On Consecutive kth Power Residues, 11

ADOLF HILDEBRAND

1. Introduction

Brauer [1] proved that for any positive integers k and / and every sufficiently
large prime p there exists a positive integer r such that the numbers r, r +1,
...,r+1—1are all kth power residues modulo p. Let r(k,/, p) be the least
such integer and define
Ak, l)y=limsupr(k,/,p).
p—»oo

The function A(k,!) has been studied by a number of authors. For ex-
ample, it is known ([4], [8]) that A(k,/)=oo for /=4 and all k=2 and for
[ =3 and all even values of k. On the other hand, using machine computa-
tion it was shown that A(k, 2) is finite for every k <7, and it has been con-
jectured [2] that the same is true for & > 7 (see [7] for further references). In
[7] we proved this conjecture for the case when k is a prime number. Here
we shall prove the conjecture in full.

THEOREM 1. A(k,2) <o for all positive integers k.

Stated differently, the assertion of the theorem is that, given a positive inte-
ger k, there exists a constant cy(k) such that for every sufficiently large prime
p there exists a pair (r, r+1) of consecutive kth power residues modulo p
satisfying 1 <r <cy(k).

As in [7], we shall deduce Theorem 1 from a slightly more general result
concerning completely multiplicative functions whose values are kth roots
of unity. Let F; denote the set of all such functions; that is,

Fy={f:N->C: f¥=1, f(nm) = f(n)f(m) (n,meN)}.

THEOREM 2. Let k be a positive integer. There exists a constant cy(Kk) such
that for any function fe€F) there exists a positive integer n <cy(k) with

fm)y=f(n+)=1

The deduction of Theorem 1 from Theorem 2 is easy and will be given at the
end of this section. The proof of Theorem 2 is based on the same ideas as
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that of the corresponding result in [7], but is considerably more involved.
As in [7], a key role is played by so-called “special” sets of integers, that is,
sets S={n;<---<n,} of positive integers satisfying n;—n;|(n;, n;) for all
i < j. Such sets were first considered by Heath-Brown [5]. Their significance
lies in the fact that for any two distinct elements n; and n; of such a set
the numbers »;/(n;, n;) and n;/(n;, n;) are consecutive integers. In order to
prove the assertion of Theorem 2, it therefore suffices to show that, given
a function fe Fj, there exists a special set S = {n, < --- < n,} with r = 2,
n,<cy(k), and

(L.1) S(ni/(ni,n))=1 (i#]j).

The main difficulty we will have to overcome is to ensure condition (1.1).
This requires the use of a variety of combinatorial and number-theoretic
tools, such as the pigeonhole principle, Ramsey’s theorem, elementary sieve
estimates, and estimates for multiplicative arithmetic functions.

DEDUCTION OF THEOREM 1. WEe first note that it suffices to consider kth
power residues modulo primes p =1mod k, for the set of kth power residues
modulo a prime p is equal to the set of dth power residues modulo p with
d=(k,p—1). Let now p be a prime with p=1mod &, g a primitive root
modulo p, and define a function f by f(n)=exp(2wiv/k) if (n,p)=1and
g’=nmod p, and f(p"'n)= f(n)if (n, p) =1and m = 1. It is easy to see that
fis well defined, belongs to Fj, and satisfies, for (n, p) =1, f(n)=1if and
only if # is a kth power residue modulo p. Theorem 2 therefore implies that
for all primes p > cy(k) +1 there exists a pair of kth power residues (n, n+1)
with n<cy(k). Hence A(k, 2) <cy(k), which proves Theorem 1.

2. Preliminaries
We begin with an elementary sieve result.

LEMMA 1. Let f(n) =115 ,(a;n+b;) be a product of linear polynomials
with integer coefficients satisfying
2.1) a;#0, (a,b)=1 (i=1,...,k),

and let ® be a set of primes satisfying

(2.2) D lSC
pe® P

Jor some constant ¢ >0, and
(2.3) pel®P=p>k.

Then there exists a positive integer n<c; such that p ¥ f(n) for all pe ®.
Here cy is a constant depending on the constant c in (2.2) and the coefficients
of f, but not on the set @®.

Proof. Define the sifting functions
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S(x)=#{n=x:(f(n), ®)=1J,
S(x,z)=#{n=x:(f(n), ®)) =1},
where ®(z) =®N[2,z) and (n, ®)=1 means that p tn for all pe ®@. We
must show that S(x) > 0 holds for some value x =1 bounded in terms of f

and c.
For any x =z =2 we have

(2.4) S(x)=S(x,z)— X Ny(x),
e
with

N,(x)=#{n=x:p|f(n)}.

Now note that if p| f(n) then p|a;n+ b;, and hence p <|a;|n+|b;|, for some
i. Thus, setting A =max;(|a;|+]b;|), we have N,(x) =0 for p> Ax, and

k
Ny(x)= Y #{nsx:pla,-n+b,~}sk(%+1)sk(A+l)%
i=1

for p < Ax, in view of the hypothesis (2.1). The last term in (2.4) is therefore
bounded by

1
(2.5) D N,(x)=k(A+1)x S, —.
I<p i=p=Ax P
pe@® pe@®

Furthermore, a straightforward application of the sieve of Eratosthenes
gives

(2.6) S(x,z)=1T11 (1_9_(;2))(4_0((1_,_/{)2:),

p<z
pe@®

where p(p) denotes the number of pairwise incongruent solutions to f(n) =
0O mod p. By (2.1) and (2.3) we have p(p) <k < p for all pe @, whence, by
(2.2),

11 (1—%)2@@{— > §+Ok(1)}261

pP=z P=z
pe@® pe®

for some positive constant 6; = 6,(k, ¢). Thus, if we suppose that z is suffi-
ciently large in terms of ¢ and k and take x = (1+ k)%, then (2.6) implies that

2.7) S(x,z)= %x.

Inserting (2.7) and (2.5) into (2.4), we obtain the desired bound S(x) >0,
provided that

E l S__a_l__
zspsAxp 3k(A+1)
PE®

holds with x = (1+k)?2. In view of (2.2), we can ensure this last condition
by choosing z suitably, but bounded in terms of ¢ and £. This completes the
proof of Lemma 1. ]
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We next derive an auxiliary result concerning the behavior of certain classes
of multiplicative functions on arithmetic progressions. Given a Dirichlet
character x modulo g and a (possibly empty) set of primes of ®, we set

F(x, %, ®)={f:N->C: f(p)=x(p)(p=x,pLq, D& ®)).

LEMMA 2. Let k, q, and g, be positive integers with q|q,, and let ¢ be
a positive constant. There exist positive constants c,=c,(k, qy,c) and 6, =
0,(k, c) with the following property. Let x = c,, x be a character modulo q,
and @ a set of primes satisfying (2.2). Given any function fe Fi(x, x, ®),
we then have either

1 05
(2.8) S, —=—"=logx
n<x, (n,®=11 (g
n=1mod q,
f(m=ow

Jor every kth root of unity w, or fe Fr/(x,x,, ®) for some k, (1<k,;<k),
a character x; modulo q,, and a set of primes ®, satisfying
1

(2.9) S Z=o,.
pPe@®

Proof. The proof follows largely that of Lemma 3 in [7]. We fix a function
fe F.(x,x,®) and suppose (as we may) that x is sufficiently large in terms
of k, q,, and ¢, and that f(p) =0 for p > x.

Let w be a kth root of unity, and consider the Dirichlet series

1
F(o)= E’;;,

n=l

where Y’ denotes summation over positive integers n satisfying the condi-
tions
n=lmodq,, f(n)=w, pln=p=<x, p¢C.

We first reduce the bound (2.8) to a bound for F (o).
For any o0 >1 we have

1 1
Y/ —=F(o)— X P

n=sx n>x

n=1mod g,
1 1
=F(o)—— ¥ —
1 nz2x/q;—-1 1
1 = du x(1=9)/2
ZF(G)——OS > F(o)—
qi ‘x/q-2 U qgi(c—1)

provided that x =4g#, as we may assume. Taking

2.1 =1
(2.10) 7 +(Slogx
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with a suitable constant § =d(k, ¢), 0 <6 <1, to be specified later, we obtain

5
2'-—>F(a)——2-logx
n=<x q

with
(2.11) 8, = e~ V(29
Thus, (2.8) holds if

26
2.12) F(o)= ;Elog X.

We shall show that this last estimate indeed holds if the second alternatlve
of the lemma fails.

By the assumptions fe€ Fy(x, x, ®), q|q;, and f(p) =0 for p > x, we have
that f(n), and hence f(n)w, is a kth root of unity for every n satisfying
n=1modq, and p f n for p>x or p e ®. We therefore have

k-1 _ k if f(n)=w,
l_
Eo(f(n)w) B {O otherwise,

for each such n. Using this relation and the orthogonality relation for Dirich-
let characters, we obtain

142 f(n)
Floy=—%a" X >
k =0 n=1 n
pln=p=x, p¢@®
n=1modq
(2.13) 1 k—1

= ! F,
ko(qy) 1§0w ¢m§dq1 L4(2)

[
F y(o)= 21 ﬂn_)n_\bﬂ’
pln=;s—x,ped’

with

where ¢ denotes the Euler phi function and ¢ runs over all characters mod-
ulo g;.

The contribution to (2.13) from F yo» Where ¥ is the principal character
modulo g, is

1 1 1\7!
L = ——
Ko@) = Ta@n prslx( p“)

pe@®
pXq

1 1 1
1—-— 1—— 1—-—
k¢( ;)SL( )pI>IX< p° )pg@( p°)££( p")

1
> —1{(o) exp{ _—— }
kq, pgx p° pg@ p
e € Se—¢ | 62 1/(2.5)—0 |
> = og x = ——+———logx
kq,(c—1) kq, kq,




246 ADOLF HILDEBRAND

by (2.2), (2.10), (2.11), the bound {(o —1) >> 1/(¢ — 1), and the estimate
2p>x P~ ° K1 for 0 =1+1/log x, which follows by partial summation from
Chebychefl’s prime number estimate. The implied constants here are abso-
lute. Thus, by choosing 6 =6(k, c¢) small enough, we obtain

1

ké(q,)
and (2.12) will follow, provided

)
Fo,y,(0) zéq—zlog X,
1

5
(2.14) |F) y(0)| < ;]—Z—logx
1

holds whenever /0 or ¢ # .

We now fix a pair (/, ¢¥) # (0, ¥) and show that either (2.14) holds for
this pair or the second alternative of the lemma is satisfied with a sufficiently
large constant c, =c,(k, q;, c). Since f is a completely multiplicative func-
tion, we have the Euler product representation

[ -1
Fiy(o)= 11 (1~f2)_(‘7£(_11)_> ,
P=Xx P
pe@
pPra
which yields the bound
[
le,x(U)l<<exp[ D mf(l;)al//(.v)}
D=x

pe®, plq

Now note that, by the definition of the class Fi(x, x, ®), f(p) and ¥(p)
(and therefore also f(p)y(p)) are (k¢(g,))th roots of unity for each prime
p=<x with p¢ ® and p tq,. It follows that for each such prime we have

either f(p) =¥(p) or RF(P)¥(p) = 1—1/(k¢(q1))2. Hence

RS(D)Y¥(p) ] 1
p§s;x p pgx p (k(i)(QI))z pe%mp pa ’
pe®, pha
where
®,p=tp=x:f(p) Z (D))
Now, if
(2.15) S l >y

pe® g p

with a sufficiently large constant ¢, =c,(%, q,, ¢), then the above estimates
together with the elementary prime number estimate,

> ———< y — —Iog log x+ O(1),
p<x P’ p=xP

imply (2.12). Suppose therefore that (2.15) fails for some pair (/, ) # (0, ¥,).

In the case when /=0 and ¢ # Y, we have
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1 1 1

— — _

pe%’:o,‘; p _pgx P péx P

vip)#1 p=amodg,

for some a, (a, q) =1, which, by Dirichlet’s theorem for primes in arithmetic
progressions, yields (2.15) if x is sufficiently large in terms of ¢q,. Thus, (2.15)
can only fail if 1</=<k~—1, and in this case we have fe Fy,(x, x;, ®,) with
ki=1, x;=1, and a set of primes @, = @, ; satisfying (2.9). Hence the sec-
ond alternative of the lemma is satisfied, and the proof of the lemma is com-
plete. 1

3. Construction of Special Sets

Recall that a special set is a set S={n;<n,<--- <n,} of positive integers
satisfying

(3.1 nj—n;|(nj,n;) (1<i<j=<r).
This condition is obviously equivalent to
3.1y nj—n;=(n;,n;) (1<si<j=r).

The existence of such sets for arbitrarily large values of r was first proved by
Heath-Brown [5]. Recently, Heath-Brown [6] proved a quantitative form of
this result, showing that for any r = 2 there exists a special set with log n, <<
rilogr. .

In this section we shall construct special sets satisfying certain congruence
conditions.

LEMMA 3. Let k, q, r, and t be positive integers, and let ¢ be a positive
constant. There exist constants po= po(r,t) and c3=c;3(k,q,r,t,c) with the
Sfollowing property. Let ® be a set of primes satisfying

1
(3.2) Y —=c
pe@® 4
and
(3.3) pe®=p>p,,

and let C,, ..., C, be a decomposition of N into t disjoint sets. Then there
exists a special set S={n;<---<n,} with n, <c; such that each n; is of the
Jform

(3'4) nizqaiml.’ (mh Q)zl
with
(3.5 o;=0mod k,

(3.6) m;=(m;,m;)modq (j#i),
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3.7 (m;, ®)=1,

and, for suitable fixed indices s,s'<{,

(3.8) n;eCy forall i,
(3.9) (nj,n;)eCy  forall i#].

Proof. Fix k, q, c and a set of primes @ satisfying (3.2) and (3.3) with a con-
stant p, to be specified later. We shall first prove by induction on r that if
Po=r+1in (3.3) then there exists a special set S={n;<--- <n,} satisfying
(3.4), (3.5), (3.7), and

(3.10) m;=1mod g

for all i, and whose elements are bounded in terms of &, g, r, and c. The
argument here is in part inspired by Heath-Brown [6].

In the case r =1 we can take the set S= {n,;}={1} which trivially has the
desired properties. Now let » =1 and assume there exists a special set S=
{n,<--- <n,} whose elements are bounded in terms of k, g, r and c, and
which satisfies (3.4), (3.5), (3.7), and (3.10). Set

r
P=q*T]n; and P,-=£,
i=1 n;

so that, by (3.4),
r
(3.11) quk+a1+---+a,Hmi,

i=1
and consider the sets
S@)={ni(t):0=<i=<rj,
where

(3.12) no(ty=1tP,  ni(t)=n;+tP=(+tP)n,.

Each of these sets has r+1 elements. We shall show that for each 7 =1 with
t =1mod g, S(¢) satisfies (3.1), (3.4), (3.5), and (3.10), and that there exists
at least one such ¢, bounded in terms of the parameters k, q, r, and ¢ of the
lemma, so that S(¢) also satisfies (3.7). This will complete the induction step.
To prove (3.1), note first that for 1 <i < j=<r, n;(¢)—n;({) = n;—n;, which
divides (n;, n;) and hence also divides (#;(¢), n;(¢)), since the set S satis-
fies (3.1) and n;|n;(¢) by (3.12). Moreover, for i=0 and 1< j<r we have
n;(t)—ny(t) = n; by (3.12), which again divides ny(¢), n;(¢), and hence also
(no(t), n;(¢)). Thus (3.1) holds for the elements of S(¢) for each ¢ =1.
Next, from (3.4), (3.11), and (3.12) we see that

ni(t)=q*Om(t)
with

’
aO(t)=k+2ai’ oz,-(t)=a,- (ISISI'),
i=1
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r
(3.13) mo(t)=t]] m;, mi(t)=1+tP)m; (1<i<r),
i=1

provided (7, ¢) = 1. Here we have used the fact that g divides P and each P;.
Since, by the induction hypothesis, (3.5) and (3.10) hold for «; and m;, it fol-
lows that these conditions hold for «;(¢) and m;(¢) as well if £ =1mod q.

We now show that, for some ¢ with r =1mod g, S(¢) also satisfies (3.7).
From (3.13) and the induction hypothesis we see that this is the case if /=
1 mod g and none of the factors ¢ and 1+¢P; (i=1,...,r) is divisible by a
prime p € @, that is, if =1+ ng for some integer n=0 and (f(n), ®) =1,
where

r r
Sf(n)=(1+gn) III(1+(1+qn)P;) =(l+gn) Hl((1+Pi)+qP:n)-
i= i=
To prove that (f(n), ®) =1 for some n, we apply Lemma 1. The hypotheses
(2.1), (2.2), and (2.3) of that lemma are satisfied for the polynomial f(#),in
view of the assumptions (3.2) and (3.3) (assuming that p,=r+1), and since
(1+P;,qP;)=(1+P;,q)=1 for each i. Hence there exists a positive inte-
ger n with (f(n), @) =1, which is bounded in terms of ¢ and the coefficients
of f, and therefore, by the induction hypothesis, bounded in terms of the
parameters k, g, r, and c. This completes the proof of (3.7).

It remains to show that the conditions (3.6), (3.8), and (3.9) can also be
achieved. We shall do this by showing that suitable subsets of the special sets
constructed above will have these properties.

Replacing g by 2q, if necessary, we may assume for the proof of (3.6) that
2|q. We fix a special set S satisfying (3.4), (3.5), (3.7), and (3.10). We first
note that for any fixed o = 0 at most one element »n; € S can have o; = «. In-
deed, if this were not the case, then (by our assumption 2 |g) two such ele-
ments would be exactly divisible by 2% but congruent to each other modulo
2**1 which is impossible in view of the condition (3.1). Thus the exponents
«; in (3.4) are pairwise distinct. Furthermore, by taking a suitable subset,
increasing the constants py and c; as functions of r if necessary, and using
a well-known result of Erdds and Szekeres [3] that any sequence of integers
of length n2+1 contains a monotone subsequence of length n+1, we may
assume that the exponents «; are either increasing or decreasing with i.

With these assumptions we can now embark on the proof of (3.6). Sup-
pose first that the «; are increasing. Then, by (3.1)’ and (3.4), we have for
[ <j that
(3.14) (m;, m;)=q~*(q“im;,q*m;) = q~*i(n;, n;)

=q “i(nj—n;)=q% " %im;—m;

with o;—a; > 0. Hence (m;, m;)=—m;mod q for all i</, and in view of
(3.10) it follows that

(3.15) (mj,mj)=—1modq (i#)).
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Similarly, in case the «; are decreasing, we obtain
(mj,mj)=1modgq (i#)).

The last relation, in conjunction with (3.10), immediately yields (3.6). In
case (3.15) holds, we consider instead of S the sets

S'(t)={nj(t):1<i=<r}, ni=tP—n, _; (I<i=<r),

where P is defined as in (3.11). Arguing as above, we see that, with a suitable
choice of ¢ such that # =1mod g, the set S’(¢) satisfies the conditions (3.1),
(3.4), (3.5), and (3.7) of Lemma 3. Defining m/(¢) in the same way as m;
with respect to n/(¢), we have

(3.10)' mi(t)=—m;=—1modg

for all i, and obtain as in (3.14) that (m;(¢), mj(¢)) = mj(¢{)mod g for i < j,
and hence

(3.15y (mi(t),mi(t))=—1modg (i#)).

From (3.10)" and (3.15)’ it follows that (3.6) holds for the set S’(¢).

Finally, we note that the conditions (3.8) and (3.9) can be achieved by tak-
ing a suitable subset of a special set satisfying the remaining conditions of
the lemma with a sufficiently large cardinality and increasing the constants
Do and c; as functions of r and ¢. In the case of (3.8) this follows from the
pigeonhole principle, and in the case of (3.9) an application of Ramsey’s
theorem gives the desired result (cf. Lemma 2 in [7]).

The proof of Lemma 3 is now complete. L]

4. Proof of Theorem 2

Our proof will involve an iteration argument, the main step of which is con-
tained in the following lemma.

LEMMA 4. Let k and q be positive integers, and let ¢ be a positive con-
stant. There exists a constant cs=c4(k, q,c) with the following property.
Let x = c4 and fe Fi N\ Fiy(x, x, ®), where 1 <ky=<k, x is a character mod-
ulo q, and @ is a set of primes satisfying (3.2). Then we have either

4.1) S(m)y=f(n+1)=1

for some positive integer n < x, or there exist positive integers k; < ky and
q1=cy4, a character x, modulo q,, and a set of primes ®, satisfying

1
4.2) 2 —=cy
such that fe F N Fi (X, x1, ®y).

Proof of Lemma 4. Given fe F; N Fy(x, x, ®) as in the lemma, set r =
[(2/6,(kg, c))+2], where 6, is the constant of Lemma 2, so that r =2 and
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ré,(kg, c) =2. We shall apply Lemma 3 with this value of r and the decom-
position of N into the k sets

C,={neN: f(n)=e?""ky (h=0,...,k—1).

By assumption, the set ® satisfies (3.2). The condition (3.3) is not necessarily
satisfied, but if we set q’=quSp0p and ®'={pe®: p> py}, where py=
Po(r, k) is defined as in Lemma 3, and denote by x’ the character modulo g’
equivalent to x, then we have fe Fi N Fiy(x, x’, ®’) (since Fiy(x,x, ®)C
Fx,(x, x’, ®")), and the hypotheses (3.2) and (3.3) of Lemma 3 are now satis-
fied with ®’ and ¢’ in place of @ and g, respectively. (Note that for the suc-
cess of this argument it is essential that the constant py of Lemma 3 be inde-
pendent of g.) Without loss of generality we may therefore assume that the
set @ already satisfies both (3.2) and (3.3). If x is sufficiently large in terms of
k, q, and c, we can then apply Lemma 3 and obtain a special set {n;<--- <
n,} with n, <c;(k, q, r, k, c) < x which satisfies (3.4)-(3.9).
By (3.8), (3.9), and the definition of the sets C;,, we have

n; Sf(n;) .
4.3) ¥i ( ! ) = =w ([#])
- (niony)) — F((niy ) /
for some fixed kth root of unity w. Moreover, (3.4)-(3.7) and the hypothesis
Se FNFy(x,x, ®) imply that

f( n; )koZf(q(a,-—min(a,-,aj))/k)kkof( m; )ko
)

(n;, n;) (m;, m;
k
m: 0 m:;
=f(—'> =x(——-'—) —x()=1 (i%)).
(m;, m;) (m;, m;)
Hence w is in fact a kyth root of unity.
Now let
r P
P=q H nj, Pi=—,
i=1 n;

and consider the integers
ni()=n;+tP=(1+tP;))n; (I1<i=<r).
Note that, by (3.1),
(n;(¢),ni(t))y=(n;+tP,n;+tP)=(n;+tP,n;—n;) = (n;+ P, (n;, nj))
=(nj,np)=nj—n;=n;(t)—n;(t) (i<j),

so that n;(¢)/(n;(t),n;(¢)) and n;(¢)/(n;(t), n;(¢)) are consecutive integers
for any fixed 1 =0 and / < j. Moreover, by (4.3) we have

n;(t) _ n _ NP
@9 f(("i(t),nj(f)))_f((ni,”j))f(l-*-tpi)_wf(1+tpl) (7).

Thus, in order to prove (4.1), it suffices to show that there exists an integer
t, bounded in terms of k, q, and ¢, such that
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4.5) SA+tP) =&

holds for at least two indices /.

If w=1 then (4.5) holds for t =0 and all i <r, and since r =2, (4.1) fol-
lows. We may therefore assume that w# 1. Let N(¢) denote the number of
indices i < r satisfying (4.5). Then

N(t) r 1
E E )
I<i<x Tt i1 nex, moy=1 1
n= lmodP
f(n)=&

where the term n =1 does not contribute to the last sum, since f(1)=1#a
by the above assumption. By Lemma 2 and the choice of r, the right-hand
side of this expression is greater than or equal to r6,(k, ¢)log x =2 log x if
X = max; ¢, (ko, P, c), unless fe Fi (x,x;,®) for some k; (1<k;<kyp), a
character x; modulo some P;, and a set of primes @ satisfying (2.9), and
hence (4.2) for c,=max; c,(ky, P;, c), where ¢, and 8, are the constants in
Lemma 2. We conclude that if ¢, is sufficiently large in terms of &, ¢, and
¢, and if x = ¢y, then either the second alternative of the lemma holds or
N(t) =2 for some ¢ < x%. In the latter case it follows, by (4.4) and the defi-
nition of N(¢), that (4.1) holds with n=n;(1+¢P;)/(n;,n;) <x for some
i < j. This proves the lemma. L]

Proof of Theorem 2. Set

ci(k,c)y=max{cy(k’,q',c’):k'=sk,q'=c,c'=c}
and

F(x,¢)= U Fy,(x, %, ®),
where the union is taken over all positive integers k; < k, all characters x to
moduli < ¢, and all sets of primes @ satisfying (3.2). Lemma 4 implies that if
x=cj(k,c)and fe Fi N Fko(x c¢) for some k< k, then either fsatisfies (4.1)
for some n<x or fe FkﬂFkO 1(x, cj(k,c)). Now let fe F; be given. Then
tr1v1ally feF¥x,1) for all x=1, and defining constants c{P=c{(k) (I=
..) by
=1, cP=max{cl{™V, citk,ci=M} U=1),

we see inductively that for each / with 1</<k either (4.1) holds for some
n=c{Por feF¢_;(c{F, c§). For I = k the second alternative is impossible,

because F§(x,c)=0. Hence (4.1) necessarily holds for some n < c{*. This
proves the assertion of Theorem 2 with cy(k)=c ")(k) ]

Added in proof: The statement of Theorem 2 is actually equivalent to that
of Theorem 1 under some additional conditions on f; see Mills [9].
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