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1. Introduction

A classical theorem of Lindelof states that a bounded analytic function in
the upper half plane H, which approaches a limit along a curve terminating
at a boundary point of H, approaches the same limit in a Stolz angle about
that boundary point. It has been known for some time that Lindelof’s theo-
rem, in its classical formulation, is not true for bounded quasiregular map-
pings in the upper half-space H,, = {x = (x4, ..., x,) € R": x,, >0} when n =3.
A counterexample of Rickman [14] shows, in fact, that such a mapping may
possess infinitely many distinct asymptotic values at a boundary point. On
the other hand, the theorem remains true if the asymptotic path is replaced
by an asymptotic (n—1)-dimensional surface [14].

In this note we establish a similar positive result for normal quasimero-
morphic mappings f: H,—R"=R"U{e}, n=2, thus extending the classi-
cal theorem of Lehto and Virtanen [8]. We shall show that if f is normal and
quasimeromorphic in H,, and if f tends to a limit when x tends to 0 along the
set P={xedH,: x; >0} (in the sense of Theorem 2.1 below), then f has the
same limit along any Stolz cone with vertex at 0. By a Stolz cone we mean
the interior of the closed convex hull of {0}U D(e,, M), where D(e,, M) is
the closed hyperbolic ball centered at e, = (0, ...,0,1) with radius M >0.
Note that if n =2 then, via conformal mapping, the general situation always
can be reduced to the case where f has a limit along the positive real axis;
our proof will be fairly elementary even in this classical case.

It was observed by Granlund, Lindqvist, and Martio [4] that for bounded
quasiregular mappings Lindel6f’s theorem is best stated in terms of a (non-
linear) harmonic measure; Rickman’s counterexample is possible because a
tangential path in space does not carry enough harmonic measure with re-
spect to points in a Stolz cone. The approach to this problem in both [14]
and [4] relies heavily on the boundedness of the mapping and as such cannot
be extended to mappings with poles. Our proof is based on an idea of the
two-constant theorem for unbounded mappings proved in [8]. As in [14] and
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[4], the methods are purely potential-theoretic, hinging only on the fact that
log| f| is @-subharmonic in the terminology of nonlinear potential theory
[2; 5]. Obvious alterations would yield similar results for general @-subhar-
monic functions.

We shall also indicate that the approach region P can be replaced by a
sequence of dyadic cubes in dH,,, not converging too rapidly to zero, or by a
graph of any continuous function u#: P —>R_. As a second main result, we
prove a removable singularity theorem for normal quasimeromorphic map-
pings.

Angular limits of quasimeromorphic mappings were earlier studied in [10;
17; 19] but, as far as we know, no tangential approach regions have previ-
ously been considered in the case of unbounded mappings.

2. Normal Quasimeromorphic Mappings

Our notation is fairly standard. For the definition and properties of quasi-
meromorphic mappings we refer to [11] and [12].

We say that a quasimeromorphic mapping f: H, — R" is normal if it is
uniformly continuous between the metric spaces (H,,, p) and (R”, gq), where
p is the hyperbolic metric in H,, defined by

|dz]|

p(x,y)=infg ,
0% Y Zp

~ joins x and y in H,,, and ¢ is the chordal (spherical) metric in R” defined by
Ix-y|

VI+[x21+]y2
q(x, o) = S S
V14| x[?

Thus f is normal if and only if there is a strictly increasing continuous
function &;: (0, ©) — (0, 1], with A,(s) — 0 as s — 0, such that

q(f(x), fF¥)) =hs(p(x,»))

for all x, yeH,,. Likewise, f is normal if and only if the family {fo¢: ¢ is
a conformal automorphism of H,} is a normal family; this follows from
Ascoli’s theorem and [20, Thm. 13.6]. (Vuorinen [20, Cor. 13.5] has also
shown that one can always choose ,(s) =cs®, where a=K"%~" and K is
the maximal dilatation of f.)

Our work was partly motivated by the result of Rickman [15, Thm. 2.4]
which implies that a K-quasimeromorphic mapping f: H, — R"is normal if it
omits a finite number p = p(n, K) of points. It is well known that p(2,K) =3
(while p(n, K)— o as K — co, at least when n=3 [16]) and in this case the
uniformization theorem, untenable in higher dimensions, can be used (see
[18, p. 307]). As a further example we mention that if » >3, then f is nor-
mal if it is locally homeomorphic and omits two points {12, Thm. 2.9].

qg(x,y)= XA ©ZY,;
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Our main theorem reads as follows.

2.1. THEOREM. Suppose that f is a normal quasimeromorphic mapping
in H,, and that

lim (lim sup g(f(x), b)> =0
yo0\N x-y

for yeP={xedH,:x,>0} and beR" Then f(x)— b when x -0 along
any Stolz cone with vertex at 0.

Generalizations of Theorem 2.1 are briefly discussed in Section 5.

Normal functions on general planar domains are usually defined by us-
ing the hyperbolic (Poincaré) metric obtained from the covering map. The
Poincaré density in the punctured disk B3 = {z:]z| <1, z # 0} is asymptotic
to (|z|log(1/|z]))~'as z— 0 [1, pp. 17-18], and a classical result asserts that
no normal meromorphic function in B3 can have 0 as an essential singular-
ity [8]. In a subsequent paper [9] Lehto and Virtanen further improved that
result by a nice argument which can be used in higher dimensions as well.
For completeness we state and prove the following quasiregular analogue of
their theorem.

Let 6 be any positive continuous function in B} = {xeR": x| <1, x 0},
with 6(x) =o(|x|™') as x = 0. Define the metric

2.2) ks(x, ) =inij 5(2) |dz],

where the infimum is taken over all curves v joining x and y in B.

2.3. THEOREM. [If f is quasimeromorphic on B}, and uniformly contin-
uous between the spaces (B, k) and (R”", q), then 0 is a removable singu-

larity for f.

2.4. REMARK. The proof of Theorem 2.3 actually shows that is is enough
to assume that

g(f(x,), fO)<i—€, €>0,

whenever |x|=|y|is small enough; see (4.1) below. For functions meromor-
phic in B3, Lehto proved (see [6], [7]) that one can replace % by 1. It would
be nice to know if this is true in higher dimensions as well.

3. Proof of Theorem 2.1

Suppose that f and P are as in Theorem 2.1. We are clearly free to assume
that b=0.

Our proof will be based on an analysis of the @-harmonic measure whose
precise definition and basic properties can be found in [3] and [4]. For conve-
nience, however, we recall that if f is K-quasimeromorphic in an open set @ C
R” and E is a subset of dQ, then there is a unique function w=w(E, Q; @),
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the @-harmonic measure of E in Q, which is a continuous weak solution to
the quasilinear elliptic equation

3.1 divQ@(x,Vu)=0
in . The mapping @: 2 XR” - R" in (3.1) is defined by
Qx, h) = Jr(x) S ) f o) "2 ()" R
if x € O such that J,(x) #0, and by
Q(x,h)=|h|""*h

if J¢(x) does not exist or Jy(x) =0.

Above, f’(x) is the formal derivative of fat x, f'(x)~!its inverse, and 7*
is the transpose of a linear map 7': R” — R". The ellipticity and boundedness
constants of @ depend only on # and K. It is a fundamental fact in the the-
ory of quasiregular mappings that the function u =log|f| is a solution to
(3.1) outside the zeros and poles (see e.g. [2]).

The function w (0 <w=<1) is defined via the Perron method with respect
to supersolutions of (3.1), and its behavior resembles that of the classical
harmonic measure. However, the set function £~ w(F, 2; @) (x) never de-
fines a measure unless n = 2.

For the next two lemmas suppose that o = w(E, 2; @) as above.

3.2. TWO-CONSTANT THEOREM ([3, Thm. 5.8]; cf. [13, Thm. 4.22]). Sup-
pose |fl=M < oo in Q and that

lim sup| f(x)| < m.
x-E

Then | f(x)|<M(m/M)*™ for all x e Q.
The second lemma follows from [4, Lemma 4.12].

3.3. LEMMA. Suppose that E C 31} is connected and that B,(y,r)N a2 C
E for some y € 0Q; here B,(y,r)={xeR":|x—y|<r}. Then there is n=
n(n, K, k) >0 such that w(x) =y for all xe Q with |x—y|<«kr<r.

We now turn to the proof of Theorem 2.1. Let O denote the (n—1)-dimen-
sional cube Q={xeP:0<x;<1,i=1,...,n—1}. By rescaling, if necessary,
we may assume that

3.9 lim sup| f(x)|<by<1,

x—Q
where b, is a fixed constant (depending on n, K, and A, only) which will
be determined later on. Fix A€ (3, 1) and let Q, denote the cube concentric
with Q and with side length A. For each ¢ > 0 denote by (, the interior of the

closed convex hull of Q,U{z,+fe,}, where zo=(3, ..., 3,0) is the midpoint

of Q>\.
Next, for y € 00, NH,, we define x,, to be the point that lies on the perpen-
dicular line segment from y to Q, and satisfies dist(x,, Q)) = 7 dist(y, Q,),
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where 7 < 1is determined by the condition 4, (log 1/7) = %. In particular, by
normality

(3.5) a(f(»), fx,))<7%.

If y is as above and y*e Q, such that |y —y*|=dist(y, O0,) =d, it then fol-
lows by elementary geometry that

1+7

(3.6) Bn<y*, —2—d)069, C Oy

as soon as / is less than some constant 7o =¢,(7) > 0. From now on we sup-
pose that ¢ < ¢,. Write w, = w(Q), 2,; @). Since x, € B, (y*, ((1+7)/2)d) and
|x, —y*|=7d, it follows from (3.6) and Lemma 3.3, with x =27/(1+7) <],
that

3.7) w(xy) =71>0,

where # depends only on n, K, and 4.

By continuity, f is bounded by b, in a neighborhood of Q,; in particular,
f is bounded by b, in Q, for some ¢ > 0. Note that Q) C Q. If | f|>1 some-
where in @y, then there is the largest #; <7 such that | f|<1in Q. Let ye
0Q,,NH,, be a point such that | f(y)|=1. It follows from (3.5) that

1 1-|f(x))| 1-[f(xy)]
3 =U0) SNz e =
and hence that
(3.8) f(x)]= 4.

On the other hand, the two-constant Theorem 3.2 together with (3.4) and
(3.7) implies that
| f(xy)]| =< B].

This contradicts (3.8) as soon as by < 2~/7, We thus have that | f| is bounded
by 1in Q,,. Furthermore, by letting A — 1, it follows from the continuity that
| ] is bounded by 1 in the “pyramid” €, where Q is the interior of the closed
convex hull of QU {zy+ ¢ge,].

To complete the proof of Theorem 2.1, we shall show that f(x)—0 as
x — 0 along the line segment L that joins 0 and the midpoint xy =2z, + %to e,
of the pyramid ©,. Because f is bounded in @, this follows from [4, Thm.
4.21], provided that the condition
(3.9 lim lim inf w(B,(0, r)NQ, Qy; @) (x) >0

r—-0 x-0
xel

is met; but (3.9) is an easy consequence of Lemma 3.3 so that f(x)—0 as
x — 0 along L, as desired. The proof can now be completed by the follow-
ing (well-known) reasoning: If C is a Stolz cone with vertex at 0, then for
each x in C there is a subsegment L, of L, such that the hyperbolic diameter
of L, is (say) 1 and such that the hyperbolic diameter of L, U {x} is bounded
by a constant ¢y = cy(fy, C). Suppose then, for some sequence {x;} C C, that
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x;—0but | f(x;)|=e>0. Let L;= Ly, be a subsegment of L as above and
let ¢; be a Mobius transformation of H,, onto itself such that ¢;(x;)=e,;
‘then ¢;(L;) lies in the closed hyperbolic ball D(e,, cy). By normality, we
may assume that { fo¢ j_l] converges uniformly in D(e,,, 2¢,) to a quasimero-
morphic mapping f. Since the hyperbolic diameter of each ¢;(L;) is 1, the
sequence {¢;(L;)} has a nondegenerate limit continuum in D(e,,, ¢,) on which
fo=0. The discreteness of f, would then imply that f,=0in D(e,, 2¢y), but
this is impossible because | fy(e,)|=¢€>0.

Theorem 2.1 is thereby established. [l

4. Proof of Theorem 2.3

The following argument (cf. [9]) is based on the fact that the oscillation
of f on each individual sphere 9B, (0, R) tends to zero as R — 0. Indeed, if
x,y € B}, with |x|=|y]|, then
ks(x,y)<m|x| max 6(z)=o0(1);
|z|=]x|

whence, through the uniform continuity assumption, it is no loss of gener-
ality to assume that

4.1) q(f(x), fyN<c<}

whenever x and y lie on the same sphere centered at 0.

Let us now make the antithesis that 0 is an essential singularity. The big
Picard theorem for quasimeromorphic mappings [13, Thm. 1.2] ensures that
f assumes all but at most a finite number of points in each neighborhood of
0. We may therefore assume that f has a zero on a sphere dB,,(0, R). Thus,
by (4.1),

(4.2) q(f(x),0)<c
for all x with |x|=R. Let r <R be the largest radius such that

q(f(x),0)=2c
for all x in the ring domain B, (0, R)\ B, (0, r) but

(4.3) q(f(z),0)=2c

for some z with |z|=r; such an r exists because f is unbounded in each
neighborhood of 0.

Denote by Sg and S, the images of dB,(0, R) and aB,(0, r), respectively.
Then S; and S, are compact, disjoint subsets of R”; indeed, if we SN S,,
then by (4.2) and (4.3)

q(f(z),w)=q(f(z),0)—q(w,0)>c,

contradicting (4.1). Since (4.1) holds for any two points on S,, a similar ar-
gument shows that S, cannot separate S from the point at infinity, and it is
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easy to see how this leads to a desired contradiction. In fact, because the
image of any line segment from dB,(0, r) to dB,(0, R) joins S, and Sy, there
is a point y in B,,(0, R)\ B, (0, r) such that f(y) can be joined to o by an arc
L in the complement of S, U Sg; but such an arc would have a lifting starting
from y and meeting either dB,,(0, R) or 9B, (0, r) (see [12, 3.12]), which is
impossible since L meets neither Sk nor S§,.

The proof of Theorem 2.3 is complete. 1

5. Remarks

As the proof of Theorem 2.1 reveals, the approach region P can be replaced
by various other sets. Suppose, for instance, that P is the union of (n—1)-
dimensional cubes {Q;} CR"~!=9H,, such that 0 e P and that

(G.) dist(Q;, Qi) =c(Qy);

here £(Q) designates the side length of Q. Then one can build a sequence of
“pyramids” 2; based on Q; such that the height of ; is proportional to ¢(Q;)
and that f is bounded in @ =1J ;. Applying a harmonic measure estimatz
in each individual pyramid, one finds a sequence of line segments L; C ();
such that Ly=1J L; lies in a Stolz cone C and that f(x) — 0 as x — 0 along
L. Because of (5.1), the set L, shares all the required properties of the line
segment L in the proof of Theorem 2.1, whence f(x)— 0 along any Stolz
cone.

As a second example, we let P be the graph of a positive continuous func-
tion u:{x,=0,x,>0}->R, u(x)—0 as x;— 0. Since P blocks off the set
{x, =0, x; > 0}, the monotonicity of the @-harmonic measure guarantees that
the required estimates are retained, and the theorem remains true in this case
as well (cf. [1, pp. 40-41}).

5.1. QUESTION. We wish to pose the question whether the general condi-
tion given in [4, Thm. 4.21] is sufficient to imply Lindel6f’s theorem for nor-
mal quasimeromorphic mappings. More precisely, suppose that f(x) — 0 as
x — 0 along a relatively closed subset E of H,,, and that

lim lim inf w(B,(0, r)NE, H,; ®)(x) >0,

r-0 x-0
xeC

where C is a Stolz cone with vertex at 0. Is it then true that f(x) > 0as x—0
along C?
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