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This paper concerns the class (P, L)(A{F) of groups built from the classes {
of abelian groups and § of finite groups by repeated use of the local and
poly operators L and P, transfinitely if necessary. The nature of the paper
makes the use of Hall’s calculus of group classes (see the opening pages of
[3]) more of a necessity than a convenience. Our previous paper [7] with this
title concerned the smaller class (P, L)#.

Throughout this paper F denotes a (commutative) field, D a division F-
algebra and # a positive integer. For any group G, 7(G) is the unique maxi-
mal locally finite normal subgroup of G, 5y(G) the Hirsch-Plotkin radical of
G, ¢1(G) the centre and {,(G) the second centre of G, and «(G) and B(G)
are defined by

B(G)/7(G)=4(G/7(G)) and «a(G)/7(G)={(B(G)/7(G)).

The core of our main result here, of which there are many corollaries, can
be summarized as follows.

Let G be a primitive subgroup of GL(n, D) with G e (P, LY(AF). Then the
F-subalgebra F|G] of the full matrix ring D"*" generated by G is a crossed
product over the locally-finite by abelian normal subgroup o(G) of G; that
is, F[G] is free as a left and right Fla(G)]-module on any transversal of
a(G) to G. '

The proofs below depend heavily on the results and proofs of [7]. One dif-
erence perhaps we should specifically mention at the outset. Unlike [7], the
major results here depend ultimately on the classification of the finite simple
groups (in the weak form, that there exist only a finite number of sporadic
groups). In this sense [7] and the present paper operate at different levels.
When [7] was written I did not believe that comparable results for (P, L)(AF)
existed. In one way this is true: Unlike (P, L)f-groups, (P, L)(AAF)-groups
in general do not have a “Zalesskii” subgroup; specifically, our F-algebras
need not be crossed products over normal FC-groups, canonical or other-
wise. However the partial results obtained by working directly with «(G)
do hold and are almost as useful.
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We now prepare the ground for the statement of the main theorem. Our
hypotheses are weaker and our conclusions stronger than the above suggests.
First consider the class S of all soluble-by-finite groups. An S§-group has
a characteristic soluble subgroup of finite index. It follows that S§ is poly
closed and hence that

(*) &F =P(SUF).

There is a simple extension to SF-groups of the notion of the Zalesskii sub-
group of a soluble group as expounded in [2, p. 364] or [4, p. 188]. Thus, if
G is a soluble-by-finite group then there is a particular characteristic FC-
subgroup of G to be defined below, which we denote by Zal G and call the
Zalesskil subgroup of G. If G is actually soluble, Zal G coincides with the
Zalesskil subgroup of G as defined in [2] and [4].

If G is a primitive subgroup of GL(n, D) and if N is a normal subgroup
of G, then N is homogeneous by Clifford’s theorem and so F[N]=< D"*"
is prime (see [4, 1.1.6 and 1.1.14b]). Suppose G is a group with 7(G) € S§.
Then o(G) also lies in S§ by (*) above and consequently Zal(a(G)) is de-
fined. We can now state the main theorem.

MAIN THEOREM. Let G bea{P,LY(AF)-subgroup of GL(n, D) such that
the subalgebra FIN] of D"*" is a prime ring for every characteristic sub-
group N of G.

(@) F[G]=<D"""is a crossed product over a(G).

(b) If 7(G) e SF then F[G] is a crossed product over the characteristic
FC-subgroup Zal(a(G)) of G.

(¢) Ifchar F=0 or n=1then F[G] is a crossed product over Zal(a(G)).

d) If 7(G)=<a(G), then FIG]) is a crossed product over an abelian
characteristic subgroup of G that depends only on G as a group.

(e) Suppose 1(G) e SF. Then there are characteristic subgroups A< G,
of G, depending only on the group structure of G, such that A is
abelian, F[G,] is a crossed product over A, and (G: G,) Is finite.

(f) Thereis an integer-valued function f(n) of n only, such that if char F=
0 orif n=1then A and G, exist as in (e) with (G: Gy) < f(n).

Unlike [7, 1.1a], here F[G] need not be a crossed product over any normal
FC-subgroup of G. Counterexamples are easy. By (c) of the theorem, they
exist only for char F=p >0 and n>1. Let F be any infinite locally finite
field (e.g., the algebraic closure of the field of p elements), and set D = F and
G =SL(2,F). If Z is a normal FC-subgroup of G then Z is central, (G:Z)
is infinite, and dimg F[G] =4 is finite. Thus F[G] is not a crossed product
over Z. The same example shows that G need not have a subgroup G, of
finite index such that F[G,] is a crossed product over a normal FC-subgroup
or over a normal abelian (or even a (P, L)§{) subgroup of G,. Part (a) of
the theorem seems to be the strongest general conclusion of this kind.
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The theorem has a substantial number of corollaries. The first three below
are more or less immediate from the theorem (cf. [7]). They depend upon
the notion of control of ideals in group algebra (see [2, p. 8] etc. or, just for
the definition, [7]).

COROLLARY 1. Let F be a field, let G be a (P, LY(AF)-group, and let p be
an ideal of the group algebra FG such that GN(1+yp) =<1), FG/y is either
left or right Goldie, and yN\FN is a prime ideal of FN for every character-
istic subgroup N of G.

(a) p is controlled by a(G).

(b) If 7(G) e SF then v is controlled by Zal(a(G)).

(c) Ifchar F=0 orif FG/y is a domain then p is controlled by Zal(«(G)).

(d) If 7(G) = & a(G) then there is an abelian characteristic subgroup of
G controlling all such y.

(e) Suppose 7(G) € SF. Then there are characteristic subgroups A <G,
of G such that A is abelian, the ideal yNFG of FG,, is controlled by
A for all such p, and (G: G,) is finite.

COROLLARY 2. Let F be a field and G a (P, L)(QA§)-group. Suppose y is
an ideal of FG such that GN(1+p)=<(1), FG/y is simple Artinian, and G
does not permute any nontrivial set of orthogonal idempotents of FG/p un-
der conjugation. Then the hypotheses and hence the conclusions of Cor-
ollary 1 hold.

COROLLARY 3. Let F be a field and G a nonperiodic simple (P, L)({{F)-
group. Then the only nonzero prime ideal p of the group algebra FG with
FG/yp left or right Goldie is the augmentation ideal of G in FG. If R=F[G]
is a prime F-subalgebra of some one-sided Artinian F-algebra, then R is the
group algebra FG.

We can use crossed product techniques to compute the normalizers of cer-
tain subgroups of GL(n, D). The following is a corollary of the proof of the
theorem, rather than of the theorem itself, in that it is immediate from 7.5
(and 3.1) of [7] and from a relativised version of the theorem (viz., Theorem
7 below).

COROLLARY 4. Let H be a (P, LY({AF)-subgroup of GL(n, D) such that
FIN1=<D"™" is prime for every characteristic subgroup N of H, and sup-
pose that D"*" is the (classical) ring F(H) of quotients of its subalgebra
F[H]. Assume T(H) < {|(H) and set Z = ¢ a(H). Then

Ngron,py(H)=H-Npz-(H).

Here the quotient field F(Z) of F[Z] is naturally embedded in D"*" (e.g.,
by 3.1 and 3.3 of [7]), so the conclusion of the corollary is meaningful. Cor-
ollary 4 enables one to exploit the theorem to study absolutely irreducible,
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skew linear groups. (For basic definitions and results concerning skew linear
groups, see [4].) Most of the proof of [7, 1.5] concerns the case where He
(P, LY¥\. If one repeats this proof with H € (P, L)(#I), using part (a) of the
main theorem and Corollary 4 in the place of [7, 1.1a and 7.6], one obtains
the following.

COROLLARY 5. Let G be an absolutely irreducible subgroup of GL(n, D)
and H a normal (P, L)($§)-subgroup of G. Then H is abelian-by-locally
finite and G/Cg(H) is abelian-by-periodic.

This corollary stands at the end of a very long road, stretching back in some
sense to Jordan (see [4, Chap. 5], [7, 1.5], and further references given in
[71). I think this is probably the end of this particular development. Corol-
lary 5 contains all the results of this type that are known to me, and the class
(P, L)(#F) seems much more natural than some of its subclasses considered
earlier (e.g., the class PL({P, LYAUF) of [7]).

What scope is there in Corollary 5 for widening further the class to which
H is confined? For linear groups G we need only insist that H has no free
subgroup of rank 2, for then Tits’ theorem [5, 10.17] ensures that H lies in
(P, LY(IF) and indeed in SL§. Even if it is possible in Corollary 5 to weaken
He (P, L)(AF) to “H has no free subgroup of rank 2,” we are still, I think,
a very long way from proving it. Is there some intermediate class that is more
accessible? One might as well assume that the class is .S, Q, P, L)-closed ini-
tially, since otherwise the same questions arise about its ¢S, Q, P, L)-closure.
One possible candidate is the class (P, L)((Pf)<S ¥F); this class contains
(P, LY((§}), although whether it is strictly larger I do not know. Indeed I do

not know of any group in (P#)95 (=8N in the Kuro§ notational scheme)
that is not in (P, L)#{. Nonetheless, my feeling (based though on very little
evidence) is that such groups must exist.

Corollary 5 can be translated into the language of group algebras as fol-
lows.

COROLLARY 6. Let F be a field, G a group, m an ideal of FG such that
FG/wm is simple Artinian, and H a normal (P, L)({{§)-subgroup of G. Then
H modulo m and G/Cg(H modulo m) are both abelian-by-periodic. If G e
(P, LY(RF) then G modulo m is abelian-by-locally finite.

For a given field F let Y (resp. 3r) denote the class of groups G such that
every primitive image of the group algebra FG satisfies a polynomial identity
(resp. is Artinian). See [4, Chap. 6] for alternative definitions and basic re-
sults concerning these classes. Now Yz S 3 for every field F. The following
is immediate from Corollary 5 and [7, 9.1].

COROLLARY 7. Let & denote the class of finitely generated groups.

@ 3rNGNLP, LY AF) S Yr.
(b) Suppose F is not locally finite. Then 3rN{P, LY(AF) S Yg.
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We must now prove the main theorem. In view of the above remarks, the
deduction of the corollaries can be left to the reader. We begin the main
proofs with two lemmas concerning periodic skew linear groups.

1. LEMMA. Let G be a subgroup of GL(n, D), where char F=p >0, and
set T=1(G). Suppose F[T)<D"*" is prime. Then G/T-Cg(T) is an ex-
tension of a finite group by an abelian group. (In fact, G/T-Cgs(T) is an
extension of a finite group of n-bounded order by a super-residually cyclic
group.)

We could instead make use of [4, 5.4.1], but Lemma 1 makes better use of
the special situation we have below and thus avoids certain complications.

Proof. Since F[T] is prime and O,(T) is unitriangular, O,(T) =(1). Let
k be the prime subfield of D and set S=k[T]<D"*". Then S is a simple
Artinian ring (e.g., by [7, 2.1] and [4, 1.1.14(b) and (c)]), so S is a matrix
ring, say of degree m, over some locally finite field K (all locally finite divi-
sion rings are fields).

The group G induces automorphisms on S by conjugation. By the Sko-
lem-Noether theorem [1, p. 364],

Aut S=Aut K"*"=PI'L(m,K)=Aut K-PGL(m, K)

in an obvious way. Let U denote the group of units of S. Then G has a nor-
mal subgroup N=T-Cg(T) such that N<U-Cgp(,. py(T) and G/N is iso-
morphic to a subgroup of Aut K. Since K is a locally finite field, Aut X is
procyclic and G/N is abelian (even super-residually cyclic). Set V' = Ny(T).
Clearly N<V-Cgqpn,p)(T). Also U= GL(m, K), so by [4, 5.1.6] the group
V/T-Cy(T) is finite (even of n-bounded order). But

(N:T-Cs(T)) < (V: T-Cy(T)).
The proof is complete. ]

Let & denote the class of all groups of finite exponent. Curiously, this class
plays an important role in the proof of the main theorem.

2. LEMMA. Let G be a locally finite subgroup of GL(n, D) with G € S%.
Then G € SF.

Proof. If char D =0 then G e S§ by [4, 2.5.14]. Assume charD =p > (.
Then O,(G) is unitriangularizable and hence nilpotent, and G/O,(G) is iso-
morphic to a linear group of degree n and characteristic p (by [4, 2.3.1]).
Thus assume G is linear. We can now factor out by the maximal soluble nor-
mal subgroup of G (see [3, 5.9, 5.11 and 6.4]) and assume that G has finite
exponent. Then G/O,(G) is finite by Burnside’s theorem [5, 1.23], and the
proof is complete. (Alternatively, G clearly cannot generate the variety of
all groups, and Platonov’s theorem [5, 10.15] then implies that G is soluble-
by-finite.) (]
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3. The Zalesskii subgroup of a soluble-by-finite group. Let G be a soluble-
by-finite group. Then G has a unique maximal soluble normal subgroup S.
There is a canonical hyper FC-central subgroup E(S) of S such that, by
definition, the Zalesskil subgroup Zal S of S is Ag(E(S)) = A(E(S)) (see [2,
p. 364] or [4, p. 188]). Set E=E(S):-Ag(E(S)). Then E is a characteristic
subgroup of G. We claim that E is hyper FC-central. For

ENS=E(S)-A5(E(S))=E(S)
and (E: E(S)) is finite. Thus, for example,
A(E(S))=SNA(E).

A simple argument shows that E(S) is hyper FC-central in E; that is, E(S)
lies in the hyper FC-centre of E. Consequently E is hyper FC-central. Fur-
thermore, E(S)<E, so

AG(E)<AG(E(S)) <E.

Define E(G) and the Zalesskii subgroup Zal G of G by E(G) = E and
Zal G = Ag(E)=A(FE). Clearly, any nilpotent-by-finite group is hyper FC-
central. These remarks applied to [4, 5.3.10] yield the following.

4. PROPOSITION. LetJbearing and G asoluble-by-finite group. Set K =
(G, E(G)] and N="Zal G. Alternatively, if G is actually nilpotent-by-finite
then set K= G’ and N= A(G). Suppose a is an ideal of the group ring JG
that is left annihilator-free over K. Set b=aNJN. Then JG/a is a crossed
product of JN/b by G/N via the natural maps.

5. PROPOSITION. Let G, H, and M be subgroups of GL(n,D) with H
soluble-by-finite, M'<H <M <G, and H normal in G. Suppose F[G] <
D" " is prime and F[A) is prime for every abelian characteristic subgroup A
of Zal H. Then there is a normal FC-subgroup Zy, of M such that F{M] is
a crossed product over Zy,. Moreover, (MY<Zy, ZyNH<Zal H, Zy,
is normalized by any automorphism of M normalizing H, and if H = M then
Zy=Zal H. Further, FIM] is a crossed product over 3(M).

To prove Proposition 5, we copy the proof of [7, 6.1]. Set
Zy=Am(E(H) Ay (E(H)))

as in [7, 6.1] and repeat the proof verbatim, except for the proof of the hyper
FC-centrality of A= A,,(E(M)) and the final line, where Proposition 4 is
used in place of [4, 5.3.10]. Note that, unlike [7, 6.1], if H = M’ then it is no
longer clear whether Z,,=Zal M.

To see that A is hyper FC-central, note that A has a soluble normal sub-
group S of finite index and S’ < H, s0 S’ < Ay(E(H)) < E(H) and § =
Ag(S’). Then S is hyper FC-central ([2, p. 363] or [4, p. 188]) and conse-
quently A is also.
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6. DEFINITION. For each ordinal «, define the class 9, of groups as fol-
lows. Let %, denote the class of trivial groups. If %z is defined for all or-
dinals 8 <a, set Y, =Ug<yYp if o is a limit ordinal and Y, = (LY, _,)SF
otherwise. Then %, = SF, each %, is QS-closed, and (P, L)(AF) =U, Y-
The classes %), will occupy the role of the X, of [7].

An elementary induction on «, using S§=P(SU) for the case o =1,
yields the following.

Let H be a group and A a soluble-by-finite normal subgroup of H. Then,
Sorall a=1:

() HeY, if and only if H/IA€Y),; and

(b) He LY, if and only if H/Ae LY.

7. THEOREM. Let G, H, and G be subgroups of GL(n,D) with He
(P,LY(KF), G'<H=G=<G, and H normal in G. Suppose F[G] is prime
and F[N] is prime for every characteristic subgroup N of H. Then F[G] is
a crossed product over 3(G). Moreover, F[G] is a crossed product over a
normal subgroup J of G that is (locally finite) by (nilpotent of class at most
2) such that J is normalized by every automorphism of G normalizing H. [f
H =G or G’, then J is characteristic in G.

This theorem is a substitute for 8.1 of [7]. Apart from the weaker conclusion
we have had to introduce the extra group G to allow the induction to go
through. (In [7, 8.1] we have, in effect, G=G.)

Proof. By the assertion concluding Definition 6, there is a least o with He
,; we induct on this «. If o <1 then the result is immediate from Proposi-
tion 5 with G, H, and G for M, H, and G. Also, « cannot be a limit ordinal.
Thus we assume the following.

(@) Suppose G, H, and G are as in Theorem 7, with H € %), for some o > 1
for which 8 =«a—1 exists. Assume inductively that F|G] is a-crossed prod-
uct over 3(G) whenever H € Yg.

As in the proof of [7, 8.1], we need a digression before we can analyse the
structure of F[G]. For § as in (a) suppose K is a LYg-subgroup of GL(n, D)
such that, for some finitely generated subgroup X of K, if N is any normal
subgroup of any finitely generated subgroup of K containing X then F[N]
is homogeneously faithful. Then F[N] is prime by [7, 2.1] for all such N,
and a simple argument shows that F[/N] is prime whenever N is a normal
subgroup of any subgroup of K containing X.

Statements (b), (c), and (d) below are proved exactly as their counterparts
in the proof of [7, 8.1], but using the classes Y, instead of the X, of [7].

(b) F[K] is a crossed product over o(K).
(¢) Suppose 7(K) = {a(K). Then F[K] is a crossed product over {;o(K).

(d) Suppose 7(K) = {;(K) and let W be the group of units of the ring
F(K) of quotients of F[K1=<D"*". Then for Z = {;a(K) we have Ny (K) =
K.NF(Z)*(K)‘
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Note that X is irreducible in F(X) by [7, 3.1], and so F(Z) is naturally
embedded in F(K) by [7, 3.3]. Thus the conclusion of (d) is meaningful.

This completes our digression, and we return to the consideration of the
groups G, H, and G as in (a). We wish to express F[G] as a crossed product.
Since F[G] is prime, F[G] acts faithfully on at least one D-G composition
factor of row n-space over D. Thus we may assume the following.

(e) G is an irreducible subgroup of GL(n, D).
Set L = 4 Cg(A), where A ranges over all the abelian characteristic sub-

groups of H. By [7, 4.1] the subalgebra F[G] of D"*" is a crossed product
over L. Hence we conclude as follows.

(f) FI[G] is a crossed product over L=GNL.

Clearly HN L (= \.H) is characteristic in H. Every abelian characteristic
subgroup of HNL is characteristic in A and hence lies in the centre Z of L.

Consider P = 7(H N L). Suppose char F = 0. Then P has a metabelian
characteristic subgroup Q of finite index whose Hirsch-Plotkin radical Q,
is abelian [4, 2.5.14]. Then Q, < Z is central in Q. Thus Q = Q, is abelian and
Q=<Z. Trivially, L/C;(P/Q) is finite. By stability theory, C;(P/Q)/C.(P)
embeds into Hom(P/Q, Q), and the latter group is finite since P/Q is finite
and Q has finite rank [4, 2.5.1]. Therefore L/C; (P) is finite. If char F >0
then L/P-C;(P) is finite-by-abelian by Lemma 1. Thus L/C;(P) e (LF)HR
in all cases. Clearly Cyn, (P) is characteristic in HNL, and H € (LYg)SF
by hypothesis. Hence there is a characteristic subgroup K; of HNL such
that Kl = CHﬁL(P)’ Kl ELmB, and (HﬂL)/Kl € (L%)SZ.

Since G is now irreducible by (e), every characteristic subgroup of H is
homogeneously faithful by [7, 2.2]. Apply [7, 2.6] to K;. Thus there is a
characteristic subgroup K of K; with K;/K € EN L and a finitely generated
subgroup X of K such that N is homogeneously faithful whenever N is a nor-
mal subgroup of any finitely generated subgroup of K containing X. Clearly

T(K)=KNP={{(K)=KNZ and {ao(K)=KNZ,

since every abelian characteristic subgroup of HNL liesin Z. By (¢), the al-
gebra F[K] is a crossed product over KNZ. Set M =C;(K). Clearly Z< M.
Let S=F(K) and note that S is naturally a subring of D"*" by (e) and [7,
3.3]. Since F[K] is prime, S is simple Artinian. Denote the group of units of
S by W. Just as in the proof of [7, 8.1] (see paragraphs (g) and (h)), we ob-
tain the following two results.

(g) F[L] is a crossed product over KM.

(h) Suppose A is a normal subgroup of G with KNZ <A <M such that
F[M] is a crossed product over A. Then F[KM] is also a crossed product
over A.

Putting (f), (g), and (h) together, we have proved the following.
(1) If A is as in (h) then F{G] is a crossed product over A.

Thus by (i) it suffices to express F[M] as a suitable crossed product. The
requirement that KNZ <A we can ignore, for KNZ is central in M and
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characteristic in H, so we can always replace A by A(KNZ). Certainly M’'<
HNM=<M<=<G, HNM is normal in G, F[G] is prime, and F[N] is prime
for every characteristic subgroup N of HN M. Any automorphism of G nor-
malizing A also normalizes L, K, and M and hence induces an automorph-
ism of M normalizing HNM. Thus we may replace G by M. Define T by
T/(KNZ)=7((HNM)/(KNZ)). Since Z is central in M, Schur’s theorem
yields that 7 is locally finite. Also, KNM=KNZ,so (HNM)/(KNZ)is
isomorphic to a subgroup of the (LF)SE-group (HNL)/K. Hence

HNMe (LF)A-OF =(LF)SEL,
and we have proved the following.
(j) We may assume that H € (LF)SE.
(k) The completion of the proof of Theorem 7.

We now make another choice for K| and hence for K. Set K| = Cgn(P).
Since here H € (LF)SE, by (j) we have K; € SZ. It is easy to see that

(P, LY(AFINESLF.

Hence K;€ &-L§ € L(SF) € LYg, since 8= 1; therefore this choice for K;
is legitimate. We choose K as before and set M = C;(K). Again, by (i) we
need only consider F[M].

Now L'<HNL and L/C;(P) e (LF)H. Consequently L/K lies in (LF)H
and therefore so does M/(KNM)=KM/K <L/K. But KNM is central in
M. 1t follows that [M’',M] =< 7(M) since M” < 7(M) by Schur’s theorem,
and if xe M’ and y e M then x" e KN M for some positive integer r and

[x, ) elx",yIM"=M"<7(M).

We have now shown that M/7(M) is nilpotent of class at most 2. Trivially,
F[M] is a crossed product over M. Consequently F[G] is also by (i), and
the proof of the theorem is complete. 0

8. PROOF OF THE MAIN THEOREM.

(a) This follows from Theorem 7 and [7, 5.4].

(b) Here «a(G) is soluble-by-finite. Hence apply Proposition 5 to a(G);
that is, take G, H, and M in Proposition 5 all to be a(G).

(c) If char F=0 or if n=1 then every locally finite subgroup of GL(n, D)
is soluble-by-finite [4, 2.1.1 and 2.5.5]. Now apply (b).

(d) Here, a(G) is clearly soluble. Now apply [7, 1.1c] to a(G).

(e) 7(G) has a characteristic subgroup Q of finite index such that either
Q is abelian or Q is metabelian with all its Sylow subgroups abelian (see [4,
2.5.14 and 2.3.1]). Set Gq=Cg(7(G)/Q). Now F[Gy] is a crossed product
over L =A.Gy by [7, 4.1]. Then n(L N Q) is abelian and central in L. Conse-
quently LNQO=9(LNQ) is central in L and 7(L)Y=LN7(G) < {»(L). Now
apply (d) to L.

(f) In the proof of (e) we can choose Q so that (7(G): Q) is bounded by
a function of n only [4, 2.5.14]. Then (G: G,) is also so bounded and the
proof is complete. [l
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We conclude this paper by stating analogues of certain other results from
[7]. The proofs, which we omit, are not significantly different from those in
[7]. Corresponding to [7, 8.2], we have the following.

9. PROPOSITION. Let G be a (P, L)(HF)-subgroup of GL(n,D) such
that F[G], F[B(G)], and F[N] are prime for every characteristic subgroup
N of G'. Then F[G] is a crossed product over a(G).

Next we state an analogue of [7, 6.3]. It is a consequence of Proposition 5
and [7, 5.4 and 5.5].

10. PROPOSITION. With the hypotheses of Proposition 5, assume also
either than F[3(M)] is prime, or that F{H ] and Fn(H )] are prime and that
B(H) e (LRN)(LF) and D"*" contains a ring of quotients of F[H ] contain-
ing M. Then F[M] is a crossed product over a(M).

The following should be compared with [7, 6.2]. It looks less attractive since
we do not have a short symbol for what is called Z; below.

11. PROPOSITION. Let G be a soluble-by-finite subgroup of GL(n, D)
with F[G] and F[A] prime for every abelian characteristic subgroup A of
G’ﬂZG fOI’

Zg=A(E(G')-AG(E(G"))).

Then F[G] is a crossed product over Zs and hence also over 3(G).

If we repeat the proof of [7, 7.4], using Proposition 5 in place of [7, 6.1], we
obtain the following.

12. PROPOSITION. Let H be a soluble-by-finite subgroup of GL(n, D)
such that D"*" is the ring of quotients of its subalgebra F{H]. Suppose A =
Zal H is abelian and F[A] is a domain. Then

Nerwv,py(H)=H+Ng4)-(H).

13. The case n=1. Suppose G is a (P, L)(AF)-subgroup of D* In [6] we
analysed in detail the crossed product structure of F[{G] < D for Ge (P, L){\.
If char F > 0 then necessarily a(G) € (P, LYl and [6] applies, so assume that
char F=0. If 7(G) is soluble then so is «(G), and we can apply the theorem
of {6] to a(G). If 7(G) is not soluble then it must be the binary icosahedral
group of order 120 (see [4, 2.5.9]). Thus F[G] is a crossed product over a
normal subgroup B of G, where B is abelian or B contains a finite normal
subgroup 7 of G (with B/T abelian and 7 quaternion of order 8, or binary
tetrahedral of order 24, or binary icosahedral of order 120). If G has a nor-
mal quaternion subgroup of order 8, then «(G) is soluble and part (c) of the
theorem of [6] applies. Finally, if f(#) is as in part (f) of the proof of the
main theorem, then the best value for f(1) is 120, which is quite a bit larger
than the corresponding value (namely, 6) of part (d) of the theorem of [6].
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