Interpolation from Curves
in Pseudoconvex Boundaries

ALAN NOELL*

Introduction

Let D be a smoothly bounded pseudoconvex domain in C”, and let A*(D)
denote those smooth functions on D that are holomorphic on D. (Through-
out, smooth is synonymous with infinitely differentiable.) Recall that a com-
pact subset K of 9D is said to be an interpolation set for A (D) if each
smooth function on K can be extended to an element of A*(D). In this
paper we are interested in conditions on a given smooth submanifold M
of dD ensuring that each compact subset of M is an interpolation set. For
strongly pseudoconvex domains this problem is well understood (see, e.g.,
[6] and [4]); in this case the natural condition that M be complex-tangential
is known to be sufficient for interpolation. (Recall that M is said to be com-
plex-tangential if for each p e M the tangent space 7(M, p) is contained in
the maximal complex subspace of T(dD, p).) In addition to this, in the gen-
eral case a necessary condition for interpolation is that dD satisfy a finite-
type condition along M (namely, that complex hypersurfaces have bounded
order of contact with D at points of M); for this, see the argument in [10,
Ex. 4.1]. We work in C? and, in view of the above conditions, assume that
M is 1-dimensional. Here are our main results.

THEOREM. Let D be a smoothly bounded pseudoconvex domain of finite
type in C2, and let M C 8D be a smooth complex-tangential curve.

(1.2) If aD is of constant type along M, then every compact subset of M
is an interpolation set for A*(D).

(2.1) If oD and M are real-analytic, then for each p € M there exists a
neighborhood V of p so that every compact subset of MOV is an
interpolation set for A(DNV).

We remark that the formulation of finite type used here can be found in [5,
Lecture 28, p. 121].

Our proof of the first result above depends on the following theorem.
Recall that a subset K of dD is called a peak set for A(D) if there exists
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feA®(D) so that f=1on K while | f|<1on D\K; if for each p e K there
exists a neighborhood V of p so that KNV is a peak set for A®(D), then we
say that K is locally a peak set for A% (D).

1.1. THEOREM. Suppose that D and M are as in (1.2) above. Then M is
locally a peak set for A®(D).

We refer the reader to [10] for a brief discussion of earlier interpolation re-
sults and to [13] for a survey. Here we comment that most of these earlier re-
sults depend on the existence of smooth peak functions. However, Theo-
rem 1.1 is false without the constant type assumption [5, Lecture 29, p. 123],
and our proof of Theorem 2.1 necessarily proceeds along a different route
(described at the beginning of §2).

1. Peak Functions for Curves of Constant Type

In this section we prove the following theorem.

1.1. THEOREM. Let D be a smoothly bounded pseudoconvex domain of
finite type in C?, and let M C 8D be a smooth complex-tangential curve along
which aD is of constant type. Then M is locally a peak set for A®(D).

Using this theorem and [10, Thm. 2.4], we obtain the following interpola-
tion result.

1.2. COROLLARY. If D and M are as in the theorem, then every compact
subset of M is an interpolation set for A® (D).

In fact, this corollary was proved in [10] under the additional assumption
that M is locally a peak set; in light of Theorem 1.1, this assumption is re-
dundant, and the corollary is proved. We remark that for the proof of both
the theorem and its corollary the finite type assumption is required only
along M.

With regard to the theorem, it does not follow from the hypotheses that
a compact M is (globally) a peak set [9, Ex. 3.11]. A closely related result is
proved in [12] under the assumption that dD and M are real-analytic.

In the proof of the theorem we make use of an approach due to Bloom
[2]. First we use [11, Lemma 2.2] to prove a lemma, for which we need the
following terminology. If ¢ is a smooth function defined near a set E in C?,
we say that ¢ is almost-holomorphic with respect to E if d¢ vanishes to
infinite order at points of E. We consider coordinates which are almosi-
holomorphic with respect to a set E, by which we mean that each compo-
nent of the coordinate tranformation is almost-holomorphic with respect
to E in terms of the original holomorphic coordinates.
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1.3. LEMMA. Suppose that D is a smoothly bounded domain in C* and
that M C D is a smooth complex-tangential curve. Then for each fixed p e M
there exist a neighborhood W of p and C* coordinates (z, w) on Win which
p is the origin so that, with z =x+1iy and w=u+iv, we have:

(@) (z,w) is almost-holomorphic with respect to {(z,w):y=u=0};
(b) M={(z,w)eW:y=w=0}; and
(¢) D has a defining function r of the form

(1.3.1) r(z, w)=u+A(z)+B(z)v+00?),
where A(x) = B(x)=0 and VA(x)=VB(x)=0.

Proof. Near M we let S C D denote the union of the integral curves, through
points of M, of the vector field defined by the outer unit normal to 0D multi-
plied by i. Since M is complex-tangential, S is a smooth surface whose tan-
gent space at each point contains no complex line. Now we can apply [11,
Lemma 2.2] to get coordinates (z, w) in which (a) holds with §={(z, w):
y=u=0}, and so that d/du is an outward-pointing normal to dD along S.
It is obvious from the proof in [11] that, since M is complex-tangential, we
can choose (z, w) so that (b) holds. Clearly, D has a defining function r of
the form (1.3.1); further, A(x)=0 since M C dD and B(x) =0 because SC
aD. Finally, since 7(aD, q) ={u =0} if g=(z,w) € S, an easy computation
gives that VA(x) =VB(x)=0. O

Proof of Theorem 1.1. Fix pe M and apply Lemma 1.3. If 2k denotes the
type of aD along M, we can write

A@R)=au(x)y"+o(y™),

with a,, # 0 near 0 and m < 2k (see Remark 1.4 below). We claim that near 0
we have that, for some ¢ >0,

(1.1.1) A@z)=cy?k

To see this, first choose xq so that a,,(xy) # 0. Note that the initial homoge-

neous term of A at x, is a,,(x)y"™; but m=2 by Lemma 1.3(c), so the type

of aD at (xg, 0) is m. Hence m =2k. A similar argument involving the type

now shows that a,; never vanishes. Also, along M the pseudoconvexity of

D implies that @, (x)y?¥ is subharmonic. Hence a,; > 0, and (1.1.1) follows.
We claim that there exists C > 0 so that, near 0,

(1.1.2) B%(z) < CA(z).

In view of (1.1.1), it suffices to prove that, if B(z)=b;(x)y’+o0(y’) with
bj # 0 near 0, then j = k. If b;(x,) #0, the initial homogeneous term of B at
X is bj(xp)y’. Now a Levi form calculation (given by Bloom in [2, Lem-
ma 3.7]) implies that, if the initial homogeneous term in the expansion of B
about a point is not harmonic, then this term is of order at least half the
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~order of vanishing of A4 at that point. By Lemma 1.3(c), j =2, and so b;(x,) ¥/
is not harmonic; thus (1.1.1) and the aforementioned calculation imply that
J =k, as desired.

If R is a large positive constant, define

f(z,w)=—w—Rw?, .
We claim that there exist A >0 and a neighborhood W’'C W of p so that
(1.1.3) Re f(q) =\d*(q, M)

for all g e DNW’, where d denotes Euclidean distance. To see this, fix g =
(z, w) € D near p, and assume first that # <0. Then

Re f(q) = —u—Ru’*+ Rv?
> —lu+1[A(z)+B(z)v+O(v*)]— Ru?+ Rv? (by (1.3.1))
=—3u+3[3A(@)+B@)v+0(v?)+Rv’]+ jA(z) — Ru*+ ;Rv>.

If R is large enough, the term in brackets is nonnegative because of (1.1.2).
Then, using (1.1.1) and Lemma 1.3(b), we get the claim. If 2 > 0 then we first
use the inequality —u — Ru?= —2u, valid if Ru <1; next we apply (1.3.1) as
above. The result is the estimate

(1.1.4) . Re f(q@) =6(y*+v?),

valid for some 6 > 0. To conclude the proof of (1.1.3) for u > 0, observe that
the right-hand side of (1.1.4) dominates d**(q, M) because, in light of (1.3.1),
it dominates u.

Choose s (0 <s<<1) and let 7={(x,0):|x|<s}. We will show that I isa
peak set for A°(D). Let ¢(x) be the even function determined by ¥(x) =
exp[—1/(x—s)] if x>s and Y(x)=0if |x|<s, and let ¢(z) be a smooth
extension of { which is almost-holomorphic with respect to M (use, e.g., [7,
Lemma 1.6]). Straightforward estimates (given in the proof of Lemma 4.7
in [9]) show that for each e >0 there exists a neighborhood of {x:|x|<s}
on which

(1.1.5) Re ¢(z) = —ey?k,

Define g(z,w)=f(z,w)+ ¢(z). By (1.1.3) and (1.1.5) there exists a neigh-
borhood of 7 in which g ~1(0) =7 and

Re g(q) = vd*(q, M)

for some v > 0. Now e ~¢ has the properties of a local peak function except
that it is not holomorphic; it is only almost-holomorphic with respect to M.
The final step in the proof is then to solve a d-problem as in [4, Prop. 10] to
obtain a peak function for /. il

1.4. REMARK. In the preceding proof we have drawn conclusions from cer-
tain differential properties (such as pseudoconvexity) of the defining function
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r that depend only on Taylor expansions of r to finite order; the conclusions
clearly would be valid in holomorphic coordinates, but some justification is
needed in the almost-holomorphic coordinates (z, w). In each case the justi-
fication required is accomplished easily: Simply note that the properties are
invariant under holomorphic coordinate changes, and that the (z, w) coor-
dinates differ from holomorphic ones by terms vanishing to arbitrarily high
order along the set in question.

2. Local Interpolation from Curves

In this section we prove a local result on interpolation from curves. The
techniques bear a resemblance to those used by Burns and Stout in [3]; the
idea of the proof is as follows. First we extend a given function on the curve
to a subset of the complexification of the curve; this is essentially a one-
variable procedure. Then we extend from this subset to the domain by solv-
ing a d-problem; the procedure here is an adaptation of the method given by
Amar in [1, Thm. 2.1].

2.1. THEOREM. Suppose D CC C? is a pseudoconvex domain with real-
analytic boundary, and that M C oD is a complex-tangential real-analytic
curve. Then for each p € M there exists a neighborhood V.of p so that every
compact subset of MN\V is an interpolation set for A(DNV).

Proof. Choose holomorphic coordinates (z, w) near p in which p is the ori-
gin and M is the (Re z)-axis. We write g=(z,w) and z=x+iy, w=u+iv.
We may assume that, in (g, w) coordinates, D has a real-analytic defining
function of the form

@.1.1) u+A@)+0(zw|+|w]).

First we study the intersection of {w =0} with D. Note that A(x) =0 since
M C aD, and that A(z) # 0 since dD contains no disc. Near 0 we write

AR)= 3 a;(x)y,

Jj=m

with a,, # 0. Note that m = 2 since M is complex-tangential. As in the proof
of Theorem 1.1, a type argument and the pseudoconvexity of D yield that m
is even and a,, = 0. Since a,, vanishes to finite order at 0, there exist an even
natural number » and € >0 so that

(2.1.2) a,(x)=ex".
Now, if 6 satisfies 0 <6 << ¢, put
S={z:|y|>6x"}.

Then if z € C\ S near 0 we have
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A(Z) =am(x)ym+ O(yﬂl+1)

= ex"y"+O(y"+Y) (by (2.1.2))

265‘1|y[”’“+0(y’"+'),
SO

(2.1.3) A@)=ym+2,

In particular, note that if z is near 0 and (z,0) € D then ze SUR.

By a result due to Amar [1, Prop. 1.1], there exist arbitrarily small neigh-
borhoods of p, each of which intersects D in a smoothly bounded pseudo-
convex domain. Choose such a neighborhood V in which the preceding esti-
mates are valid, let @ = DNV, and fix a compact subset K of MNV. We will
show that K is an interpolation set for 4%°(Q).

Given a function fe C*(K), extend f to a smooth function on M with
support in M NV, As in [10, Prop. 3.4], by Whitney’s extension theorem and
a one-variable interpolation result we can further extend f to a function g e
C*(V) so that g depends only on z, g is holomorphic along S, and dg van-
ishes to infinite order along M. Set N=(SUR) X C, and define H(qg) to be
dg(q)/w if ge 2\ N and 0 otherwise.

We claim that H is smooth on . First we note that, by our choice of g,
for every j there exists ¢; >0 so that

(2.1.4) |0g(q)|<c;d’(q,N)

for all ¢ in Q; here d denotes Euclidean distance. Next we show that there
exists ¢> 0 so that if g € Q then

(2.1.5) d"*?(q,N)=c|w|.

To prove (2.1.5), observe that

(2.1.6) d(q,N)=<d(z,SUR) <|y|;

also, if g € Q then by (2.1.1) we have
Ow)+A(z)<0

and thus; for some constant c,

(2.1.7) A(z) =clw|.

Now (2.1.5) follows from (2.1.3), (2.1.6), and (2.1.7). From (2.1.4) and (2.1.5)
we have that H(q) — 0 as d(q, N) — 0, and the desired continuity of H fol-
lows. Since the estimate of (2.1.4) is valid for all derivatives.of dg, the same
argument yields smoothness of H; we omit the details.

By the above claim and a fundamental theorem due to Kohn [8], there
exists o € C°(Q) so that 0 = H. Then the function g — aw belongs to A* ()
and agrees with fon K. U
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