Boundary Density and the Green Function

JANG-MEI WU

In this note, we generalize the following theorem on level curves of conformal mappings to domains in \mathbb{R}^m , $m \ge 2$.

THEOREM A. Let Ω be a simply connected domain in \mathbf{R}^2 ($\Omega \neq \mathbf{R}^2$), let f be a conformal mapping from Ω onto the unit disk |z| < 1, and let Γ be any line or circle on the plane. Then there exists an absolute constant p_0 (1 < $p_0 < 2$) such that

$$(0.1) \qquad \int_{\Gamma \cap \Omega} |f'(z)|^p |dz| \le C(p,\Omega) < \infty$$

for $1 \le p \le p_0$.

For the development of the theorem, see [4], [5], [7], and [8]. Recently, Baernstein [1] constructed Ω , f, and Γ as in Theorem A, so that

$$\int_{\Gamma \cap \Omega} |f'(z)|^{2-\delta} |dz| = \infty$$

for some $\delta > 0$.

Suppose that G is the Green function on Ω with pole at $f^{-1}(0)$. It follows from (0.1) that

(0.2)
$$\int_{\Gamma \cap \Omega} |\nabla G(z)|^p |dz| \le C(p,\Omega) \operatorname{dist}(0,f(\Gamma))^{-p}.$$

We extend (0.2) to the following.

THEOREM. Suppose that Ω is a domain in \mathbf{R}^m ($m \ge 2$) that satisfies the (m-1)-dimensional density condition ((m-1)DC). Let P be a fixed point in Ω , G the Green function of Ω with pole at P, and Γ an (m-1)-dimensional hyperplane with $P \notin \Gamma$. Then there exists a constant $p_0 > 1$ depending on the (m-1)DC constant, so that if $1 \le p \le p_0$ then

$$(0.3) \qquad \int_{\Gamma \cap \Omega} |\nabla G(x)|^p d\sigma(x) < B,$$

where $d\sigma$ is the (m-1)-dimensional measure on Γ and B is a constant depending on p, the (m-1)DC constant, $dist(P, \partial\Omega)$, and $dist(P, \Gamma)$.

Received January 18, 1990.

The author was partially supported by the National Science Foundation. Michigan Math. J. 38 (1991).

Let Ω be a domain in \mathbb{R}^m ($m \ge 2$) and $E = \mathbb{R}^m \setminus \Omega$. We say that Ω satisfies the capacity density condition (CDC) if there is a fixed $\eta > 0$ such that, whenever $x \in \Omega$ and $d(x) \equiv \operatorname{dist}(x, \partial\Omega)$,

(0.4) capacity
$$\left(\frac{E \cap B(x, 2d(x))}{10d(x)}\right) > \eta$$
.

Here, for a set S and a > 0, S/a denotes $\{(1/a)x : x \in S\}$ and

capacity(S) = $\sup\{\mu(S) : \mu \text{ is a positive measure on } S$ satisfying $\int_S K(x, y) d\mu(y) \le 1\}$,

with

$$K(x,y) = \begin{cases} -\log|x-y| & \text{when } m=2, \\ |x-y|^{-m+2} & \text{when } m \ge 3. \end{cases}$$

This type of complementary thickness condition has been used by many authors before (see, e.g., [11]).

Denote by Λ^{α} the α -dimensional content of a set, that is,

$$\Lambda^{\alpha}(S) = \inf \sum_{n} r_{n}^{\alpha},$$

where the infimum is taken over all coverings of S with countably many balls of radii r_n . We say that Ω has the α -dimensional density condition (α DC) for some $\alpha \le m-1$ if there is a fixed $\zeta > 0$ such that, for any $x \in \Omega$,

(0.5)
$$\Lambda^{\alpha} \left(\frac{E \cap B(x, 2d(x))}{d(x)} \right) > \zeta.$$

We note that simply connected planar domains satisfy 1DC, and that α DC for some $\alpha > m-2$ implies CDC, because of the Frostman theorem [2].

In Section 3 and Section 4, we show by examples that the integral (0.3) indeed depends on the thickness of $\mathbb{R}^m \setminus \Omega$ near the boundary, and that (m-1)DC is essential and cannot be replaced by αDC for any $\alpha < m-1$.

In the following, we use $c, C, c_1, c_2, ...$ to denote positive constants that depend at most on m; we use C(x, y, z, ...) to denote constants depending also on x, y, z, etc.

We denote by $\omega(z, E, D)$ or $\omega_D^z(E)$ the harmonic measure of $E \subseteq \partial D$ with respect to D at z, and by B(x, r) the ball $\{y : |y - x| < r\}$ in \mathbb{R}^m .

1. Preliminary Lemmas

First, we state a theorem which is essential in the proof.

THEOREM B. Let Ω be a domain in \mathbb{R}^m $(m \ge 2)$, and let $\{D_j\}$ be a sequence of closed sets contained in Ω with $\operatorname{dist}(D_i, D_j) > 0$ whenever $i \ne j$. Set $\Omega_j = \Omega \setminus \bigcup_{k \ne j} D_k$. If

(1.1)
$$\inf_{j} \inf_{z \in D_j} \omega(z, \partial \Omega, \Omega_j) = a > 0$$

then, for any $x \in \Omega \setminus \bigcup_j D_j$,

$$\sum_{j} \omega(x, D_{j}, \Omega \setminus D_{j}) < \frac{1}{a} \omega(x, \bigcup D_{j}, \Omega \setminus \bigcup D_{j}).$$

When Ω and D_j 's are all disks in \mathbb{R}^2 , this theorem is due to Garnett, Gehring, and Jones [7] and is used in their proof of Theorem A (p=1). A Brownian motion proof by Davis [6] gives Theorem B. Other related results can be found in [10] and [13].

We also need an extension of Hall's lemma [14].

THEOREM C. Suppose that D is a $C^{1+\epsilon}$ domain in \mathbb{R}^m for some $\epsilon > 0$, and that P is a fixed point in D. Then, for any closed set $E \subseteq \overline{D}$,

$$\omega(P, E, D \setminus E) \ge c(P, D) \Lambda^{m-1}(E)$$
.

Finally, we require a theorem of Baernstein [4] on comparison of Green functions. Let $x = (x_1, ..., x_m) \in \mathbf{R}^m$ and $S \subseteq \mathbf{R}^m$, denote by $\bar{x} = (x_1, ..., x_{m-1}, -x_m)$, $\bar{x} = (x_1, ..., x_{m-1}, -|x_m|)$, $\bar{S} = \{\bar{x} : x \in S\}$, and $\bar{S} = \{\bar{x} : x \in S\}$. Let Ω be a domain in \mathbf{R}^m , $E = \mathbf{R}^m \setminus \Omega$, and let G and \bar{G} be the Green functions for the domains $\hat{\mathbf{R}}^m \setminus E$ and $\hat{\mathbf{R}}^m \setminus E$ (respectively), with value 0 outside.

THEOREM D. Let $x \in \mathbb{R}^m$ with $x_m = 0$ and $y \in \mathbb{R}^m$. Then

$$G(x,y) \leq \tilde{G}(x,\bar{\tilde{y}}).$$

Originally the theorem is proved for m = 2; the proof for $m \ge 3$ is very similar.

Assume from now on that Ω is a domain in \mathbb{R}^m whose complement $\mathbb{R}^m \setminus \Omega$ has positive capacity, P is a fixed point in Ω , and G is the Green function of Ω with pole P. Denote by $d = \text{dist}(P, \partial \Omega)$.

LEMMA 1. Let Y be a point in Ω with $\operatorname{dist}(Y, \partial \Omega) < |P - Y|$, let r > 0 with $\operatorname{dist}(Y, \partial \Omega)/4 < r < \operatorname{dist}(Y, \partial \Omega)/2$, and let B = B(Y, r). When $m \ge 3$, we have

$$G(X) \approx |P-X|^{-m+2}$$
 for $|X-P| \le \frac{d}{2}$

and

$$\omega(P, B, \Omega \setminus B) \approx r^{m-2}G(Y)$$
.

When m = 2, assume also that Ω satisfies CDC; then

(1.2)
$$\log \frac{d}{|X-P|} \le G(X) \le C(\eta) + \log \frac{d}{|X-P|}$$
 for $|X-P| \le \frac{d}{2}$

and

(1.3)
$$\omega(P, B, \Omega \setminus B) \leq G(Y) \leq C(\eta)\omega(P, B, \Omega \setminus B).$$

By \approx , we mean that the ratio of both sides is bounded above and below by constants C and c.

Proof. When m=2, we assume first that diam $\Omega < +\infty$. Let g(X) be the Green function for |X-P| < d with pole P. Let $S = \{3d/4 \le |X-P| \le 2d\} \setminus \Omega$, let K = 10 diam Ω , and let g^* be the Green function for $\{|X-P| < K\} \setminus S$ with pole P. Then

$$g(X) \le G(X) \le g^*(X)$$
 in $|X-P| < d$.

We note that $g(X) = \log(d/|X-P|)$. From the CDC for Ω we deduce that

$$C \ge \text{capacity}\left(\frac{S}{K}\right) \ge \left(\log \frac{K}{c(\eta)d}\right)^{-1}$$
.

We recall that $g^*(X) = \log(K/|X-P|) - h(X)$, where h(X) is harmonic in $\{|X-P| < K\} \setminus S$ with boundary values

$$h(x) = \begin{cases} \log(K/|X-P|) & \text{on } S, \\ 0 & \text{on } |X-P| = K. \end{cases}$$

Let μ be the capacitary measure of S/K. Thus

$$f(X) = \int_{S} \log \frac{K}{|X - Z|} \, d\mu \left(\frac{Z}{K}\right)$$

has value 1 nearly everywhere on S, and

$$C \ge \mu \left(\frac{S}{K}\right) \ge \left(\log \frac{K}{c(\eta)d}\right)^{-1}.$$

Note that

$$f(X) \le \frac{cd}{K}$$
 for $|X - P| = K$,

and that

$$f(X) \ge \frac{\log(K/4d)}{\log(K/c(\eta)d)}$$
 for $|X-P| \le \frac{d}{2}$.

It follows from the maximum principle that, on $|X-P| \le d/2$,

$$h(X) \ge \log \frac{K}{2d} \left(f(X) - \frac{cd}{K} \right) \ge \log \frac{K}{d} - c(\eta).$$

Therefore

$$G(X) \le g^*(X) \le C(\eta) + \log \frac{d}{|X-P|}$$
 for $|X-P| \le \frac{d}{2}$.

Because the above estimates are independent of the diameter, (1.2) holds for diam $\Omega = \infty$ also. The estimate (1.3) follows from (1.2), the symmetry property of the Green function, and the maximum principle.

The case $m \ge 3$ is much simpler, and CDC is not required. We omit the proof.

The next lemma follows from the Poisson integral formula.

LEMMA 2. Let u be a bounded harmonic function in a ball B(X, r). Then

$$|\nabla u(X)| \le \frac{C}{r} (\sup_{B} u - \inf_{B} u).$$

2. Proof of Theorem

In this section, we assume that $\Gamma = \{x_m = 0\}$ and that $P = \{0, 0, ..., 0, a\}$. We partition $\Gamma \cap \Omega$ into (m-1)-dimensional closed dyadic squares $\{Q_j\}$ with mutually disjoint interiors so that

(2.1)
$$c_1 < \frac{\text{side length of } Q_j}{\text{dist}(Q_j, \partial \Omega)} \le \frac{1}{2}.$$

Let P_j be the center of Q_j , $B_j = B(P_j, c_2 \operatorname{dist}(P_j, \partial \Omega))$, and $D_j = B_j \cap \Gamma$. Choose $c_2 > 0$ small enough so that $2B_j \subseteq \Omega$ and that $\{2B_j\}$ are mutually disjoint. There are at most c_3 squares Q_j satisfying

$$\operatorname{dist}(P,Q_j) \leq \frac{\operatorname{dist}(P,\partial\Omega)}{100}$$
.

Denote by J the collection of the indices of the remaining Q_j 's, and note from Lemma 2 that

(2.2)
$$\sum_{j \in J} \int_{Q_j} |\nabla G|^p d\sigma(x) \le C(p, \operatorname{dist}(P, \Gamma), \operatorname{dist}(P, \partial \Omega)).$$

We deduce from Lemmas 1 and 2 and the Harnack inequality that, for $j \in J$ and $x \in Q_j$,

$$|\nabla G(x)| \le CG(P_j)\operatorname{dist}(P_j, \partial\Omega)^{-1}$$

$$\le C(\zeta)\omega(P, B_j, \Omega \setminus B_j)\operatorname{dist}(P_j, \partial\Omega)^{-m+1}$$

$$\le C(\zeta)\omega(P, D_j, \Omega \setminus D_j)\operatorname{dist}(P_j, \partial\Omega)^{-m+1}.$$

We now verify the condition (1.1). Fix $j \in J$, and let $\rho = \operatorname{dist}(P_j, \partial\Omega)$, $S = E \cap B(P_j, 2\rho)$, and $\Omega'_j = \Omega \setminus \bigcup_{\substack{k \neq j \\ k \in J}} D_k$. In view of (m-1)DC, we may assume that

$$\Lambda^{m-1}\left(\frac{S\cap\{x_m\geq 0\}}{\rho}\right)\geq \frac{\zeta}{2}.$$

Let $Y = P_j + (0, ..., 0, \rho/2)$ and $D = \{x_m \ge 0\} \setminus S$. It follows from (m-1)DC, Theorem C, the maximum principle, and the Harnack inequality that

$$\omega(P_i, \partial\Omega, \Omega_i') \ge C\omega(Y, \partial\Omega, \Omega_i') \ge C\omega(Y, S, D) \ge C(\zeta).$$

Again by the Harnack inequality,

(2.4)
$$\inf_{J} \inf_{x \in D_j} \omega(x, \partial \Omega, \Omega'_j) > C(\zeta) > 0.$$

From (2.2), (2.3), (2.4), and Theorem B, it follows that

(2.5)
$$\int_{\Gamma \cap \Omega} |\nabla G| \, d\sigma(x) \leq C(\zeta, \operatorname{dist}(P, \Gamma), \operatorname{dist}(P, \partial \Omega)).$$

To prove (0.3) for $1 , we first impose the extra condition <math>\mathbb{R}^m \setminus \Omega \subseteq \{x_m \le 0\}$, and we define a measure μ on Γ as follows:

(2.6)
$$d\mu(x) = \begin{cases} d\omega_{\Omega}^{P}(x) & \text{for } x \in \Gamma \cap \partial\Omega, \\ \omega(P, Q_{j}, \Omega \setminus Q_{j})/\sigma(Q_{j}) d\sigma(x) & \text{for } x \in Q_{j}. \end{cases}$$

Recall that P = (0, 0, ..., 0, a) with a > 0, and that σ is the (m-1)-dimensional measure on Γ .

PROPOSITION. Under the extra assumption that $\mathbb{R}^m \setminus \Omega \subseteq \{x_m \leq 0\}$, the measures μ and σ are mutually absolutely continuous on Γ , and

(2.7)
$$\frac{\mu(F)}{\mu(I)} \ge C(\zeta) \frac{\sigma(F)}{\sigma(I)}$$

for any square $I \subseteq \Gamma$ of side length $\leq a/10$ and $F \subseteq I$. Consequently, there exists $p_0 > 1$ depending on ζ such that, for $1 \leq p \leq p_0$,

(2.8)
$$\left\| \frac{d\omega_{\Omega}^{P}}{d\sigma} \right\|_{L^{p}(\sigma)} \leq C(\zeta, p, \operatorname{dist}(P, \Gamma))$$

and

(2.9)
$$\|\nabla G\|_{L^p(\sigma)} \leq C(\zeta, p, \operatorname{dist}(P, \Gamma), \operatorname{dist}(P, \partial\Omega)).$$

Jones and Marshall [10] have proved (2.8) for domains in \mathbb{R}^2 with complements in $\{x_2 = 0\}$ and satisfying the 1-dimensional density condition.

Proof. To prove $\mu \ll \sigma$, we assume that $F \subseteq \Gamma \cap \partial \Omega$ with $\sigma(F) = 0$ and claim that $\omega(P, F, \Omega) = 0$.

We note by the maximum principle that, for any $y \in \Omega$,

$$\omega(y, F, \Omega) \le \sup_{x \in \Omega \cap \Gamma} \omega(x, F, \Omega) \equiv b.$$

Fix a point $x \in \Omega \cap \Gamma$, let $d(x) = \operatorname{dist}(x, \partial \Omega)$, and let Λ be the spherical cap on $\partial B(x, d(x)/2)$ defined by $\partial B(x, d(x)/2) \cap \{x_m \le -d(x)/4\}$. Let $\alpha = \omega(x, \Lambda, B(x, d(x)/2))$, a number between 0 and 1 depending only on m. We note by the Markov property that

$$\omega(x, F, \Omega) \le (1 - \alpha)b + \alpha \sup_{y \in \Lambda} \omega(y, F, \Omega).$$

For $y \in \Lambda$, we note that

$$\omega(y, F, \Omega) \le b\omega(y, \Gamma \cap \Omega, \Omega \cap \{x_m < 0\}) = b(1 - \omega(y, \partial\Omega, \Omega \cap \{x_m < 0\}),$$

and also from (m-1)DC for Ω and Theorem C that

$$\omega(y, \partial\Omega, \Omega \cap \{x_m < 0\}) \ge \omega(y, \partial\Omega \cap B(x, 2d(x)), \{x_m < 0\})$$
$$> c(\zeta) > 0.$$

Combining the above estimates, we obtain that $b \le (1-\alpha)b + \alpha b(1-c(\zeta))$. This is possible only when b = 0. This proves the claim and thus $\mu \ll \sigma$.

To show (2.7), we may assume that I is a dyadic square on Γ with side length $\leq a/10$. Then either $I \subseteq Q_{j_0}$ for some integer j_0 , or there exists a collection K of natural numbers such that

$$(2.10) I = (I \cap \partial \Omega) \cup \bigcup_{j \in K} Q_j.$$

In the first case, (2.7) follows from the definition of μ . Thus, we proceed with the assumption (2.10). An inequality similar to (2.4) still holds for Ω and $\{D_i\}_{i\in K}$. Thus it follows from Theorem B and Harnack inequality that

$$\sum_{j \in K} \omega(P, Q_j, \Omega \setminus Q_j) \leq C \sum_{K} \omega(P, D_j, \Omega \setminus D_j)$$

$$\leq C(\zeta) \omega \left(P, \bigcup_{K} D_j, \Omega \setminus \bigcup_{D_j} D_j\right)$$

$$\leq C(\zeta) \omega \left(P, \bigcup_{K} Q_j, \Omega \setminus \bigcup_{K} Q_j\right) = C(\zeta) \omega(P, I, \Omega \setminus I).$$
Hence

Hence

$$\mu(I) \leq C(\zeta)\omega(P, I, \Omega \setminus I).$$

Let $F \subseteq I$, and write $F = (F \cap \partial \Omega) \cup \bigcup_{i \in K} F_i$ with $F_i \subseteq Q_i$. Thus,

$$\mu\left(\bigcup_{K} F_{j}\right) = \sum_{K} \frac{\sigma(F_{j})}{\sigma(Q_{j})} \omega(P, Q_{j}, \Omega \setminus Q_{j}).$$

Therefore, in order to prove (2.7), it is enough to show that

(2.11)
$$\frac{\omega(P, Q_j, \Omega \setminus Q_j)}{\omega(P, I, \Omega \setminus I)} \ge c(\zeta) \frac{\sigma(Q_j)}{\sigma(I)} \quad \text{for } j \in K,$$

and that

(2.12)
$$\frac{\omega(P, F \cap \partial\Omega, \Omega)}{\omega(P, I, \Omega \setminus I)} \ge c(\zeta) \frac{\sigma(F \cap \partial\Omega)}{\sigma(I)}.$$

Let $I^* = 2I$ and let U be the rectangular cylinder $\{x: (x_1, ..., x_{m-1}, 0) \in I^*\}$ and $-l(I) \le x_m \le 3l(I)$. Then, for $x \in \{x_m = l(I)\} \setminus \overline{U}$,

$$(2.13) \quad \omega(x, \partial U \cap \{x_m \ge l(I)\}, \Omega \setminus \bar{U}) \ge \omega(x, (\partial U \cap \Omega) \cap \{x_m < l(I)\}, \Omega \setminus \bar{U}).$$

Proof of (2.13) shall be given in the next paragraph. Inequality (2.13) holds also for x = P. From the Markov property and the maximum principle it follows that, for $j \in K$,

$$\begin{split} &\omega(P,Q_{j},\Omega\backslash Q_{j})\\ &\geq \omega(P,\partial U\cap\{x_{m}\geq l(I)\},\Omega\backslash \bar{U})\inf_{x\in\partial U\cap\{x_{m}\geq l(I)\}}\omega(x,Q_{j},\Omega\backslash Q_{j})\\ &\geq \omega(P,\partial U\cap\{x_{m}\geq l(I)\},\Omega\backslash \bar{U})\inf_{x\in\partial U\cap\{x_{m}\geq l(I)\}}\omega(x,Q_{j},\{x_{m}>0\})\\ &\geq c\frac{\sigma(Q_{j})}{\sigma(I)}\omega(P,\partial U\cap\{x_{m}\geq l(I)\},\Omega\backslash \bar{U}). \end{split}$$

On the other hand,

$$\omega(P, I, \Omega \setminus I) \leq \omega(P, \partial U \cap \Omega, \Omega \setminus \bar{U}) \leq 2\omega(P, \partial U \cap \{x_m \geq l(I)\}, \Omega \setminus \bar{U}).$$

Thus (2.11) follows from the above estimates; the proof of (2.12) is similar. The absolute continuity $\sigma \ll \mu$ and the doubling property $\mu(2I) \leq c(\zeta)\mu(I)$ for squares with $l(I) \le a/10$ follow from (2.7).

To prove (2.13) we note that, on $\Omega \setminus \overline{U}$,

(2.14)
$$\omega(x, \partial U \cap \{x_m \ge l(I)\}, \Omega \setminus \bar{U}) = u(x) - \tilde{u}(x)$$

and

(2.15)
$$\omega(x, (\partial U \cap \Omega) \cap \{x_m < l(I)\}, \Omega \setminus \bar{U}) = v(x) - \tilde{v}(x),$$

where u and v are bounded harmonic functions in $\mathbb{R}^m \setminus U$ with boundary values u=1 on $\partial U \cap \{x_m > l(I)\}$, u=0 on $\partial U \cap \{x_m < l(I)\}$, and $v \equiv 1-u$; and where \tilde{u} and \tilde{v} are bounded harmonic functions in $\Omega \setminus \bar{U}$ with boundary values $\tilde{u}(x) = u(x)$ and $\tilde{v}(x) = v(x)$ on $\partial \Omega \setminus U$, $\tilde{u} = \tilde{v} = 0$ on $\partial U \cap \Omega$. By symmetry, $u(x) = v(x) = \frac{1}{2}$ on $\{x_m = l(I)\} \setminus \bar{U}$, and by the maximum principle, $\tilde{u}(x) \leq \frac{1}{2} \leq \tilde{v}(x)$ on $\partial \Omega \setminus U$. By the maximum principle again, $\tilde{u}(x) \leq \tilde{v}(x)$ in $\Omega \setminus \bar{U}$. Thus (2.13) follows from (2.14) and (2.15).

In view of theorems of Coifman and Fefferman [3], on each square I with $l(I) \le a/10$, the measure $d\mu$ belongs to the Muckenhoupt class $A_{\infty}(d\sigma)$ and vice versa; moreover, there exists $p_0 > 1$ depending on ζ such that

(2.16)
$$\left(\frac{1}{\sigma(I)} \int_{I} \left| \frac{d\mu}{d\sigma} \right|^{p} d\sigma \right)^{1/p} \leq C(\zeta, p) \frac{\mu(I)}{\sigma(I)}$$

for $1 \le p \le p_0$. Covering Γ by squares $\{I_j\}$ with mutually disjoint interiors and of side lengths between a/100 and a/10, we may deduce (2.8), (2.9), and

$$\int_{\Gamma} \left| \frac{d\mu}{d\sigma} \right|^{p} d\sigma \le C(p, \zeta, d(P, \Gamma), d(P, \partial\Omega))$$

from (2.3), (2.5), and (2.16). This proves the proposition.

Finally, we remove the restriction $\mathbb{R}^m \setminus \Omega \subseteq \{x_m \le 0\}$, and define $\tilde{\Omega}$ and \tilde{G} as in Theorem D. From (2.3) and Theorem D, it follows that

$$|\nabla G(x)| \leq CG(P_j)\operatorname{dist}(P_j, \partial\Omega)^{-1}$$

$$= C\tilde{G}(P_j)\operatorname{dist}(P_j, \partial\tilde{\Omega})^{-1}$$

$$\leq C(\zeta)\omega(P, D_j, \tilde{\Omega} \setminus D_j)\operatorname{dist}(P_j, \partial\tilde{\Omega})^{-m+1}.$$

Applying the proposition to $\tilde{\Omega}$, we obtain (0.3) for 1 . This proves the theorem.

3. Example 1

In \mathbb{R}^3 , let N be a large integer, and let $P_1, P_2, ..., P_N$ be N points on $\{|x_1| \leq \frac{1}{2}, |x_2| \leq \frac{1}{2}, x_3 = \frac{1}{2}\}$ satisfying $\operatorname{dist}(P_i, P_j) \geq N^{-1/2}$ for all $i \neq j$. Let 0 = (0, 0, 0), $B_j = B(P_j, c_4 N^{-1})$, $\Omega = B(0, 1) \setminus \bigcup_{1}^{N} B_j$, and G be the Green function with pole at 0. Then

$$\int_{\{x_3=1/2\}\cap\Omega} |\nabla G(x)| \, d\sigma(x) \ge C \log N$$

if c_4 is sufficiently small.

We need the following lemma.

LEMMA 3. Let $0 < \rho < 1/10$, and let w $(0 \le w \le 1)$ be a function continuous in $\rho \le |x| \le 1$ and harmonic in $\rho < |x| < 1$, with boundary value 0 on $|x| = \rho$. Then

$$|\nabla w| \le \frac{C\rho}{|x|^2}$$
 for $2\rho < |x| < \sqrt{\rho}$.

Proof. Write $w = w_1 - w_2$, where w_1 is harmonic in |x| < 1 with boundary values $w_1 = w$ on |x| = 1, and where w_2 is harmonic in $\rho < |x| < 1$ with boundary values $w_2 = w_1$ on $|x| = \rho$ and $w_2 = 0$ on |x| = 1. From the Poisson integral formula, we deduce that

$$(3.1) |w_1(x) - w_1(y)| \le C\rho \text{for } |x|, |y| \le \rho,$$

and that

$$|\nabla w_1(x)| \le C$$
 on $|x| \le \frac{1}{2}$.

Let w_3 be a harmonic function in $\rho < |x| < 1$ with boundary values $w_3 = w_1(0)$ on $|x| = \rho$ and $w_3 = 0$ on |x| = 1, and let $w_4 = w_2 - w_3$. Because of (3.1), $|w_4(x)| \le C\rho$ on $\rho < |x| < 1$. In view of Lemma 2,

$$|\nabla w_4(x)| \le \frac{C\rho}{|x|}$$
 for $2\rho < |x| < \frac{1}{2}$.

It is clear that

$$|\nabla w_3(x)| \le 2w_1(0) \frac{\rho}{|x|^2}$$
 for $\rho < |x| < \frac{1}{2}$.

By combining the above estimates, we establish the lemma.

Denote by $a = 1/\sqrt{N}$ and $r = c_4 N^{-1}$. We note that

$$G(x) = \frac{1}{|x|} - 1 - h(x),$$

where h(x) is harmonic in Ω with boundary values

$$h(x) = \begin{cases} 1/|x|-1 & \text{on } \bigcup \partial B_j, \\ 0 & \text{on } |x|=1. \end{cases}$$

Let u(x) be harmonic in $B(0,1)\setminus B_1$ with boundary values

$$u(x) = \begin{cases} 1/|x|-1 & \text{on } \partial B_1, \\ 0 & \text{on } |x|=1; \end{cases}$$

and let v(x) be harmonic in Ω with boundary values

$$v(x) = \begin{cases} 1/|x| - 1 - u(x) & \text{on } \bigcup_{1}^{N} \partial B_{j}, \\ 0 & \text{on } \partial B_{1} \cup \{|x| = 1\}. \end{cases}$$

Thus h(x) = u(x) + v(x), and

(3.2)
$$|\nabla G(x)| \ge |\nabla u(x)| - |\nabla v(x)| - \frac{1}{|x|^2} \quad \text{in } \Omega.$$

To estimate $|\nabla v(x)|$ we let $V(x) = \sum_{i=1}^{N} (r/|x-P_{i}|)$, and note by the maximum principle that $|v(x)| \le 4V(x)$ in Ω . Because $\operatorname{dist}(P_{i}, P_{j}) \ge a$, we have $V(x) \le (C\sqrt{N}/a)r \le CrN$ in $|x-P_{1}| \le a/2$. Hence $-CrN \le v(x) \le CrN$ on $|x-P_{1}| = a/2$. We deduce from Lemma 3 that

(3.3)
$$|\nabla v(x)| \le \frac{Cr^2N}{|x-P_1|^2}$$
 on $2r \le |x-P_1| \le \sqrt{ra}$.

To estimate $|\nabla u|$, we let $u_1(x)$ be harmonic in $B(0,1)\setminus B_1$ with boundary values

$$u_1(x) = \begin{cases} 1/|P_1| - 1 & \text{on } \partial B_1, \\ 0 & \text{on } |x| = 1, \end{cases}$$

and $u_2(x) = u(x) - u_1(x)$. Therefore

$$|u_2| \le \sup_{x \in \partial B_1} \left| \frac{1}{|P_1|} - \frac{1}{|x|} \right| \le 16r \text{ in } B(0,1) \setminus B_1.$$

In view of Lemma 2,

(3.4)
$$|\nabla u_2(x)| \le C \text{ on } 2r \le |x - P_1| \le \frac{a}{2}.$$

To estimate $|\nabla u_1|$, we let $b = (1/|P_1|-1)^{-1}$, let u_3 be harmonic in $r < |x-P_1| < 1/10$ with boundary values

$$u_3(x) = \begin{cases} 1 & \text{on } \partial B_1, \\ 0 & \text{on } |x - P_1| = 1/10, \end{cases}$$

and let $u_4(x) = bu_1(x) - u_3(x)$. Note that $u_4(x) = 0$ on $|x - P_1| = r$ and that

$$u_4(x) = bu(x) \le 20r$$
 on $|x - P_1| = \frac{1}{10}$.

Therefore, by Lemma 2,

(3.5)
$$|\nabla u_4| \le C \text{ on } 2r \le |x - P_1| \le \frac{a}{2}.$$

Note also that

(3.6)
$$|\nabla u_3(x)| \ge \frac{r}{|x - P_1|^2}$$
 on $2r \le |x - P_1| \le \frac{a}{2}$.

Combining (3.2)-(3.6) we conclude that, in $2r \le |x-P_1| \le \sqrt{ra}$,

$$|\nabla G(x)| \ge \left(\frac{1}{|P_1|} - 1\right) \left(\frac{r}{|x - P_1|^2} - C\right) - C - \frac{1}{|x|^2} - \frac{Cr^2N}{|x - P_1|^2}$$

$$\ge \frac{1}{10} \frac{r}{|x - P_1|^2} - \frac{cr^2N}{|x - P_1|^2} - C$$

$$\ge C \frac{r}{|x - P_1|^2},$$

provided that c_4 is small and N is large. Thus

$$\int_{2r \le |x - P_1| \le \sqrt{ra}} |\nabla G(x)| \, d\sigma(x) \ge cr \log \frac{a}{r} \ge C \frac{1}{N} \log N$$

and

$$\int_{\{x_3=1/2\}\cap\Omega} |\nabla G(x)| \, d\sigma(x) \ge C \log N.$$

REMARK 1. In \mathbb{R}^3 , line segments have zero capacity, so we may obtain a simply connected domain in Example 1 by deleting from Ω N very narrow cylinders joining $\{B_i\}$ to |x|=1.

REMARK 2. In \mathbb{R}^2 , given a positive integer N, let $r = e^{-CN}$, let $\{B_j\}$ be N disks with centers equally spaced on $|x| = \frac{1}{2}$ of radii r, and let $\Omega = B(0, 1) \setminus \bigcup_{1}^{N} B_j$. If G is the Green function with pole at 0, and if N and C are sufficiently large, then

$$\int_{\{|x|=1/2\}\cap\Omega} |\nabla G(x)| \, ds(x) \ge cN.$$

Detail is similar to Example 1.

4. Example 2

Given $1 < \alpha < 2$, there exists a domain Ω in \mathbb{R}^3 satisfying αDC and CDC, a 2-dimensional plane Γ and a point $P \in \Omega \setminus \Gamma$ such that

$$\int_{\Gamma \cap \Omega} |\nabla G(P, x)| \, d\sigma(x) = \infty.$$

First we construct a domain when $\alpha = \log 4/\log 3$.

Let D be the snowflake domain in \mathbb{R}^2 constructed as follows: Let T_0 be a closed equilateral triangle with side length 1 and center (0,0). After the polygon T_n is constructed, we subdivide each side of T_n into three equal subintervals and build an equilateral triangle over each middle subinterval, exterior to T_n , and with one side on that subinterval. The polygon so obtained is called T_{n+1} , which has $3 \cdot 4^{n+1}$ sides of side length 3^{-n-1} each. Let D be the interior of $\bigcup T_n$ and $\gamma = \partial D$.

Corresponding to each side $I_{n,k}$ ($1 \le k \le 4 \cdot 3^n$) of T_n , let $P_{n,k}$ be the center of the equilateral triangle built over the middle third of $I_{n,k}$ and let $Y_{n,k}$ be the vertex of that triangle exterior to T_n ; let $Q_{n,k} = B(P_{n,k}, 3^{-n-5}) \subseteq \mathbb{R}^2$. We identify sets just constructed in \mathbb{R}^2 with sets in $\mathbb{R}^2 \times \{x_3 = 0\} \subseteq \mathbb{R}^3$ and

We identify sets just constructed in \mathbb{R}^2 with sets in $\mathbb{R}^2 \times \{x_3 = 0\} \subseteq \mathbb{R}^3$ and keep the same notations. Define in \mathbb{R}^3 a domain $\Omega = \{|x| < 10\} \setminus \gamma$. Because of the self-similarity of γ , Ω satisfies the CDC and α DC for $\alpha = \log 4/\log 3$.

Denote by P the point (0, 0, 1/20) and by G the Green function for Ω with pole at P. We claim that

(4.1)
$$\int_{\{x_3=0\}\cap\Omega} |\nabla G(x)| d\sigma(x) = \infty.$$

We shall actually prove that

(4.2)
$$\sum_{n} \sum_{k=1}^{4 \cdot 3^{n}} \int_{Q_{n,k}} |\nabla G(x)| d\sigma(x) = \infty.$$

Since $\{Q_{n,k}\}_{n,k}$ are mutually disjoint, (4.1) follows.

The domain Ω is not a nontangentially accessible (NTA) domain in the sense of Jerison and Kenig [9]. However, it satisfies the interior corkscrew condition and the Harnack chain condition; the CDC of Ω is a proper substitute for the exterior corkscrew condition in obtaining the estimates of harmonic functions needed. We have the following.

LEMMA 4. There exists $\beta > 0$ such that for all $Y \in \gamma \subseteq \partial \Omega$, 0 < r < 1/10, and every positive harmonic function u in $\Omega \setminus B(0, 1/10)$: if u vanishes continuously on $\gamma \cap B(Y, r)$ then, for $X \in \Omega \cap B(Y, r)$,

$$u(X) \le C(|X-Y|r^{-1})^{\beta}M(u),$$

where $M(u) = \sup\{u(Z): Z \in \partial B(Y, r) \cap \Omega\}.$

LEMMA 5. If u is positive harmonic in $\Omega \setminus \{|x| \le 1/10\}$ and u vanishes continuously on some $B(Y_{n,k}, 3^{-n}) \cap \gamma$, then

$$u(X) \leq Cu(P_{n,k})$$

for all $X \in B(Y_{n,k}, 3^{-n-1}) \cap \Omega$.

Lemmas 4 and 5 and their proof are analogous to Lemmas (4.1) and (4.4) in [9]. In their proofs, instead of the exterior corkscrew condition, the following simple consequence of CDC is used. We omit the proofs.

LEMMA 6. There exists λ (0 < λ < 1) such that

$$\omega(X, \partial B(Y, r) \cap \Omega, B(Y, r) \cap \Omega) < \lambda$$

whenever $X \in \Omega$, $Y \in \partial \Omega$, 0 < r < 1/10, and |X - Y| = r/2.

From Lemma 5 and the Harnack principle it follows that $G(X) \leq CG(P_{n,k})$ in $B(Y_{n,k}, 3^{-n-1}) \cap \Omega$, and that $G(X) \approx G(P_{n,k})$ on $Q_{n,k}$. Since $G \equiv 0$ on γ , we deduce by normal family argument that there exists c > 0 such that

$$\int_{Q_{n,k}} |\nabla G(x)| \, d\sigma(x) \ge cG(P_{n,k}) 3^{-n}$$

for all (n, k). In view of Lemma 1 and the Harnack inequality, we have

(4.3)
$$\int_{Q_{n,k}} |\nabla G(x)| d\sigma(x) \ge c\omega(0, Q_{n,k}, \Omega \setminus Q_{n,k}).$$

We need the following property of Ω .

LEMMA 7. Each X in Ω with dist $(X, \gamma) = 3^{-n-5}$ can be joined to some $P_{n,k}$ by a curve τ in Ω of length less than $C3^{-n}$ with dist $(\gamma, \tau) > c3^{-n}$.

Denote by $S_n = \{X : \text{dist}(X, \Gamma) = 3^{-n-5}\}$. We obtain, by Lemma 7 and the Harnack principle, that

$$\sum_{k=1}^{4\cdot 3^n} \omega(X, Q_{n,k}, \Omega \setminus Q_{n,k}) > c > 0$$

for all $X \in S_n$. Since capacity $(S_n) > \text{capacity}(\Gamma) > 0$,

(4.4)
$$\sum_{k=1}^{4\cdot 3^n} \omega(0, Q_{n,k}, \Omega \setminus Q_{n,k}) > c > 0 \quad \text{for each } n.$$

Combining (4.3) and (4.4), we conclude (4.2), and thus Example 2, when $\alpha = \log 4/\log 3$.

For an arbitrary α (1 < α < 2), we choose a positive integer $N \equiv 1 \pmod{4}$ with $\log(N^2/2 - 2N + 9/2)/\log N > \alpha$. Let I be the interval $\{0 \le x_1 \le N, x_2 = 0\} \subseteq \mathbb{R}^2$ and J be the polygonal path with sides parallel to the axes, symmetric about the line $x_1 = N/2$ and joining the points

$$(0,0), (1,0), (2,0), (2,1), (3,1), (3,-2), (4,-2), (4,3), (5,3), (5,-4), \dots,$$

$$\left(\frac{N-3}{2}, -\frac{N-5}{2}\right), \left(\frac{N-1}{2}, -\frac{N-5}{2}\right), \left(\frac{N-1}{2}, \frac{N-3}{2}\right), \left(\frac{N+1}{2}, \frac{N-3}{2}\right)$$

in succession. Consider J as a polygonal path with side length 1, with vertices at all its lattice points; the path J has total length $N^2/2-2N+9/2$ (see Figure 1).

Figure 1

Let S be the square with I as a diagonal, and let Q be the disk centered at (N/2, -(N-3)/2) of radius $\frac{1}{2}$. We note that dist $(Q, J) > \sqrt{2}/2$, and that

$$\operatorname{dist}(Q \cup J \setminus (I_1 \cup I_2), \partial S) = \frac{\sqrt{2}}{2},$$

where $I_1 = \{0 \le x_1 \le 1, x_2 = 0\}$ and $I_2 = \{N - 1 \le x_1 \le N, x_2 = 0\}$.

Let T_0 be a closed unit square centered at (0,0). After a polygon T_{n-1} is constructed, we shall replace each side \tilde{I} of T_{n-1} by a polygonal path F(J), where F is the linear transformation on \mathbb{R}^2 that maps I onto \tilde{I} and Q into the interior of T_{n-1} . The union of these polygonal paths form the boundary of a new polygon T_n , which has $4(N^2/2-2N+9/2)^n$ sides of length N^{-n} each. Let $D = \lim T_n$ and $\gamma = \partial D$. The construction of γ is adapted from [12].

Let Ω be the domain in \mathbb{R}^3 defined by

$$\Omega = \{|x| < 10\} \setminus (\gamma \times \{x_3 = 0\}).$$

Clearly Ω satisfies $\alpha_0 DC$ and CDC for $\alpha_0 = \log(N^2/2 - 2N + 9/2)/\log N$, hence αDC since $\alpha < \alpha_0$. There exists a sequence $\{Q_{n,k}\}$ of disks on $x_3 = 0$ (namely, the images of Q in T_n while constructing T_{n+1}) such that each point X in Ω with dist $(X, \Gamma) = N^{-n-5}$ can be joined to some $Q_{n,k}$ by a curve γ in Ω of length less than CN^{-n} with dist $(\gamma, \Gamma) > cN^{-n}$.

Following the proof above, we obtain

$$\int_{\Omega \cap \{x_3=0\}} |\nabla G(x)| \, d\sigma(x) = \infty.$$

REMARK 3. Given $0 < \alpha < 1$, let S be the Cantor set on the interval $\{0 \le x_1 \le 1, x_2 = 0\}$ obtained by successively deleting the middle β portions of the intervals, where $\beta = 1 - 2^{1 - 1/\alpha}$. Then S has dimension α , and the domain Ω in \mathbb{R}^2 defined by $\Omega = \{|x| < 10\} \setminus S$ satisfies the α DC. Let G be the Green function on Ω with pole at any point in $\Omega \setminus \{x_2 = 0\}$. We may deduce as in Example 2 that

$$\int_{\{x_2=0\}\cap\Omega} |\nabla G(x)| \, dx_1 = \infty.$$

Added in proof: Since the submission of this manuscript, a related paper by J. Fernández has appeared in Revista Math. Iberoamericana 5 (1989).

References

- 1. A. Baernstein, A counterexample concerning integrability of derivatives of conformal mappings, J. Analyse Math. 53 (1989), 253-268.
- 2. L. Carleson, *Selected problems on exceptional sets*, Wadsworth, Belmont, Calif., 1983.
- 3. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.
- 4. J. Fernández, J. Heinonen, and O. Martio, *Quasilines and conformal mappings*, J. Analyse Math. 52 (1989), 117–132.
- 5. B. B. Flinn, *Hyperbolic convexity and level sets of analytic functions*, Indiana Univ. Math. J. 32 (1983), 831–841.
- 6. J. Garnett, Applications of harmonic measure, Wiley, New York, 1986.
- 7. J. Garnett, F. Gehring, and P. Jones, *Conformally invariant length sums*, Indiana Univ. Math. J. 32 (1983), 809–829.

- 8. W. Hayman and J.-M. Wu, *Level sets of univalent functions*, Comment. Math. Helv. 56 (1981), 366–403.
- 9. D. Jerison and C. Kenig, *Boundary behavior of harmonic functions in nontangentially accessible domains*, Adv. in Math. 46 (1982), 80–147.
- 10. P. Jones and D. Marshall, *Critical points of Green's function, harmonic measure, and the corona problem,* Ark. Mat. 23 (1985), 281–314.
- 11. P. Jones and T. Wolff, *Hausdorff dimension of harmonic measures in the plane*, Acta Math. 161 (1988), 131–144.
- 12. B. Mandelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982.
- 13. Ch. Pommerenke, On uniformly perfect sets and Fuchsian groups, Analysis 4 (1984), 299-321.
- 14. J.-M. Wu, Content and harmonic measure: an extension of Hall's lemma, Indiana Univ. Math. J. 36 (1987), 403-420.

Department of Mathematics University of Illinois Urbana, IL 61801

