Free Duals and Regular Sequences

ANTONIO G. RODICIO

Introduction

The first part of this paper is devoted to a study of the following question.
Let A be a local Noetherian ring, let 7 be an ideal of A of finite projec-
tive dimension (pd 4(/) < o), and let H, be the first Koszul homology mod-
ule associated to a system of generators of 1. If the dual module (H,)*=
Hom ,,,(H,, A/I) is A/I-free, then is I generated by a regular sequence?
We obtain an affirmative answer in some cases, for example, when I/1% s
torsion-free as an A/I-module.

In the second part we consider an analogous problem for the conormal
module. Let K be a field, let R be a smooth K-algebra of essentially finite
type, and let B=R/J. If (J/J?)*=Hom gz(J/J? B) is a projective B-module,
what consequences are brought on B? A particular case of a conjecture
of Vasconcelos [12] asserts that B must be a locally complete intersection.
Under some additional hypotheses, we construct an exact sequence

0 - H(K,B,B) = J/J*— (J/J?)**
— Qpx — (Qpx)** — Ext3(H'(K, B, B), B) — 0,

and we use it to obtain some evidence for the conjecture.

Finally we give a condition, in terms of Hochschild cohomology, for a
locally complete intersection algebra to be regular.

We will use some properties of André-Quillen (co)homology H(A, B, —)

(see [1], [5], [8]).

1. On the Freeness of the Dual of the
First Koszul Homology

Let A be a local Noetherian ring, let 7 be an ideal of A, and let H; be the
first Koszul homology module associated to a system of n generators of
I. Let a: Hy — (H,)** and B: I/I* — (1/I*)** be the canonical homomor-
phisms into the bidual module. We start by obtaining an exact sequence
which relates the homomorphisms « and .
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PROPOSITION 1.1.  Assume that Hom 4,;,(H*(A, A/I,A/I),A/I)=0and
Extl ,;(H*(A, A/I,A/I),A/I)=0. Then there exists an exact sequence

0 — Hy(A, A/I, A/T) = Hy % (H)** — I/I? 5 (1/1%)*,

Moreover, we have

(1) Coker 8=Exty,((H\)*, A/I) if Bxt},(H*(A, A/I,A/I),A/I)=0,
and

(2) Coker 8=Ext%,(H*(A,A/I,A/I),A/I) if BExty,((H)* A/T)=0,
i=1,2.

Proof. 1t is known [5] that there exist exact sequences of A/I-modules
0> H,(A,A/I,A/I) > H, — F/IF > I/I> >0 and
0 — (I/1%)* > (F/IF)* — (Hy)* — H*(A, A/I, A/I) >0,
where F is a free A-module of rank #. Let
T=Ker((H))* > H*(A,A/I,LA/I)).
The exact sequence
0T — (H)*—> H*A,A/I,LA/I) >0
yields an exact sequence
0 — H*(A,A/I,A/I)* — (H))** - T* - Extly,[(H*(A,A/I, A/I),A/I)
— Ext}y/ (H))*, A/I) = Ext}y, (T, A/I)
— Ext? [(HXA,A/I,A/T), A/T) = Ext% ,(H)* A/I).

We obtain (H,)**= T* Moreover, ExtL/I(T, A/I)= Exth/l((Hl)*, A/I) with
the hypothesis of (1), and Ext} (T, A/I) =Ext} ,;(H* A, A/I,A/I), A/I)
with the hypothesis of (2).

On the other hand, the exact sequence

0> I/I»* > (F/IF)* > T —>0
induces
0 — T* — (F/IF)** — (I/I*)** — ExtY (T, A/I) — 0.

We thus obtain a commutative diagram of exact sequences

0— H,(A,A/,L,A/I)—> H, — F/IF — I/I? —0
«} I £l
0 — (Hy)*™* — (F/IF)** — (I/1*)** = Ext} (T, A/I) = 0

Application of the Ker-Coker lemma yields the result. L]

The next lemma generalizes Lemma 2.3 of [12].



Free Duals and Regular Sequences 251

LEMMA 1.2. Let A be a local Noetherian ring of depth at most 1 and let M
be a finitely generated A-module. If pd 4(M*) < oo, then the natural homo-
morphism M — M™* is surjective.

Proof. Let L = F — M — 0 be an exact sequence of A-modules such that
L and F are free of finite type. Dualizing, we obtain an exact sequence

O ->M*>F*—>L*—>D(M)—0,

from which we deduce pd 4(D(M)) < co. Therefore pd ,(D(M)) <depth(A) <
1. Hence Ext%(D(M), A) = 0. The result follows [2] from the exact sequence

0 - Ext\(D(M),A) > M — M** — Ext3(D(M), A) — 0. O

Let (A, m) be alocal Noetherian ring, let 7 be an ideal of A with pd 4(1) < o,
and let H, be the first Koszul homology over a system of # generators of /.
Assume that (H;)*is A/I-free. (Observe that the freeness of (H;)*is inde-
pendent of the system of generators of I [3, pp. 30-31].)

LEMMA 1.3. If n=u(I) (= minimum number of generators of I) and
H, — (H\|)** is surjective, then I is generated by a regular sequence.

Proof. Since n=pu(l), for the trace ideal of the A/I-module H; we have
[12, p. 371] Tr4,;,(H,) < m/I. Therefore (H,)*= 0. Hence the exact sequence

0 > H,(A,A/I,A/I) = H, > F/IF —> I/I* >0

shows that 1/1%is A/I-free; that is, I is generated by a regular sequence (see
[11, Proposition]). U

LEMMA 1.4. In the above hypothesis, we have H* A, A/I, A/I)*=0 and
Extl ;(H*(A, A/I,A/I), A/I)=0. Moreover, the rank of (H,)*is n—ht(J)
(ht(7) =height of I') and I, is generated by a regular sequence for every
prime ideal p of A such that depth(A/I),=<1.

Proof. Let p be a prime ideal of A such that depth(A/I),=<1. Let H,(I))
denote the first Koszul homology associated to a minimal system of gener-
ators of I,; (H,), is the homology associated to a system of n generators
of 7. Since ((H,)*),= ((H,),)*is free, we obtain that (H,(1,))*is free. Ap-
plication of Lemma 1.2 yields that H,(/,) — (H,(,))** is surjective. It fol-
lows from Lemma 1.3 that 7, is generated by a regular sequence. In partic-
ular, H2(A,A/1,A/I),=H?*A,,A,/I, A,/I,)=0[1, Thm. 6.25]. Hence
grade(H?(A,A/I,A/I))=2 and so Ext , (H?(A,A/I,A/I),A/I)=0, i=
0,1 [7, p. 103, Proposition].

On the other hand, since 7, is generated by a regular sequence, (H,), is
free of rank n—ht(/,) [3, pp. 30-31]. Taking p such that depth(A/I),=0,
we obtain that the rank of (H)*is n—ht(J). ' O
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Recall that a finitely generated module M over a Noetherian ring A is said to
be torsion-free if Ass(M) < Ass(A); that is, if each nonzero divisor on A4 is
a nonzero divisor on M.

THEOREM 1.5. Let A be a local Noetherian ring, let I be an ideal of A
with pd 4(I) <o, and let H, be the first Koszul homology over a system of
generators of 1. Assume that (H,)* is A/I-free. Then the following condi-
tions are equivalent:

(1) 1is generated by a regular sequence;

(2) I/I?is torsion-free as an A/I-module;

(3) Ext%(A/I, A/I) is torsion-free as an A/I-module;
(@) HX(A,A/I,A/T)=0.

Proof. 1t is well known that condition (1) implies (2), (3), and (4). We shall
prove that each one of conditions (2), (3), and (4) implies (1). We may as-
sume that H is associated to a minimal system of generators.

By Lemma 1.4 and Proposition 1.1, there is an exact sequence

0 > Hy(A,A/ILA/I) > H, — (H)** > I/I?
— (I/1*)** — Bxt?% ;(H*(A, A/I,A/I),A/I) = 0.

Moreover, I, is generated by a regular sequence if depth(A4/I), <1 and
(H,)* has rank p(f)—ht(J). In particular, (I/Iz)p is free for pe Ass(A/I).
Hence, 1/I%is torsion-free if and only if 7/I? — (I/I%)**is injective.

Thus condition (2) implies that H; — (H,)** is surjective. From Lemma
1.3 we deduce that 7 is generated by a regular sequence.

Assume now that H*(A, A/I, A/I)=0. We have an exact sequence 0 —
(I/I** - (F/IF)* — (H,;)* — 0, where F is a free A-module of rank u([).
Since (H,)* is free of rank u(I)—ht(J), it follows that (//I%)* is free of
rank ht (7). Moreover I/I? — (I/I?)**is surjective. Therefore I is generated
by a regular sequence [11, Proposition].

Assume finally that Ext%4(A4/1, A/I) is torsion-free. Since

H?*(A,A/I,A/I),=0 for peAss(A/I),
we deduce from the following lemma that H*(A, A/I, A/I)=0. ]

LEMMA 1.6. Let A be a ring, let I be an ideal of A, and let M be an A/I-
module. Then there exists an exact and natural sequence of A/I-modules

0 — H*(A,A/I, M) — Ext4(A/I, M) — Hom 4 ,,(I/I?AT/I% M).

Proof. Let F be a free A-module such that there exists an exact sequence of
A-modules

0>U—>FL1-0.

Let U, be the image of the homomorphism of A-modules ¢: FR 4 F — F,
Hx®y)=j(x)y—j(y)x. We have a commutative diagram of exact se-
quences {5]:
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0

)
0 — Hom ,;(I/I% M) — Hom 4 ,;(F/IF, M) = Hom 4 ,;(U/Uy, M) > H*(A, A/I,M) >0
I I )
0 — Hom 4 ;(1/T% M) — Hom 4;(F/IF, M) = Hom 4, (U/IU, M) — Ext3(A/I,M) —0
A
Hom 4/, (U, /1U, M).

Therefore we have an exact sequence
0 = H*(A,A/I,M) — Ext3(A/I, M) — Hom 4,;(Uy/IU, M).
It is sufficient to show that there exists an epimorphism
I/I*’NI/I? — U,y /IU.
Consider the canonical exact sequence
UQuFOFRU B FRLF - IQ4I — 0.

Since Im(¢y) < IU, it follows that ¢ induces an epimorphism I&®471 —
U,/IU which factors through I/I2AI/I2. O

2. Projective Normal Modules

Let X be a field. A K-algebra B of essentially finite type (e.f.t.) is a ring of
fractions of a finitely generated K-algebra. If R is a K-algebra of e.f.t. and
J is an ideal of R, then R/J is also of e.f.t. Moreover, if B is a K-algebra of
e.f.t., then there exists a smooth K-algebra of e.f.t. and an ideal J of R such
that R/J =B.

Assume that B= R/J, where R is a smooth K-algebra of e.f.t. Consider
the normal B-module (J/J?%)*=Hom z(J/J? B). Since R is a regular ring,
a special case of a conjecture of Vasconcelos [12, p. 373] asserts that B isa
locally complete intersection (l.c.i.) if (J/J?2)*is B-projective. In this section
we shall obtain results that provide some evidence for this conjecture. We
start by obtaining an analogue to Proposition 1.1.

If B=R/J, where R is a smooth K-algebra of e.f.t., then there are exact
sequences [5]

0 — H(K,B,B) = J/J? > Qg x®rB = Qpx =0 and
0 — (Qpx)* = (Qg|x P B)* = (J/J»)* - H'(K, B, B) — 0.

Qrix®rB is a finitely generated projective B-module, and therefore it is
reflexive. Then the following proposition can be proved similarly to Propo-
sition 1.1.

PROPOSITION 2.1. Let K be a field, let R be a smooth K-algebra of e.f.t.,
let J be an ideal of R, and let B= R/J. Assume that Hom z(H'(X, B, B), B) =
0 and Ext 4,(H(K, B, B), B) = 0. Then there exists an exact sequence



254 ANTONIO G. RODICIO

0 = H\(K, B, B) = J/J> % (J/J)*™ = Qpx D (Qp0)*.

Moreover, we have

(1) Coker 8=Exth((J/J?* B) if Ext3(H (K, B, B), B) =0, and
(2) Coker B=Ext3(H (X, B, B), B) if Exts((J/J?)* B)=0, i=1,2.

If K is a perfect field and B is a regular K-algebra of e.f.t., then B is a smooth
K-algebra and therefore H!(K, B, B) =0. Hence, in analogy with Lemma
1.4, we obtain the next lemma.

LEMMA 2.2. Let K be a perfect field and let B be a K-algebra of e.f.t. If B
has properties (R,) and (S, ), then

Exth(HY(K,B,B),B)=0, 0<i=<n.

Let K be a field, R a smooth K-algebra of e.f.t., and let B=R/J. It is known
that B is l.c.i. if and only if J/J?is B-projective. Moreover, if K is perfect
and B is reduced, then B is l.c.i. if and only if pdg(Qpg) <1.

For the rest of this section, K is a perfect field and B=R/J where R is a
smooth K-algebra of e.f.t.

If Bisreduced, then Qp g is torsion-free if and only if 8: Qg x — (g x)**
is injective. Therefore, it follows from Lemma 2.2 and Proposition 2.1 that
gk is torsion-free if B is l.c.i. and normal. This result has already been ob-
tained in another way by Suzuki [10].

PROPOSITION 2.3.  Assume that B is normal, Qg is torsion-free, and
(J/J?)* is B-projective. Then B is l.c.i.

Proof. The preceding results show that «:J/J? — (J/J?)** is an epimor-
phism. We have to prove that J is locally generated by a regular sequence.
Localizing in each prime ideal containing J, we see that it is sufficient to
show the following.

LEMMA 2.4. Let A be a local Noetherian ring and let I be an ideal of A
such that pd 4(I) < . Assume that

(1) (I/I%* is A/I-free,
(2) I/1%? — (I/1%)** is surjective, and
(3) 1, is generated by a regular sequence for every pe Ass(A/I).

Then 1 is generated by a regular sequence.
Proof. The lemma follows easily from [11, Proposition]. [

PROPOSITION 2.5. Assume that K has characteristic zero and B is re-
duced. Then B is regular if and only if H (K, B, B)=0 and (J/J%* is B-
projective.
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Proof. We shall prove the “if” part. We have an exact sequence
0 = (Qpx)* = (g xR B)* — (J/TH)* =0,

from which we deduce that ($5x)* is B-projective. Moreover, by Proposi-
tion 2.1, B: Qg x = (Qpx)** is surjective. Since K has characteristic zero,
this implies that B is regular [6, §§3-4]. O

Assume now that B is l.c.i. and (R;). Then 3: Qg x = (Qpgx)** is an iso-
morphism (this result has already been obtained by Lipman [6, Prop. 8.1]).
Therefore we have the following.

COROLLARY 2.6. Assume that B is l.c.i. and (R,). Then B is regular if
and only if Derg(B, B) is a projective B-module.

This is a particular case of the Zariski-Lipman conjecture. Let us recall the
conjecture. Let K be a field of characterisic zero, let B be a finitely generated
reduced K-algebra, and let g be a prime ideal of B. If Derg(B,, B,) is a free
B,-module, then B, is regular.

Corollary 2.6 resolves affirmatively the conjecture for complete intersec-
tions with property (R,). Moreover, it implies that the conjecture is true for
all complete intersections if it is true for complete intersections of dimension
2; that is, if B, is a complete intersection, dim(B,) = 2, and Derg(B,, B,) is
B,-free, then B, is regular.

3. Regular Rings and Hochschild Cohomology

In this section we shall use Lemma 1.6 to give a condition, in terms of Hoch-
schild cohomology, for a l.c.i. to be regular.

Let A be aring and let I be an ideal of A. There exist homomorphisms of
graded A/I-modules (see [4, p. 389] and [1, Def. 14.20])

v:Ext 4(A/I,A/I) = Hom ,,(Tor4(A/I,A/I), A/I),
¢: NI/1? > Tor4(A/I,A/I), and
Y:Ext4(A/I,A/I) = Hom (N I1/1% A/I),

where = ¢*y.
It is easy to check that y,: Ext(A/I, A/T) — Hom ,,,(I/I*AI/I% A/I)
is the homomorphism of Lemma 1.6.
LEMMA 3.1. Assume that I/1% is a projective A/I-module and
H, (A, A/I,LA/I)=0 for n=2.
Then v, ¢, Y are isomorphisms.

Proof. ¢is an isomorphism by [1, Thm. 14.22]. Therefore Tor(A/I, A/I)
is A/I-projective for all s. Hence v is an isomorphism [9, Prop. 4.1]. Cl
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Let K be a field, let B be a K-algebra, and let 7 be the kernel of the homo-
morphism B®g B — B, x®y — xy. Then Qg x=I/I’. Moreover,

HM(K’B9B)=HH+I(B®KB’B,B) and Hn(K:BaB)an-H(B@KB’B’B)

for n=0[9, Prop. 4.1].
We have the homomorphisms

& EXtB@}(B(B’ B) - HomB(TorB®KB(B, B)a B) ;
Vv:Extpg, p(B, B) = Homg(A Qg k, B).
Moreover, Ker ¥,= H*(B®yB, B, B) = H'(K, B, B).

PROPOSITION 3.2. Let K be a perfect field and B be a reduced K-algebra
of e.f.t. Assume that B is l.c.i. The following conditions are equivalent:

(1) B is regular;
(2) v is an isomorphism;
(3) ¥ is an isomorphism.

Proof. 1f B is regular, then B is a smooth K-algebra since K is perfect.
Therefore Qg x is B-projective and H,(K, B, B) =0 for n=1. It follows from
Lemma 3.1 that v and y are isomorphisms.

If ¢ is an isomorphism, then

HY(K, B, B)=Ker y,=0.

Hence Ext3(Qpx, B) =09, p. 495]. On the other hand, pd(Q k) <1 since

B is l.c.i. It follows that Qg g is B-projective. Therefore B is regular.
Assume that v is an isomorphism. To prove that B is regular, we shall

show that ¥, is a monomorphism. There exists an exact sequence [8, p. 77]

H,(K, B, B) — Qp g AQp x — Tor5®<%(B, B) - H\(K, B, B) — 0.
Since K is perfect and B is reduced, we have
H,(K,B,B)*=0= H,(K, B, B)*.

Therefore ¢3 is a monomorphism. Hence ¥, = ¢3v, is a monomorphism.
d
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