Boundary Density and the Green Function

JANG-MEI WU

In this note, we generalize the following theorem on level curves of con-
formal mappings to domains in R”, m=2.

THEOREM A. Let Q be a simply connected domain in R> (Q#R?), let f
be a conformal mapping from Q onto the unit disk |z| <1, and let T be any
line or circle on the plane. Then there exists an absolute constant py (1 <
Po<2) such that

©.1) | 1@ ldz| < Clp, @) <
rne
Jor 1< p<p,.
For the development of the theorem, see [4], [5], [7], and [8]. Recently,
Baernstein [1] constructed Q, f, and I" as in Theorem A, so that

’ 2—6 —
[ gl @ ldz| =<0

for some 6> 0.
Suppose that G is the Green function on Q with pole at £ ~!(0). It follows
from (0.1) that

0.2) meG(z)lP dz| < C(p, Q) dist(0, £(I')P.

We extend (0.2) to the following.

THEOREM. Suppose that Q is a domain in R™ (m = 2) that satisfies the
(m—1)-dimensional density condition ((m—1)DC). Let P be a fixed poini in
Q, G the Green function of Q with pole at P, and T" an (mm—1)-dimensional
hyperplane with P ¢ I'. Then there exists a constant py> 1 depending on the
(m—1)DC constant, so that if 1 < p =< p, then

0.3) Smﬂwc(x)v’do(x) <B,

where do is the (m—1)-dimensional measure on I" and B is a constant de-
pending on p, the (m—1)DC constant, dist(P, dQ), and dist(P,T).
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Let @ be a domain in R"” (m=2) and E =R\ Q. We say that Q satisfies the
capacity density condition (CDC) if there is a fixed » >0 such that, when-
ever x € 2 and d(x)=dist(x, 02),

ENB(x,2d(x)) )

10d (x)
Here, for a set S and @ >0, S/a denotes {(1/a)x: x € S} and

(0.4) capacity(

capacity(S) =sup{u(S): u is a positive measure on S
satisfying fg K(x,y)du(y) <1},
with
—log|x—y| when m=2,

Klny)= |x—y|~™*? when m=3.

This type of complementary thickness condition has been used by many au-
thors before (see, e.g., [11]).
Denote by A® the a-dimensional content of a set, that is,

A*(S)=inf Y rf,
n

where the infimum is taken over all coverings of S with countably many balls
of radii r,. We say that Q has the a-dimensional density condition (a«DC)
for some o < m—1 if there is a fixed ¢{ > 0 such that, for any x e Q,

_/ ENB(x,2d(x))
A( a(x) > >S5

We note that simply connected planar domains satisfy 1DC, and that «DC
for some o > m—2 implies CDC, because of the Frostman theorem [2].

In Section 3 and Section 4, we show by examples that the integral (0.3)
indeed depends on the thickness of R\ near the boundary, and that
(m—1)DC is essential and cannot be replaced by «DC for any aa <m—1.

In the following, we use ¢, C, ¢, c,, ... to denote positive constants that
depend at most on m; we use C(x,y,z,...) to denote constants depending
also on x, y, z, etc.

We denote by w(z, E, D) or wH(E) the harmonic measure of E € dD with
respect to D at z, and by B(x, r) the ball {y:|y—x|<r}in R™

(0.5)

1. Preliminary Lemmas
First, we state a theorem which is essential in the proof.

THEOREM B. Let Q be adomain in R™ (m =2), and let { D;} be a sequence
of closed sets contained in Q with dist(D;, D;) >0 whenever i # j. Set Q; =

U Di. If

1.1) inf inf w(z,39,Q,)=a>0
j ZEDJ'
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then, for any x e Q\U; D;,
1
E (D(X,Dj, Q\Dj) < —C_l-w(x, UDjs Q\U Dj)

J

When @ and D;’s are all disks in R?, this theorem is due to Garnett, Gehring,
and Jones [7] and is used in their proof of Theorem A (p=1). A Brownian
motion proof by Davis [6] gives Theorem B. Other related results can be
found in [10] and [13].

We also need an extension of Hall’s lemma [14].

THEOREM C. Suppose that D is a C'** domain in R" for some ¢ >0, and
that P is a fixed point in D. Then, for any closed set E € D,

(P, E,D\E)=c(P,D)A\""(E).

Finally, we require a theorem of Baernstein [4] on comparison of Green
functions. Let x =(x, ..., x,;) e R"and SSR"”, denote by X = (x|, ..., X,;_1,
—Xm)s X=(X1y ey Xm_1, —|Xm|), S={X:x€ S}, and S={X:xeS]. Let Qbe
a domain in R™, E=R"\Q, and let G and G be the Green functions for the
domains R™\ E and R\ E (respectively), with value 0 outside.

THEOREM D. Let xeR"” with x,,=0 and y e R™. Then
G(x,»)=G(x,)).
Originally the theorem is proved for m = 2; the proof for = 3 is very sim-
ilar.
Assume from now on that  is a domain in R” whose complement R\ {

has positive capacity, P is a fixed point in ©Q, and G is the Green function of
(1 with pole P. Denote by d =dist(P, Q).

LEMMA 1. Let Y be a point in Q with dist(Y, dQ) <|P—Y]|, let r >0 with
dist(Y, 0Q)/4 < r <dist(Y, 0Q)/2, and let B= B(Y,r). When m=3, we have
d
G(X)=|P—X|""*% for | X-P|= >

and
w(P, B, Q\B) =r""2G(Y).

When m =2, assume also that Q satisfies CDC; then

d d
and
(1.3) w(P, B, 2\B) < G(Y) < C(n)w(P, B, 2\B).

By =, we mean that the ratio of both sides is bounded above and beiow by
constants C and c.
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Proof. When m =2, we assume first that diam Q < +o. Let g(X) be the
Green function for | X—P| < d with pole P. Let S={3d/4 < | X—P|<2d}\9,
let K =10diam ©, and let g* be the Green function for {|X —P|< K}\S with
pole P. Then

g(X)=G(X)=g*X) in |[X-P|<d.
We note that g(X)=log(d/|X —P|). From the CDC for Q we deduce that

C>capacity(£>>(log K )—]
h K] cpyd) -

We recall that g*(X)=log(K/|X —P|)—h(X), where A(X) is harmonic in
{|X —P| < K}\S with boundary values

1 —
hx) = og(K/|X—P|) on S,
0 on |[X—P|=K.

Let p be the capacitary measure of S/K. Thus

K z
f(X)“Sslog X—Z] d"’(?)

has value 1 nearly everywhere on S, and

S K -1
Czp (‘12) = (log C(n)d> '

Note that
cd
f(X)= 7 for | X—P|=K,
and that
log(K/4d) d
X)= for | X—-P|= .
TOO= toekremay " ¥=F1=3
It follows from the maximum principle that, on | X —P|=<d/2,
K cd K
h(X)=log §—d—<f(X)— 7<—> =>log 7 —c(n).
Therefore
G(X)=g*(X)=C(n)+log d for |X—Pls—q.
| X —P| 2

Because the above estimates are independent of the diameter, (1.2) holds
for diam @ = also. The estimate (1.3) follows from (1.2), the symmetry
property of the Green function, and the maximum principle.

The case m1 =3 is much simpler, and CDC is not required. We omit the
proof. 1

The next lemma follows from the Poisson integral formula.

LEMMA 2. Let u be a bounded harmonic function in a ball B(X, r). Then

|Vu(X)| = E(supu—infu).
r B B
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2. Proof of Theorem

In this section, we assume that I' = {x,, =0} and that P =(0, 0, ...,0, a). We
partition I'NQ into (m—1)-dimensional closed dyadic squares {Q;} with
mutually disjoint interiors so that

side lengthof Q; 1

2.1 ‘S Td@isio,00) 2

Let P; be the center of Q;, B; = B(P;, ¢, dist(P;,dQ)), and D; = B;NT.
Choose ¢, > 0 small enough so that 2B; S and that (2B;] are mutually dis-
joint. There are at most ¢ squares Q; satisfying
dist(P, dQ)

100 )

Denote by J the collection of the indices of the remaining Q;’s, and note
from Lemma 2 that

dist(P, Q;) <

(2.2) D S IVGlpda(x)sC(p, dist (P, I"), dist(P, 90L2)).
jeJvQ;

We deduce from Lemmas 1 and 2 and the Harnack inequality that, for je J
and x € Q,

|VG(x)| < CG(P;)dist(P;, Q)"
2.3) < C({)w(P, B;, 2\ B;) dist(P;, 9Q2) " +!
< C({)w(P, D;, Q\D;)dist(P;, 3Q) "1,

We now verify the condition (1.1). Fix j € J, and let p =dist(P;, dQ), S=
ENB(Pj, 2p), and Q; = Q\Uy » j Di. In view of (m—1)DC, we may assume
that keJ

A1 SN{x,, =0} - $
P 20
Let Y=P;+(0,...,0,p/2) and D={x,,=0}\S. It follows from (m—1)DC,
Theorem C, the maximum principle, and the Harnack inequality that

w(P;, 00,07) = Cw(Y, 0, Qj) = Cu(Y, S, D) = C(S).

Again by the Harnack inequality,

(2.4) inf inf w(x,dQ,Q7)>C({) >0.
J XEDJ‘

From (2.2), (2.3), (2.4), and Theorem B, it follows that
2.5) Smng{do(x) < C(¢, dist(P, T), dist(P, 4Q)).

To prove (0.3) for 1 < p < pg, we first impose the extra condition R”\Q <
{x,, =0}, and we define a measure u on I" as follows:
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dwf(x) for xeI'NaJQ,
2.6 d =
2.0 dux) {w(P,Qj,Q\Qj)/O(Q,-)dO(X) for xe Q.

Recall that P=(0,0,...,0,a) with ¢ >0, and that ¢ is the (s —1)-dimen-
sional measure on I'.

PROPOSITION. Under the extra assumption that R™\QC{x,, <0}, the
measures p and o are mutually absolutely continuous on T", and
p(F) a(F)
2.7) ——— = C(S)
p(l) a(l)
Jor any square 1 CT" of side length <a/10 and F < I. Consequently, there
exists po>1 depending on § such that, for 1 < p < p,,

dwl .
(2.8) — < C(¢, p,dist(P,I'))
dO' LP(O)
and
(29) ”IVG“[LP(U) = C(g" p, dlSt(P, F), dlSt(Ps aQ))

Jones and Marshall [10] have proved (2.8) for domains in R? with comple-
ments in {x, =0} and satisfying the 1-dimensional density condition.

Proof. To prove p << g, we assume that FSI'N3Q with o(F) =0 and claim
that w(P, F, Q) =0.
We note by the maximum principle that, for any y e Q,
w(y,F,Q) < sup w(x,F,Q)=b.
xeQNr
Fix a point x € QNT, let d(x)=dist(x, d2), and let A be the spherical cap
on 0B(x, d(x)/2) defined by daB(x, d(x)/2)N{x,, < —d(x)/4}. Let o =
w(x, A, B(x,d(x)/2)), a number between 0 and 1 depending only on m. We
note by the Markov property that
(X, F,D)=(0—a)b+asupw(y, F, Q).

YeA
For y € A, we note that

w(¥, F, Q) =bw(y,'NQ, 2N {x,, <0})=b(1-w(y, R, 2N{x, <0}),
and also from (m—1)DC for  and Theorem C that

w(y, 92, N {x,, <0}) = w(y, dQNB(x, 2d(x)), {x,, < 0})
>c(§)>0.

Combining the above estimates, we obtain that b < (1—«a)b+ab(l1—c(%)).
This is possible only when b = 0. This proves the claim and thus p << g.

To show (2.7), we may assume that 7 is a dyadic square on I" with side
length = a/10. Then either 7 < Qj, for some integer j,, or there exists a col-
lection' K of natural numbers such that
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(2.10) I=NaMuU U Q;.
JeK
In the first case, (2.7) follows from the definition of u. Thus, we proceed

with the assumption (2.10). An inequality similar to (2.4) still holds for Q
and {D;};c. Thus it follows from Theorem B and Harnack inequality that

jek

=C®u(P,Y 0,0\ 0) = COu(P, LD,

Hence
p(I) = C(H)w(P, 1,Q\1).
Let FS1, and write F'=(FN3IQ)UU;cx F; with F; € Q;. Thus,
o(F;)
F; )= I w(P,Q;, 2\ 0)).
(Y5)=-3 20, > & Q)
Therefore, in order to prove (2.7), it is enough to show that
w(P’QsQ\Q) U(Q) .
2.11 J {2 > —=J
@D o, noNn - Wgqy forek
and that
w(P,FNa, Q) a(FN o)
2.12 > _—.
212 o LD - om

Let 7*=21 and let U be the rectangular cylinder {x: (xq,...,X,;,—1,0)sI*
and —/(I) < x,,<3/(I)}. Then, for xe{x,,=II)}\U,

(2.13)  w(x,dUN{x, =)}, 2\ U) = w(x, QUNYHN{x,, < l([)},Q\U).

Proof of (2.13) shall be given in the next paragraph. Inequality (2.13) holds
also for x =P. From the Markov property and the maximum principle it
follows that, for j e K,

=a(P,0UN{x, = (D}, 0\0)  inf  w(x,0;,2\Q))
xedUNix,, =)}
=w(P,dUN{x,,=I(I)}, Q\U) inf w(x, Qj, { x> 0})
U(Q) xedUN{x,,=I(I)]
=c LZw(P,dUN{x,, =11}, 2\0).
a(l)
On the other hand,
w(P, I, Q\I) < w(P,dUNQ, 2\ T) <2u(P, 3UN{x,, = I(I)}, 2\ D).

Thus (2.11) follows from the above estimates; the proof of (2.12) is similar.
The absolute continuity ¢ << p and the doubling property u(27) <c($)p(l)
for squares with /(7') <a/10 follow from (2.7).
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To prove (2.13) we note that, on Q\ U,

(2.14) w(x, dUN(x,, =T}, A\U) =u(x)—i(x)
and
(2.15) w(x, (QUNY)N{x, <II)}, A\U) =v(x)—(x),

where u and v are bounded harmonic functions in R”\ U with boundary
values u=1on dUN{x,>I(I)}, u=0on aUN{x,,<I(I)}, and v=1—u;
and where i and 7 are bounded harmonic functions in 2\ U with boundary
values #(x) =u(x) and ¥(x) =v(x) on dQ\U, =0 =00n dUN Q. By sym-
metry, u(x)=v(x)= % on {x,,=!(I)}\U, and by the maximum principle,
a(x)< % < 9(x) on 32\ U. By the maximum principle again, #(x) < (x) in
Q\U. Thus (2.13) follows from (2.14) and (2.15).

In view of theorems of Coifman and Fefferman [3], on each square 7 with
[(I) =a/10, the measure du belongs to the Muckenhoupt class A..(do) and
vice versa; moreover, there exists py>1 depending on ¢ such that

1 dp u(I)
(2.16) (0(1) SI

p 1/p
L < -
el an) =cwmbs
for 1 = p =< p,. Covering I" by squares {/;} with mutually disjoint interiors
and of side lengths between a/100 and @/10, we may deduce (2.8), (2.9), and

du |?
||| do=cip,5,apP,1),d(P, 02)

do
from (2.3), (2.5), and (2.16). This proves the proposition. L]

Finally, we remove the restriction R\ Q € {x,, <0}, and define { and G as
in Theorem D. From (2.3) and Theorem D, it follows that
|VG(x)| < CG(P;)dist(P;, 32) "
= CG(P;)dist(P;, 9~
= C({)w(P, D;, Q\D;) dist(P;, o)~ *1.

Applying the proposition to Q, we obtain (0.3) for 1< p < p,. This proves
the theorem. B

3. Example 1

In R3, let N be a large integer, and let Py, P, ..., Py be N points on {|x;| < 1,
|x%2] = %, X3= %} satisfying dist(P;, P;) ZN“I/Zfor alli#j. Let 0=(0,0,0),
B; = B(P;, c,N7Y, Q=B(0, D\U¥B;, and G be the Green function with
pole at 0. Then

S IVG(x)|do(x) = Clog N
(x3=1/2)NQ

if ¢4 is sufficiently small.
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We need the following lemma.

LEMMA 3. Let 0<p<1/10, and let w (0<w<=<1) be a function contin-
uous in p <|x|<1 and harmonic in p <|x|<1, with boundary value O on
|x|=p. Then

Co
|Vw| < *F Sfor 2p<|x|<p.

Proof. Write w=w;—w,, where w, is harmonic in |x|<1 with boundary
values w; = w on |x| =1, and where w, is harmonic in p < |x| <1 with bound-
ary values w,=w; on |x|=p and w, =0 on |x|=1. From the Poisson inte-
gral formula, we deduce that

3.1 [wi(x)—w(»)|<Cp for |x|,|y|=0,

and that
|[Vwi(x)|=C on |x|<3.

Let w; be a harmonic function in p < |x| < 1 with boundary values w; =
w1(0) on |x|=p and w3;=0o0n |x|=1, and let wy = w, —w;. Because of (3.1),
|ws(x)| = Cp on p<|x|<1. In view of Lemma 2,

C
|Vwy(x)| < =2 for 2p<|xf<l.

x| 2
It is clear that
|V’w3(x)|_<_2w1(0)—p—2 for p<|x|<l.
x| 2
By combining the above estimates, we establish the lemma. L]

Denote by @ =1/+N and r =c,N ~!. We note that

G(x)= —1-h(x),

1
|x|
where 2(x) is harmonic in @ with boundary values
hix) = 1/|x|—1 on U 4B,
0 on |x|=1.
Let #(x) be harmonic in B(0, 1)\ B, with boundary values
_ | 1/]x|]=1 on 0By,
u(x)= {0 on |x|=1;
and let v(x) be harmonic in  with boundary values
o(x) = 1/|x|-1—u(x) on UY8B;,
0 on dB,Uf|x|=1].
Thus h(x) =u(x)+v(x), and
1

(3.2) |VG(x)|2]Vu(x)|——le(x)|—W in Q.
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To estimate |Vu(x)| we let V(x) =%%(r/|x—P;]), and note by the maxi-
mum principle that |v(x)| <4V(x) in Q. Because dist(P;, P;) =a, we have
V(x) <(CvN/a)r =CrNin |x — P|| < a/2. Hence —CrN < v(x) < CrN on
|x —Py| =a/2. We deduce from Lemma 3 that

Cr’N
[x—Py?

To estimate |Vu/|, we let u;(x) be harmonic in B(0, 1)\ B; with boundary

values
_ [ 1/|P|]=1 on 8By,
ul(X)_{O on |XI:1,

(3.3) |Vu(x)| < on 2r<|x—Py|<+/ra.

and u(x)=u(x)—u,(x). Therefore

11 .
U,| < sup —|=<16r in B(0,1)\B,.
= 2 | 1 =] Vi
In view of Lemma 2,
(3.4) " |[Vuy(x)|=C on 2rs|x-—-P1[s%.

To estimate |Vu,|, we let b = (1/|P;] — 1)~} let u; be harmonic in r <
|x — P;| <1/10 with boundary values

w(x) = 1 on 4B,
P70 on |x—P|=1/10,
and let u4(x) = bu;(x)—u;(x). Note that us(x)=0on |x— P;|=r and that
1

uy(x)=bu(x)<20r on |x—P1|=ﬁ'

Therefore, by Lemma 2,

3.5) IVu,/<C on 2rs|x——P1|s%.
Note also that

r a
3.6 Vuy(x)|z ——— on 2r<|x—P|<=.
(3.6) Vis)|= o opr on 2rslx—Ps 3

Combining (3.2)-(3.6) we conclude that, in 2r <|x—P||< +/ra,

1 r 1 Cr’N
VG(x) z(-———l)(—————C)—C— _
Vo= 1~ N\ w=pp FRRNTSY
1 r  e?N
10 |x—'P1|2 |X"'P1|2

-C

v

_r
|x—Py|2°

provided that ¢, is small and N is large. Thus

C

1%
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a 1
= —=C—logN
Szrslx_P]IS\/EIVG(x)ldo(x)>cr10g p CN og

and

S |VG(x)|do(x) = Clog N.
(x3=1/2}NQ

REMARK 1. In R3, line segments have zero capacity, so we may obtain a
simply connected domain in Example 1 by deleting from @ N very narrow
cylinders joining {B;} to |x|=1.

REMARK 2. In R? given a positive integer N, let r=e ™", let {B;} be N
disks with centers equally spaced on |x|= 3 of radii r, and let @ = B(0, 1)\
UY B;. If G is the Green function with pole at 0, and if N and C are suffi-
ciently large, then

S IVG(x)|ds(x) = cN.
(Ix]=1/2)nQ

Detail is similar to Example 1.

4. Example 2

Given 1 <a <2, there exists a domain Q in R? satisfying aDC and CDC,
a 2-dimensional plane T’ and a point P € Q\I" such that

| IVG(P,x)|do(x) = .
a

First we construct a domain when o =log4/log 3.

Let D be the snowflake domain in R? constructed as follows: Let T, be a
closed equilateral triangle with side length 1 and center (0, 0). After the poly-
gon 7, is constructed, we subdivide each side of 7,, into three equal subin-
tervals and build an equilateral triangle over each middle subinterval, exte-
rior to 7,, and with one side on that subinterval. The polygon so obtained is
called T,,,, which has 3-4”"*!sides of side length 37"~! each. Let D be the
interior of U 7,, and v = aD.

Corresponding to each side /,, , (1<k <4-3") of T,,, let P, , be the center
of the equilateral triangle built over the middle third of I, , and let Y, ; be
the vertex of that triangle exterior to 7; let Q, x =B(P, i, 37"73)cR2,

We identify sets just constructed in R? with sets in R?x {x; =0} <R3 and
keep the same notations. Define in R? a domain Q= {|x| < 10}\~. Because
of the self-similarity of v, Q satisfies the CDC and a«DC for o =log 4/log3.

Denote by P the point (0, 0, 1/20) and by G the Green function for Q with
pole at P. We claim that

(4.1 |VG(x)|do(x) = co.

S;x3=0|n9
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We shall actually prove that

4.3"
4.2) D S IVG(x)| do(x) = oo.
Qn,k

n k=1

Since {Q,, )., « are mutually disjoint, (4.1) follows.

The domain Q is not a nontangentially accessible (NTA) domain in the
sense of Jerison and Kenig [9]. However, it satisfies the interior corkscrew
condition and the Harnack chain condition; the CDC of Qis a proper substi-
tute for the exterior corkscrew condition in obtaining the estimates of har-
monic functions needed. We have the following.

LEMMA 4. There exists 3 >0 such that for all Yey <adQ, 0<r<1/10,
and every positive harmonic function u in Q\ B(0, 1/10): if u vanishes con-
tinuously on yNB(Y, r) then, for Xe QNB(Y,r),

u(X)=<C(X-Y|r HM(u),
where M(u) =sup{u(Z): Ze oB(Y,r)NQ}.

LEMMA 5. If u is positive harmonic in Q\ {|x| < 1/10} and u vanishes con-
tinuously on some B(Y, ;,37 "), then

u(X) < Cu(P, ;)
Sorall Xe B(Y, ,37""HNQ.

Lemmas 4 and 5 and their proof are analogous to Lemmas (4.1) and (4.4) in
[9]. In their proofs, instead of the exterior corkscrew condition, the follow-
ing simple consequence of CDC is used. We omit the proofs.

LEMMA 6. There exists A (0<\<1) such that
w(X,0B(Y,r)NQ, B(Y,r)NQ) <A\
whenever XeQ, YeoQ, 0<r<1/10, and | X-Y|=r/2.

From Lemma 5 and the Harnack principle it follows that G(X) < CG(P, 4)
in B(Y), , 37-"-1)NQ, and that G(X) = G(P, ) on Q, 4. Since G=0on v,
we deduce by normal family argument that there exists ¢ > 0 such that

§Q IVG(x)|do(x) = cG(Py ()3~"
nk

for all (n, k). In view of Lemma 1 and the Harnack inequality, we have

n

(4.3) J, VG| do(x)=co(0, Qi 2\Cpi).
,k

We need the following property of €.

LEMMA 7. Each X in @ with dist(X, v) = 37" can be joined to some P, «
by a curve 7 in Q of length less than C3~" with dist(y, 7) >c37".
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Denote by S, ={X:dist(X,I')=3"""3}. We obtain, by Lemma 7 and the
Harnack principle, that

4.3"

kglw(X’ Qn,ks Q\Qn,k) >c>0

for all X € S,,. Since capacity(S,) > capacity(I') >0,

4.3"
4.4) > (0,0, 1, 2\Qp k) >c>0 for each n.

k=1
Combining (4.3) and (4.4), we conclude (4.2), and thus Example 2, when
o =log4/log 3.

For an arbitrary o (1 <« <2), we choose a positive integer N =1 (mod 4)
with log(N?/2—2N+9/2)/log N> «. Let I be the interval {0<x; <N, x,=
0} <R? and J be the polygonal path with sides parallel to the axes, symmet-
ric about the line x; = N/2 and joining the points

(0,0),(1,0),(2,0),(2,1),(3,1),(3, =2), (4, —2),(4,3), (5, 3), (5, —4), ...,
N-3 N5 N—1 N-5 N—-1 N-=-3 N+1 N-3
2’ 2 )\ 27 2 S\ 27 2 P2 2
in succession. Consider J as a polygonal path with side length 1, with ver-

tices at all its lattice points; the path J has total length N 2/2—2N+9/2 (see
Figure 1).

I L I (N =13)

Figure 1

Let S be the square with 7 as a diagonal, and let Q be the disk centered at
(N/2, —(N—3)/2) of radius % We note that dist(Q, J) >V2/2, and that

where I;={0=<x;<1,x,=0}and L, ={N—-1=x;<N, x,=0]}.
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Let T; be a closed unit square centered at (0, 0). After a polygon 7,,_; is
constructed, we shall replace each side 7 of 7,,_, by a polygonal path F(J),
where F is the linear transformation on R? that maps 7 onto [and Q into the
interior of 7,,_;. The union of these polygonal paths form the boundary of a
new polygon 7, which has 4(N%/2—2N+9/2)" sides of length N ~" each.
Let D=1im 7,, and v = dD. The construction of v is adapted from [12].

Let Q be the domain in R? defined by

Q= (x| <10}\ (y X {x3 = 0}).

Clearly @ satisfies ¢yDC and CDC for «g = log(N%/2 — 2N +9/2)/log N,
hence aDC since a < aq. There exists a sequence {Q, ,} of disks on x3=0
(namely, the images of Q in 7}, while constructing 7, ;) such that each point
X in Q with dist(X, ') =N ~"73 can be joined to some O, x by a curve 7 in
Q2 of length less than CN =" with dist(y,T") >cN ™",

Following the proof above, we obtain

S IVG(x)|do(x) = oo.
QN {x;=0]

REMARK 3. Given O0<a <1, let § be the Cantor set on the interval {0 <
x; =<1, x, =0} obtained by successively deleting the middle 8 portions of the
intervals, where 3 =1—2!'"Y2 Then S has dimension «, and the domain Q
in R? defined by Q = {|x| <10} \ S satisfies the « DC. Let G be the Green func-
tion on Q with pole at any point in @\ {x,=0}. We may deduce as in Ex-
ample 2 that

S VG (x)|dx; = 0.
fx,=0]NQ

Added in proof: Since the submission of this manuscript, a related paper by
J. Fernandez has appeared in Revista Math. Iberoamericana 5 (1989).
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