Free Duals and Regular Sequences

ANTONIO G. RODICIO

Introduction

The first part of this paper is devoted to a study of the following question. Let A be a local Noetherian ring, let I be an ideal of A of finite projective dimension $(\operatorname{pd}_A(I) < \infty)$, and let H_1 be the first Koszul homology module associated to a system of generators of I. If the dual module $(H_1)^* = \operatorname{Hom}_{A/I}(H_1, A/I)$ is A/I-free, then is I generated by a regular sequence? We obtain an affirmative answer in some cases, for example, when I/I^2 is torsion-free as an A/I-module.

In the second part we consider an analogous problem for the conormal module. Let K be a field, let R be a smooth K-algebra of essentially finite type, and let B = R/J. If $(J/J^2)^* = \operatorname{Hom}_B(J/J^2, B)$ is a projective B-module, what consequences are brought on B? A particular case of a conjecture of Vasconcelos [12] asserts that B must be a locally complete intersection. Under some additional hypotheses, we construct an exact sequence

$$\begin{split} 0 \to H_1(K,B,B) &\to J/J^2 \to (J/J^2)^{**} \\ &\to \Omega_{B|K} \to (\Omega_{B|K})^{**} \to \operatorname{Ext}_B^2(H^1(K,B,B),B) \to 0, \end{split}$$

and we use it to obtain some evidence for the conjecture.

Finally we give a condition, in terms of Hochschild cohomology, for a locally complete intersection algebra to be regular.

We will use some properties of André-Quillen (co)homology H(A, B, -) (see [1], [5], [8]).

1. On the Freeness of the Dual of the First Koszul Homology

Let A be a local Noetherian ring, let I be an ideal of A, and let H_1 be the first Koszul homology module associated to a system of n generators of I. Let $\alpha: H_1 \to (H_1)^{**}$ and $\beta: I/I^2 \to (I/I^2)^{**}$ be the canonical homomorphisms into the bidual module. We start by obtaining an exact sequence which relates the homomorphisms α and β .

Received May 30, 1989. Michigan Math. J. 37 (1990). PROPOSITION 1.1. Assume that $\operatorname{Hom}_{A/I}(H^2(A, A/I, A/I), A/I) = 0$ and $\operatorname{Ext}_{A/I}^1(H^2(A, A/I, A/I), A/I) = 0$. Then there exists an exact sequence

$$0 \to H_2(A, A/I, A/I) \to H_1 \xrightarrow{\alpha} (H_1)^{**} \to I/I^2 \xrightarrow{\beta} (I/I^2)^{**}.$$

Moreover, we have

- (1) Coker $\beta \simeq \operatorname{Ext}_{A/I}^{1}((H_{1})^{*}, A/I)$ if $\operatorname{Ext}_{A/I}^{2}(H^{2}(A, A/I, A/I), A/I) = 0$, and
- (2) Coker $\beta \simeq \operatorname{Ext}_{A/I}^{2}(H^{2}(A, A/I, A/I), A/I)$ if $\operatorname{Ext}_{A/I}^{i}((H_{1})^{*}, A/I) = 0$, i = 1, 2.

Proof. It is known [5] that there exist exact sequences of A/I-modules

$$0 \to H_2(A, A/I, A/I) \to H_1 \to F/IF \to I/I^2 \to 0$$
 and $0 \to (I/I^2)^* \to (F/IF)^* \to (H_1)^* \to H^2(A, A/I, A/I) \to 0$,

where F is a free A-module of rank n. Let

$$T = \text{Ker}((H_1)^* \to H^2(A, A/I, A/I)).$$

The exact sequence

$$0 \to T \to (H_1)^* \to H^2(A, A/I, A/I) \to 0$$

yields an exact sequence

$$0 \to H^{2}(A, A/I, A/I)^{*} \to (H_{1})^{**} \to T^{*} \to \operatorname{Ext}^{1}_{A/I}(H^{2}(A, A/I, A/I), A/I)$$

$$\to \operatorname{Ext}^{1}_{A/I}((H_{1})^{*}, A/I) \to \operatorname{Ext}^{1}_{A/I}(T, A/I)$$

$$\to \operatorname{Ext}^{2}_{A/I}(H^{2}(A, A/I, A/I), A/I) \to \operatorname{Ext}^{2}_{A/I}((H_{1})^{*}, A/I).$$

We obtain $(H_1)^{**} \simeq T^*$. Moreover, $\operatorname{Ext}^1_{A/I}(T, A/I) \simeq \operatorname{Ext}^1_{A/I}((H_1)^*, A/I)$ with the hypothesis of (1), and $\operatorname{Ext}^1_{A/I}(T, A/I) \simeq \operatorname{Ext}^2_{A/I}(H^2(A, A/I, A/I), A/I)$ with the hypothesis of (2).

On the other hand, the exact sequence

$$0 \to (I/I^2)^* \to (F/IF)^* \to T \to 0$$

induces

$$0 \to T^* \to (F/IF)^{**} \to (I/I^2)^{**} \to \operatorname{Ext}_{A/I}^1(T, A/I) \to 0.$$

We thus obtain a commutative diagram of exact sequences

$$0 \to H_2(A, A/I, A/I) \to H_1 \to F/IF \to I/I^2 \to 0$$

$$\alpha \downarrow \qquad \qquad \parallel \qquad \beta \downarrow$$

$$0 \to (H_1)^{**} \to (F/IF)^{**} \to (I/I^2)^{**} \to \operatorname{Ext}^1_{A/I}(T, A/I) \to 0$$

Application of the Ker-Coker lemma yields the result.

The next lemma generalizes Lemma 2.3 of [12].

LEMMA 1.2. Let A be a local Noetherian ring of depth at most 1 and let M be a finitely generated A-module. If $\operatorname{pd}_A(M^*) < \infty$, then the natural homomorphism $M \to M^{**}$ is surjective.

Proof. Let $L \to F \to M \to 0$ be an exact sequence of A-modules such that L and F are free of finite type. Dualizing, we obtain an exact sequence

$$0 \to M^* \to F^* \to L^* \to D(M) \to 0,$$

from which we deduce $\operatorname{pd}_A(D(M)) < \infty$. Therefore $\operatorname{pd}_A(D(M)) \le \operatorname{depth}(A) \le 1$. Hence $\operatorname{Ext}_A^2(D(M), A) = 0$. The result follows [2] from the exact sequence

$$0 \to \operatorname{Ext}_A^1(D(M), A) \to M \to M^{**} \to \operatorname{Ext}_A^2(D(M), A) \to 0. \qquad \Box$$

Let (A, m) be a local Noetherian ring, let I be an ideal of A with $pd_A(I) < \infty$, and let H_1 be the first Koszul homology over a system of n generators of I. Assume that $(H_1)^*$ is A/I-free. (Observe that the freeness of $(H_1)^*$ is independent of the system of generators of I [3, pp. 30–31].)

LEMMA 1.3. If $n = \mu(I)$ (= minimum number of generators of I) and $H_1 \to (H_1)^{**}$ is surjective, then I is generated by a regular sequence.

Proof. Since $n = \mu(I)$, for the trace ideal of the A/I-module H_1 we have [12, p. 371] $\operatorname{Tr}_{A/I}(H_1) \subseteq m/I$. Therefore $(H_1)^* = 0$. Hence the exact sequence

$$0 \rightarrow H_2(A, A/I, A/I) \rightarrow H_1 \rightarrow F/IF \rightarrow I/I^2 \rightarrow 0$$

shows that I/I^2 is A/I-free; that is, I is generated by a regular sequence (see [11, Proposition]).

LEMMA 1.4. In the above hypothesis, we have $H^2(A, A/I, A/I)^* = 0$ and $\operatorname{Ext}_{A/I}^1(H^2(A, A/I, A/I), A/I) = 0$. Moreover, the rank of $(H_1)^*$ is $n-\operatorname{ht}(I)$ (ht(I) = height of I) and I_p is generated by a regular sequence for every prime ideal p of A such that $\operatorname{depth}(A/I)_p \le 1$.

Proof. Let p be a prime ideal of A such that $\operatorname{depth}(A/I)_p \leq 1$. Let $H_1(I_p)$ denote the first Koszul homology associated to a minimal system of generators of I_p ; $(H_1)_p$ is the homology associated to a system of n generators of I_p . Since $((H_1)^*)_p \approx ((H_1)_p)^*$ is free, we obtain that $(H_1(I_p))^*$ is free. Application of Lemma 1.2 yields that $H_1(I_p) \to (H_1(I_p))^{**}$ is surjective. It follows from Lemma 1.3 that I_p is generated by a regular sequence. In particular, $H^2(A, A/I, A/I)_p \approx H^2(A_p, A_p/I_p, A_p/I_p) = 0$ [1, Thm. 6.25]. Hence grade $(H^2(A, A/I, A/I)) \geq 2$ and so $\operatorname{Ext}_{A/I}^i(H^2(A, A/I, A/I), A/I) = 0$, i = 0, 1 [7, p. 103, Proposition].

On the other hand, since I_p is generated by a regular sequence, $(H_1)_p$ is free of rank $n-\operatorname{ht}(I_p)$ [3, pp. 30-31]. Taking p such that $\operatorname{depth}(A/I)_p=0$, we obtain that the rank of $(H_1)^*$ is $n-\operatorname{ht}(I)$.

Recall that a finitely generated module M over a Noetherian ring A is said to be torsion-free if $Ass(M) \subseteq Ass(A)$; that is, if each nonzero divisor on A is a nonzero divisor on M.

THEOREM 1.5. Let A be a local Noetherian ring, let I be an ideal of A with $pd_A(I) < \infty$, and let H_1 be the first Koszul homology over a system of generators of I. Assume that $(H_1)^*$ is A/I-free. Then the following conditions are equivalent:

- (1) I is generated by a regular sequence;
- (2) I/I^2 is torsion-free as an A/I-module;
- (3) $\operatorname{Ext}_A^2(A/I, A/I)$ is torsion-free as an A/I-module;
- (4) $H^2(A, A/I, A/I) = 0$.

Proof. It is well known that condition (1) implies (2), (3), and (4). We shall prove that each one of conditions (2), (3), and (4) implies (1). We may assume that H_1 is associated to a minimal system of generators.

By Lemma 1.4 and Proposition 1.1, there is an exact sequence

$$0 \to H_2(A, A/I, A/I) \to H_1 \to (H_1)^{**} \to I/I^2$$
$$\to (I/I^2)^{**} \to \operatorname{Ext}_{A/I}^2(H^2(A, A/I, A/I), A/I) \to 0.$$

Moreover, I_p is generated by a regular sequence if depth $(A/I)_p \le 1$ and $(H_1)^*$ has rank $\mu(I)$ – ht(I). In particular, $(I/I^2)_p$ is free for $p \in Ass(A/I)$. Hence, I/I^2 is torsion-free if and only if $I/I^2 \to (I/I^2)^{**}$ is injective.

Thus condition (2) implies that $H_1 \to (H_1)^{**}$ is surjective. From Lemma 1.3 we deduce that I is generated by a regular sequence.

Assume now that $H^2(A, A/I, A/I) = 0$. We have an exact sequence $0 \to (I/I^2)^* \to (F/IF)^* \to (H_1)^* \to 0$, where F is a free A-module of rank $\mu(I)$. Since $(H_1)^*$ is free of rank $\mu(I)$ —ht(I), it follows that $(I/I^2)^*$ is free of rank ht(I). Moreover $I/I^2 \to (I/I^2)^{**}$ is surjective. Therefore I is generated by a regular sequence [11, Proposition].

Assume finally that $\operatorname{Ext}_{A}^{2}(A/I,A/I)$ is torsion-free. Since

$$H^2(A, A/I, A/I)_p = 0$$
 for $p \in Ass(A/I)$,

we deduce from the following lemma that $H^2(A, A/I, A/I) = 0$.

LEMMA 1.6. Let A be a ring, let I be an ideal of A, and let M be an A/I-module. Then there exists an exact and natural sequence of A/I-modules

$$0 \to H^2(A, A/I, M) \to \operatorname{Ext}_A^2(A/I, M) \to \operatorname{Hom}_{A/I}(I/I^2 \wedge I/I^2, M).$$

Proof. Let F be a free A-module such that there exists an exact sequence of A-modules

$$0 \to U \to F \xrightarrow{j} I \to 0.$$

Let U_0 be the image of the homomorphism of A-modules $\phi: F \otimes_A F \to F$, $\phi(x \otimes y) = j(x)y - j(y)x$. We have a commutative diagram of exact sequences [5]:

$$0 \rightarrow \operatorname{Hom}_{A/I}(I/I^{2}, M) \rightarrow \operatorname{Hom}_{A/I}(F/IF, M) \rightarrow \operatorname{Hom}_{A/I}(U/U_{0}, M) \rightarrow H^{2}(A, A/I, M) \rightarrow 0$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \rightarrow \operatorname{Hom}_{A/I}(I/I^{2}, M) \rightarrow \operatorname{Hom}_{A/I}(F/IF, M) \rightarrow \operatorname{Hom}_{A/I}(U/IU, M) \rightarrow \operatorname{Ext}_{A}^{2}(A/I, M) \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_{A/I}(U_{0}/IU, M).$$

Therefore we have an exact sequence

$$0 \to H^2(A, A/I, M) \to \operatorname{Ext}_A^2(A/I, M) \to \operatorname{Hom}_{A/I}(U_0/IU, M).$$

It is sufficient to show that there exists an epimorphism

$$I/I^2 \wedge I/I^2 \rightarrow U_0/IU$$
.

Consider the canonical exact sequence

$$U \otimes_A F \oplus F \otimes_A U \xrightarrow{\psi} F \otimes_A F \to I \otimes_A I \to 0.$$

Since $\operatorname{Im}(\phi\psi) \subseteq IU$, it follows that ϕ induces an epimorphism $I \otimes_A I \to U_0/IU$ which factors through $I/I^2 \wedge I/I^2$.

2. Projective Normal Modules

Let K be a field. A K-algebra B of essentially finite type (e.f.t.) is a ring of fractions of a finitely generated K-algebra. If R is a K-algebra of e.f.t. and J is an ideal of R, then R/J is also of e.f.t. Moreover, if B is a K-algebra of e.f.t., then there exists a smooth K-algebra of e.f.t. and an ideal J of R such that $R/J \simeq B$.

Assume that B = R/J, where R is a smooth K-algebra of e.f.t. Consider the normal B-module $(J/J^2)^* = \operatorname{Hom}_B(J/J^2, B)$. Since R is a regular ring, a special case of a conjecture of Vasconcelos [12, p. 373] asserts that B is a locally complete intersection (l.c.i.) if $(J/J^2)^*$ is B-projective. In this section we shall obtain results that provide some evidence for this conjecture. We start by obtaining an analogue to Proposition 1.1.

If B = R/J, where R is a smooth K-algebra of e.f.t., then there are exact sequences [5]

$$0 \to H_1(K, B, B) \to J/J^2 \to \Omega_{R|K} \otimes_R B \to \Omega_{B|K} \to 0 \text{ and}$$
$$0 \to (\Omega_{B|K})^* \to (\Omega_{R|K} \otimes_R B)^* \to (J/J^2)^* \to H^1(K, B, B) \to 0.$$

 $\Omega_{R|K} \otimes_R B$ is a finitely generated projective *B*-module, and therefore it is reflexive. Then the following proposition can be proved similarly to Proposition 1.1.

PROPOSITION 2.1. Let K be a field, let R be a smooth K-algebra of e.f.t., let J be an ideal of R, and let B = R/J. Assume that $\operatorname{Hom}_B(H^1(K, B, B), B) = 0$ and $\operatorname{Ext}_B^1(H^1(K, B, B), B) = 0$. Then there exists an exact sequence

$$0 \to H_1(K, B, B) \to J/J^2 \xrightarrow{\alpha} (J/J^2)^{**} \to \Omega_{B|K} \xrightarrow{\beta} (\Omega_{B|K})^{**}.$$

Moreover, we have

- (1) Coker $\beta \simeq \text{Ext}_{B}^{1}((J/J^{2})^{*}, B)$ if $\text{Ext}_{B}^{2}(H^{1}(K, B, B), B) = 0$, and
- (2) Coker $\beta \simeq \text{Ext}_B^2(H^1(K, B, B), B)$ if $\text{Ext}_B^i((J/J^2)^*, B) = 0$, i = 1, 2.

If K is a perfect field and B is a regular K-algebra of e.f.t., then B is a smooth K-algebra and therefore $H^1(K, B, B) = 0$. Hence, in analogy with Lemma 1.4, we obtain the next lemma.

LEMMA 2.2. Let K be a perfect field and let B be a K-algebra of e.f.t. If B has properties (R_n) and (S_{n+1}) , then

$$\operatorname{Ext}_{R}^{i}(H^{1}(K, B, B), B) = 0, \quad 0 \le i \le n.$$

Let K be a field, R a smooth K-algebra of e.f.t., and let B = R/J. It is known that B is l.c.i. if and only if J/J^2 is B-projective. Moreover, if K is perfect and B is reduced, then B is l.c.i. if and only if $pd_B(\Omega_{B|K}) \le 1$.

For the rest of this section, K is a perfect field and B = R/J where R is a smooth K-algebra of e.f.t.

If B is reduced, then $\Omega_{B|K}$ is torsion-free if and only if $\beta: \Omega_{B|K} \to (\Omega_{B|K})^{**}$ is injective. Therefore, it follows from Lemma 2.2 and Proposition 2.1 that $\Omega_{B|K}$ is torsion-free if B is l.c.i. and normal. This result has already been obtained in another way by Suzuki [10].

PROPOSITION 2.3. Assume that B is normal, $\Omega_{B|K}$ is torsion-free, and $(J/J^2)^*$ is B-projective. Then B is l.c.i.

Proof. The preceding results show that $\alpha: J/J^2 \to (J/J^2)^{**}$ is an epimorphism. We have to prove that J is locally generated by a regular sequence. Localizing in each prime ideal containing J, we see that it is sufficient to show the following.

LEMMA 2.4. Let A be a local Noetherian ring and let I be an ideal of A such that $pd_A(I) < \infty$. Assume that

- (1) $(I/I^2)^*$ is A/I-free,
- (2) $I/I^2 \rightarrow (I/I^2)^{**}$ is surjective, and
- (3) I_p is generated by a regular sequence for every $p \in Ass(A/I)$.

Then I is generated by a regular sequence.

Proof. The lemma follows easily from [11, Proposition]. \Box

PROPOSITION 2.5. Assume that K has characteristic zero and B is reduced. Then B is regular if and only if $H^1(K, B, B) = 0$ and $(J/J^2)^*$ is B-projective.

Proof. We shall prove the "if" part. We have an exact sequence

$$0 \to (\Omega_{B|K})^* \to (\Omega_{R|K} \otimes_R B)^* \to (J/J^2)^* \to 0,$$

from which we deduce that $(\Omega_{B|K})^*$ is *B*-projective. Moreover, by Proposition 2.1, $\beta: \Omega_{B|K} \to (\Omega_{B|K})^{**}$ is surjective. Since *K* has characteristic zero, this implies that *B* is regular [6, §§3-4].

Assume now that B is l.c.i. and (R_2) . Then $\beta: \Omega_{B|K} \to (\Omega_{B|K})^{**}$ is an isomorphism (this result has already been obtained by Lipman [6, Prop. 8.1]). Therefore we have the following.

COROLLARY 2.6. Assume that B is l.c.i. and (R_2) . Then B is regular if and only if $Der_K(B, B)$ is a projective B-module.

This is a particular case of the Zariski-Lipman conjecture. Let us recall the conjecture. Let K be a field of characterisic zero, let B be a finitely generated reduced K-algebra, and let Q be a prime ideal of B. If $Der_K(B_Q, B_Q)$ is a free B_Q -module, then B_Q is regular.

Corollary 2.6 resolves affirmatively the conjecture for complete intersections with property (R_2) . Moreover, it implies that the conjecture is true for all complete intersections if it is true for complete intersections of dimension 2; that is, if B_q is a complete intersection, $\dim(B_q) = 2$, and $\operatorname{Der}_K(B_q, B_q)$ is B_q -free, then B_q is regular.

3. Regular Rings and Hochschild Cohomology

In this section we shall use Lemma 1.6 to give a condition, in terms of Hochschild cohomology, for a l.c.i. to be regular.

Let A be a ring and let I be an ideal of A. There exist homomorphisms of graded A/I-modules (see [4, p. 389] and [1, Def. 14.20])

$$\gamma : \operatorname{Ext}_{A}(A/I, A/I) \to \operatorname{Hom}_{A/I}(\operatorname{Tor}^{A}(A/I, A/I), A/I),$$

 $\phi : \wedge I/I^{2} \to \operatorname{Tor}^{A}(A/I, A/I), \quad and$
 $\psi : \operatorname{Ext}_{A}(A/I, A/I) \to \operatorname{Hom}_{A/I}(\wedge I/I^{2}, A/I),$

where $\psi = \phi^* \gamma$.

It is easy to check that $\psi_2 : \operatorname{Ext}_A^2(A/I, A/I) \to \operatorname{Hom}_{A/I}(I/I^2 \wedge I/I^2, A/I)$ is the homomorphism of Lemma 1.6.

LEMMA 3.1. Assume that I/I^2 is a projective A/I-module and

$$H_n(A, A/I, A/I) = 0$$
 for $n \ge 2$.

Then γ , ϕ , ψ *are isomorphisms.*

Proof. ϕ is an isomorphism by [1, Thm. 14.22]. Therefore $\text{Tor}_s^A(A/I, A/I)$ is A/I-projective for all s. Hence γ is an isomorphism [9, Prop. 4.1].

Let K be a field, let B be a K-algebra, and let I be the kernel of the homomorphism $B \otimes_K B \to B$, $x \otimes y \to xy$. Then $\Omega_{B|K} = I/I^2$. Moreover,

$$H_n(K, B, B) \simeq H_{n+1}(B \otimes_K B, B, B)$$
 and $H^n(K, B, B) \simeq H^{n+1}(B \otimes_K B, B, B)$ for $n \ge 0$ [9, Prop. 4.1].

We have the homomorphisms

$$\gamma : \operatorname{Ext}_{B \otimes_K B}(B, B) \to \operatorname{Hom}_B(\operatorname{Tor}^{B \otimes_K B}(B, B), B);$$

$$\psi : \operatorname{Ext}_{B \otimes_K B}(B, B) \to \operatorname{Hom}_B(\Lambda \Omega_{B|K}, B).$$

Moreover, Ker $\psi_2 \simeq H^2(B \otimes_K B, B, B) \simeq H^1(K, B, B)$.

PROPOSITION 3.2. Let K be a perfect field and B be a reduced K-algebra of e.f.t. Assume that B is l.c.i. The following conditions are equivalent:

- (1) B is regular;
- (2) γ is an isomorphism;
- (3) ψ is an isomorphism.

Proof. If B is regular, then B is a smooth K-algebra since K is perfect. Therefore $\Omega_{B|K}$ is B-projective and $H_n(K, B, B) = 0$ for $n \ge 1$. It follows from Lemma 3.1 that γ and ψ are isomorphisms.

If ψ is an isomorphism, then

$$H^1(K, B, B) \simeq \operatorname{Ker} \psi_2 = 0.$$

Hence $\operatorname{Ext}_B^1(\Omega_{B|K}, B) = 0$ [9, p. 495]. On the other hand, $\operatorname{pd}_B(\Omega_{B|K}) \leq 1$ since B is l.c.i. It follows that $\Omega_{B|K}$ is B-projective. Therefore B is regular.

Assume that γ is an isomorphism. To prove that B is regular, we shall show that ψ_2 is a monomorphism. There exists an exact sequence [8, p. 77]

$$H_2(K, B, B) \to \Omega_{B|K} \wedge \Omega_{B|K} \to \operatorname{Tor}_2^{B \otimes_K B}(B, B) \to H_1(K, B, B) \to 0.$$

Since K is perfect and B is reduced, we have

$$H_2(K, B, B)^* = 0 = H_1(K, B, B)^*.$$

Therefore ϕ_2^* is a monomorphism. Hence $\psi_2 = \phi_2^* \gamma_2$ is a monomorphism.

References

- 1. M. André, Homologie des Algèbres Commutatives, Springer, Berlin, 1974.
- 2. M. Auslander and M. Bridger, *Stable module theory*, Mem. Amer. Math. Soc., 94, Amer. Math. Soc., Providence, R.I., 1969.
- 3. T. H. Gulliksen and G. Levin, *Homology of local rings*, Queen's Papers in Pure and Appl. Math., Queen's Univ., Kingston, Ontario, 1969.
- 4. G. Hochschild, B. Kostant, and A. Rosenberg, *Differential forms on regular af-* fine algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408.

- 5. S. Lichtenbaum and M. Schlessinger, *The cotangent complex of a morphism*, Trans. Amer. Math. Soc. 128 (1967), 41–70.
- 6. J. Lipman, *Free derivation modules on algebraic varieties*, Amer. J. Math. 87 (1965), 874–898.
- 7. H. Matsumura, Commutative Algebra, Benjamin/Cummings, New York, 1980.
- 8. D. Quillen, *On the (co-)homology of commutative rings,* Proc. Sympos. Pure Math., 17, pp. 65–87, Amer. Math. Soc., Providence, R.I., 1970.
- 9. A. G. Rodicio, Some characterizations of smooth, regular, and complete intersection algebras, Manuscripta Math. 59 (1987), 491–498.
- 10. S. Suzuki, On torsion of the module of differentials of a locality which is a complete intersection, J. Math. Kyoto Univ. 4 (1965), 471–495.
- 11. W. V. Vasconcelos, *A note on normality and the module of differentials*, Math. Z. 105 (1968), 291–293.
- 12. ——, *The complete intersection locus of certain ideals*, J. Pure Appl. Algebra 38 (1985), 367–378.

Department of Algebra University of Santiago de Compostela 15771 Santiago de Compostela Spain

