t("‘”/2e""’/2
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5. Proof of Theorem B

Let ¢ denote unit Lebesgue surface measure on $”~!and let H denote unit
Haar measure on O(n). For E a subset of $"7), let xz denote the function
on S”~!which is 1 at a point of E and 0 otherwise.

LEMMA 5.1. Let E be a Borel subset of S"~\. Then

o(E) = | xp(Te) dH(T).

Proof.
[ do») {xe(my) dr(Ty = { aB(T) | xp(Ty) do()
= | ar(m) | xz() do()
(5.2)
= | o(e) ar(r)
=o(FE).
However, the right invariance of H shows that the inner integral in the first
line of (5.2) is independent of y. The lemma follows. ]

LEMMA 5.3. Let E, and E, be Borel subsets of S"~1. Then

o(Ey)-o(E,) = S o(TE,N E,) dH(T).

Proof.
| o(TENEy) dH(T) = [ dH(T) | xre, () dot)
2
=|aH@) | xp(T~9) doty)
E,
=| o) | xe,('y) aH(T)
E,
=\ do) | xz(Te) ab(T)
E,
=0(Ey) a(E,).
The second-to-last equality follows by the right invariance of H, and the
last inequality follows by Lemma 5.1. 0l

LEMMA 5.4. Let E be a Borel subset of S"~! having positive o measure.
Put a=0(E) and m={1/a]—1, where [1/a] denotes the greatest integer
less than or equal to 1/a. Then there exist Ty, ..., T,,€ O(n) such that
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o(EUT,EU---UT, E)> 1.

Proof. We begin by applying Lemma 5.3 to the sets £ and E*, where E¢
refers to the set of points of $”~! not in E. We deduce that there exists 7€
O(n) such that

o(TYENE)=0(E)a(EC).
Thus
a(E‘N(TY(E)))=0(E)—o(E‘NTLE)
<d(E°)—d(E°)-a(E)
=(1-a)%
S0

o(EUT\E)=1-(1—a)2
Similarly, by applying Lemma 5.3 to £ and (EUT,E)¢, we find T, e O(n)
such that
o(EUT\EUT,E)=1—(1—a)3.
Continuing in this way m times, we get T),...,7,, in O(n) such that
o(EUT,EU---UT,E)=1—(1—a)™*!

>1—(1—a)/

=1—exp(—1)

=1 O

The following lemma is a special case of Lemma 1 in [S1].

LEMMA 5.5. Let {F,} be a sequence of Borel subsets of S"~' such that

=]

2 O'(Fk)=°0.
k=1

Then there exists a sequence {T;} in O(n) such that
o{yeS"!: ye T, (F}) for infinitely many k} =1.

Proof of Theorem B. Let ¢, > 0. Since  is not admissible, there exist in-
creasing sequences {f;} and {C;} with limits co such that

(5.6) Y Cete "V 2(6Q (1)) <.
k=1
Let E,=9,(t;). Let m;+1 be the integer part of (¢9,(#;))~". By Lemma
5.4 there exist Ty g, ..+, Ty, m, € O(n) such that
o(Ty, o (EQ)U T (EQ)U - UTy 1, (Eg)) > 1
By applying Lemma 5.5, we may assume without loss of generality that

oy €S" e T o(Ex) U Ty (EQU - UTy ,, (Ey)

(5.7 e
for infinitely many k}=1.
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For each k consider the m;+1 points T o(ety), Ty ((ety), ..., Tk, m,(et) on
the sphere | x| =, (recall e=(1,0,...,0)). This gives us an infinite sequence
of points. Due to (5.7), Remark 1.12, and Remark 1.13(b), we have shown
that for o-almost every ¢ € $”~!there is a subsequence {x;} of these points
with x;€(Q,)¢, |x;|—= o, and |x;/|x;|—¢|— 0. (It is here we use the fact
that Q, hence €, is invariant under elements of O(n) that fix e.) For each
one of these my +1 points on |x|=#; (call a typical one bt;), we associate a
measure which is a multiple of the restriction of o to the cap on S"~! cen-
tered at b of radius 2a#; /2, where the multiple is C;. (By the term cap we
mean the set of points of $”~!at most a distance to b of 2a#; /%) This gives
us a measure p of total magnitude about X, Crty "~ V/2my. This magni-
tude can be made as small as we wish, depending upon e.

Let bz, be one of our my+1 points and let s = #;. Let I be the cap on S$"~!
centered at b of radius s ~Y/2. Since s=t, I is contained in a cap centered at

b of radius #72. Thus

1 \ Ku(bs) (n—1)/2,—\s ,\s¢b, £
(Ck)Ka(bs) 2| sV do)
(5.8) =S cs (D2~ 0/ D10~ g 1)
I
>c,

since the last integral is independent of s. This computation allows us to
conclude that for o-a.e. {€ 8"}, the Q_-limsup of Ku/Ko is co. We claim
that the Q-lim sup is also equal to « o-a.e. To see this, let £s be a point of
such that bt € C(«, £s), with bt as in the first part of this paragraph. Then
|b—£| < atg /2 Thus the cap of radius 2t /2 centered at b in the construc-
tion of p contains a cap centered at ¢ of radius about oz /2. Together with
the computation in (5.8) this proves the claim.

Finally, consider the exceptional subset E of S"~! of o-measure 0, where
the Q-lim sup of Ku /Ko is not c. There exists a decreasing sequence {U,} of
open subsets of $”~! whose intersection contains E for which

s}

(5.9) . S o(Uy) < oo

k=1
Let wy, be the restriction of ¢ to an open subset of $”~! which contains the
closure of Uy and has at most double the ¢ measure. Let w be the sum of
these measures. By (5.9), w is a finite measure. Since Kw; /Ko has Q-limit 1
at every point of U;, Kw/Ko has Q-limsup equal to oo at every point of E.
The measure p = v+ w satisfies the requirements of the theorem. O

6. Proof of Theorem C

We first estimate the Green’s function. For future reference we prove the
estimates for all n=2.
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LEMMA 6.1. Let g(r)=g(x,y), where r=|x—y|. Then

_ | log(1/r) as r—-0% if n=2,
@) g(r)h'{r"'“”asr—»O’r if n=3;
) g(ry=e MrU=-m/2 g5 r 5 o0,

Proof. (a) Write g(r) as I+1I, where I and II are obtained from (1.3) by
integrating respectively over the intervals [0, 1] and [1, c0).
We first estimate 1. Since e *<e ¥ <1,

=]

(6.2) Izrz‘”s e SsD-2 (s,

r2/2
If n=3, it follows immediately that I = r2~"as r— 0*. If n=2, an applica-
tion of L’Hopital’s rule shows that the integral in (6.2) = log(1/r) as r—0".
Thus I =log(1/r) if n=2.

Consider now IL. If r<1<¢, then e-1/2< e~/ < 1. Thus

Il = S:c’e“"ft“"/zdt,

which is finite and independent of r. This completes the proof of (a).
(b) From the definition of g(r), we have

—(r—»Xe)?
2t

(Recall that N2 =2«.) Writing this as I +II+III+1V, where we integrate re-
spectively over the intervals (0,r/(2\)], (r/(2N),r/N], (r/\,2r/\], and
(2r/\, ), it is a simple exercise to show that each of these integrals remains
bounded as r — oo. This completes the proof. |

6.3)  g(r)rn=D/2ghr = p(n=1)/2 S: exp( )(27rt)‘"/2 dt.

Proof of Theorem C. For any set E in R?2and 0 e S!define Ep={z0: z € E}.
Let e > 0. By assumption there exist increasing sequences {#;} and {C;} with
limits oo such that

(6.4) Y CrtiV2(0Q(t)) <.
k=1
For each k consider the “gate”
8r— [fé’: thk}.

(We note that constructions with gates were employed in [BC, §4] in rela-
tion to Blaschke products on the unit disc in C under the hypothesis that vy
is a tangential curve converging to 1.) Define the “projection” P, by

Pr={reS (g) Ny #0}.

Our assumption concerning the behavior of 2 at coimplies that P, D Q(#;)\{e].
Thus (6.4) remains true if we replace Q(¢;) by P,. Let m, be the integer part
of (6(P;)) L. Arguing as we did in the proof of Theorem B, we can construct
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a set G, which is a union of my rotates of g, such that for g-almost every
¢ €S, v, intersects G, for an infinite number of k.

We now show how to construct a measure vy such that Gv % o and
Gv/Ko = C; on G;. We shall choose » so that its support does not contain
the origin 0. Thus, by Lemma 6.1, the condition that Gy # oo is that the
measure dp=e M| y|=Y2 dy be totally finite.

Consider the measure y,, which on the gate g, is given by

dpy= CrptiV4s =/ ds.

The total mass of p is 4C, 17 /2. Let dvi(s) = e*sV? du,(s). Using Lemma
4.1 and Lemma 6.1, we deduce that if # =7, then

GVk(te) 3'°° 1
>\ Ot VAg—5/4eMsg1/2 (o~ Ms—0) (g p)y~1/2yo—Nt41/2 g
Kotie) = ), Crli eMsl/?(e (s—8)""")e Mt/ ds

_ S°° CrtiVA1V2s =34 (s — 1)~1/2 ds
2

> 5: Crti VAtV 2s =54 ds
t

; 1/4
= Ck(a)

ch.

Let »; be the sum of the m;, rotates of the measure »; so that »; has its sup-
port on Gi. Let v=3 v;. By (6.4), v satisfies the growth condition that
e M| y|-V24dv is totally finite. We have thus shown that Gv/Ko has v-
lim sup equal to o at o-almost every point of S’. O
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