Bounds for the Degrees
in the Division Problem

CARLOS A. BERENSTEIN & ALAIN YGER

0. Introduction

One of the basic questions in computational algebra is to find sharp bounds
for the complexity of the possible algorithms solving the following problem.
Let fi,..., f,€Clz] (z=(2;,...,2,)), and let I be the ideal they generate.
Assuming that f e/, what can be said about the polynomials ¢, ..., g,, that
satisfy the equation

(*) f=qlfl+"'+q"1fm?

To be more concrete, let us assume that max(deg f, deg f;, (1= j=m)}=D.
Can we find g; whose degrees are relatively small —for example, bounded
by D"?

In the case where the homogenized polynomials *fy, ..., "f,, of fi, ..., fn
define a complete intersection variety in C"*1, such bound is correct. In fact,
one can find polynomials ¢, ..., g,, such that

lm;tx deg(f;q;)=deg f+d,...d,,
<j=<m
where d; = deg f;. This is a consequence of a result of Macaulay dating from
the beginning of the century. It follows from the fact that for a locally reg-
ular sequence the exponent in the local Nullstellensatz is bounded by the
product of the degrees (see [14]).

It is surprising to find that such an estimate is false in general. An ex-
ample of Mayr-Meyer [9] shows that for any D=5, k=1 and n =10k, there
are n+1 polynomials fi, ..., f,+1 € C[z] such that z, € I, and that if q,,...,
qn+1€Clz] satisty z;=¢q, fi+ - +q,+1 [+ then max deg g; > (D—2)2"",
This implies that, in general, the complexity of any algorithm capable of
solving this kind of problem must be doubly exponential. This applies in
particular to the algorithms that construct the standard (or Groebner) bases.
The reason is that, as soon as such a basis is known, the problem of decid-
ing whether f e I and finding the g; can be solved immediately.

There are several ways to obtain division formulas with better bounds
for the degrees of the g;. For instance, in comparing () with Hilbert’s Null-
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stellensatz, one is led to the idea of representing instead an element fe/, a
power of f. That is,

(*%) fs:QIfl'l'"""mem-

Recently, Brownawell [5], Kollar [8], and Fitchas-Galligo [6] have found
good bounds for the exponent s and the degrees of the corresponding g;.
They are

s<D" deg g;<(1+deg f)D".

Using analytic methods, we found integral representation formulas for a
solution qy, ..., q,, of (*) in two cases: when the variety V={ze€ C": fi(z) =
-+« = fn(z2) =0} was discrete, or when dim V' =n— m. In the first case we
showed in the original version of [2] that the example of Mayr-Meyer could
not hold. In fact, we obtained deg g; < n%D3" In the second case, the case
of a complete intersection, we found bounds for deg g; in terms of quanti-
ties related to the Bernstein-Sato functional equation [3].

In this paper we show that in both cases one has an estimate of the form

deg g; =deg f+«(n)D"

(see Theorems 2 and 3 for the precise estimates). Except for the constant
k(n), these bounds are sharp. The proofs depend on the existence of the
Lojasiewicz type inequalities found by Brownawell [4] and on the analytic
methods developed in [1] and [8] to study the equations (*) and (**) in spaces
of entire functions with growth conditions. If one could find a purely alge-
braic proof of these two results, one could deal with polynomials in K[z],
even if char K#0, and probably sharpen the value of the constant «(n).
This has been done by Kollar [10] for the original bounds of Brownawell [5]
for (#*).

This paper was written while C. Berenstein was on sabbatical leave sup-
ported by the General Research Board of the University of Maryland and
while A. Yger was a visiting professor at that institution.

We thank D. Dickson and B. Shiffman for many thoughtful comments.

1. Koszul Complex

The aim of this section is to redo in detail the analysis of the Koszul com-
plex sketched in Theorem 2.6 of [7]. The reason for this is the need to keep
track of the constants left implicit in [7], which is not altogether trivial as
the reader will see. The knowledge of these constants is crucial for the re-
sults of Section 2.

We recall some notation about differential forms. For re N and o =
2 ajd'z'j a differential form of type (0, r) in n variables, we denote

al=( §|a,-|2)”2,

where j = (Jy,...,Jr), 1 < jy<n, is an increasing sequence.
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Let p be a plurisubharmonic function in C”. In what follows p will be re-
ferred to as a weight. We denote by LY the space of (0, r) differential forms
« in C" (with measurable coefficients) that have finite Z?-norm with respect
to this weight. That is,

[ @ expl-Cp@)] dN@) <0
for some constant C = C(«)=0. The weight p is omitted in the notation.
Here d X\ denotes the Lebesgue measure.
Given N entire functions, Fy,..., Fy, N=2, let

N
F=(F,,...,Fy) and |F(z)|2=21|5(z)|2.
J:

We will assume, in this section, that they satisfy the following estimates:

6); |F(z)|*<Agexp[Byp(z)] (VzeC"),
) max |8F;(z)]*<Aoexp[Byp(z)] (vzeC"),
l=j=N

for some positive constants A4, By.

Let LS = AS(CM)®c LY. It is clear that LS =0if r > n or s > N. Associated
with the CM-valued function F we can consider the Koszul complex given by
the maps

9: L} — L5y,

where 3 is the usual densely defined Cauchy-Riemann operator, and
P:LSY1 S8,

where Pa = Pro is the interior product of an element o € LS*! with F.
Namely, P« is defined by

N
(Pa)(ils (LX) ls) = 2 F}a(il! XXX iSsj)'
j=1
As usual, we have 3>= P2=0 and P3 = 3JP.
We need to define also the exterior product with F=(F}, ..., Fy). Let ae
LS; then aAFe LSt is given by

s+1
(@AF)(ig,.oryisir) =k§_]l(—1)s+1_kF,-ka(i1, ceos Ty eensdstn),s

where (as always) the “hat” denotes a deleted entry.

We extend the definition of the norm of a differential form of type (0, r)
to the elements of LS. For instance, if « =3; o;e;, {e;} a basis for AS(C"),
then |O£I2=E,'IO(,'|2.

PROPOSITION 1. Lef ay€ L} be such that dc; =0, Pay=0, and

) [ Wl F@)]7101(@) expl—Cp(2)] dN(z) < o,
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withC=C(a) =0, k=2u—1, and p =min{n, N—1}. Let e > 0 be fixed. Then
one can find 8, € L? such that

(4) . 551=0, P61=a1,
and
, exp[—C'p(z)]
) §cn|6‘(Z)| (14 |z |?)==D(l+e) dNz) <o,
with
(6) C'=CH+2(p—1)B,.

Proof. We define recursively 8, e L}, B,€ L3, ..., 8, € L as follows. Let

,3]=|F|-20(1/\F and 012=5,31.
One verifies without difficulty that P8, = «;. It follows that do, =0 and

Poy,=P03B,; = 0PB; = da; =0. Moreover, we have the two estimates
S|F|2‘1‘k’|,81|2 exp[—Cpld\ <

and

S|F|2‘2"“ |ota|? exp[— (C+ Bg)p] d\ < oo.
The first estimate is immediate from (3). The second one follows from a sim-

ple computation and (2).
Now we can define

B2=|F|?a;AF and «3;=038,,

and so on. We claim that o, ; =0.

There are two cases. If p=n, then a,,, € L4t} =0; if u=N—1<n, then
we have Pa, .| = 0. Hence we can define 8, ,; as above so that P8, =, 1.
But 8,44 eL’,}'jf '=0. Therefore a,+1=0 as we wanted to show.

It is clear that we have the estimates

) |IF[224=1=D ;2 expl—(C+(j = 1)B)p] dA < .
In particular, for j =g,
{18,/ expl—(C+ (=1 Bo)p] d\ < co.

Since 88, =0 we can solve the equation
57;1.—1=B;u ‘Y#—IELﬁtll
in such a way that the estimate

Sl |2exp[—(C+(u—1)Bo)p]
V-1 (1+|z|2)1+e
holds (see [15]; a slightly weaker estimate can be found in [8]). Consider
now the equation

d\< oo
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6,—1=B,—1—Py,_1€Ll_;.
We have _
Pc‘i#_1=au_l and 36u_1=0.

It is clear from (1) that
2 exp[—(C+pBy)p]
-1

SIP’Y# (1+|z12)1+e

We need to show that this last estimate holds when Py,_, is replaced by
B,.—1. This is a consequence of the estimate (7) for the case j =p—1. We
divide the integral in (7) in two, over the regions where |F| <1, respectively,
|F|=1. In the first one we have:

d\< oo

2 - —_—
S{IF|<1}IB"‘1| exp[—(C+(p—2)By)pldA

<

S!!F[<u|F|—4|B“‘1|26Xp[_(c+(M—?-)Bo)p]d)\.

In the other region, we can use (1) to see that |F|* <exp[2B,p]. Therefore,

J, 1oy 1Bt exDI=(C+uBo)p] )

J, oy T 1ButPIF 1 expl—(C +1Bo)p] d)

< oy I 1Bucs P expl=(C+ (u=2)Bo)p) .
Hence

SI‘S 2 exp[—(C+puBy)p]
n—1 (1+|z|2)l+e

It is clear we can repeat this procedure, obtaining successively 6,_5, ..., 6;.
In particular, 6, € L? will satisfy

P51=C¥1, -6-6120,

d\< o

and

2
S /(@) exp[—(C+2(p—1)By)p(z)]dN <

cn (] + IZ |2)(#“1)(1+6)
as claimed. W

2. Discrete Varieties

In this section we prove that the Mayr-Meyer example cannot occur when
the polynomials f, ..., f,, define a discrete variety. We need the following
notation. If d,= --- =d,, is a collection of positive integers and n =2, then
we denote

dl"'dm if m=n,

=N ,d ,...,d = :
N (n,d, m) {dl---dn—ldm if m>n.

From now on, the weight p mentioned in the previous section will be given
by p(z) =Log(l1+|z|?).
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THEOREM 2. Let fi,..., [, be polynomials in C[z] with respective degrees
dizdy=---=d,. Assume that V={ze€C": fi(z)=+--=f,(z) =0} is dis-
crete. If feI(fy,..., f) then there are polynomials q; € C[z] such that

n

®) S=2 4;J;
and ! o
C) mgx(deg q;)=deg f+3(n+1)N.

J

Proof. Let F=(f,..., f,;). From [10, Prop. 1] we know there are two con-
stants 7, p > 0 such that if |z|>p then

(10) |F(z)|=9|z|™",
with ®#=N(n,d,, ..., d,,) as defined above.
Let x be a C® function in C”, 0 = x <1, x=1 in a neighborhood of the

closed ball B(0, p) and supp x € B(0, p+1). Since f € I(f, ..., fn), there are
polynomials g; such that

m

f: .gl .f;gj'
Therefore o
m 1— () m
ay  f@)=3 (x(z)g,-(z)+ (=x@)/i@] (Z))L-(z>= S h(2),(2),
j=1 IF(Z)I Jj=1

where h = (hy, ..., h,,) is defined by the identity (11). We define a vector «; of
(0, 1) differential forms by the formula

12) a;=(3hy, ..., 3h,,).

It is obvious that da; =0 and

m

Pozl =PFC¥1 = El‘f)éhjz—a_< 2 ‘f}hj>=5f:0.
j= j=1
It is clear from the inequality (10) that «; € L}. We can apply Proposition
1, with g =min{n, m—1}, k=2p—1, and the constant C defined by

13) C=deg f+N(k+2)+d,+n+e,

for € >0 fixed. From that proposition we conclude there is 8, € L} such that
(14) 36, =0,

15) Péy=ay,

and

(16) [112)? expl—Dp ()] dN(2) <o,

where

a7 D=C+2(p—1d;+(p—1)(1+¢).
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As in Section 1, since 38, =0 we can find B8, € L3 such that 38, =8, and

{1801 expl-D'p1aN <o,

with D'=D+ (1+¢).

Consider now the vector valued function g = # — PB,. We have dq =
dh —3PBy = oy — P3Py = oy — P6, =0 and Pq = Ph— P?B,= Ph=f. Hence
the components of ¢ are entire functions that satisfy the estimates

(18) |la? expl-D"p1dN <o,

19) D"=D’'+d,=deg f+2ud;+N(k+2) +n+e(p+1).

Choosing € > 0 so that e(p+1) <1, we can conclude from (18) and (19) that
each g; is a polynomial of degree at most

deg g;=deg f+2u+1)N+2pd,+n

<deg f+2n+1)N+2nd,+n

<deg f+3(n+1)N,
as we wanted to show. (Here we have assumed d,, = 2; if not, we can elimi-
nate at least one variable before starting the proof.) W

Slightly sharper bounds for the degrees of the g; have been obtained by
Shiffman in [14, Thm. 2] under the stronger hypothesis that the zero locus of
I is zero-dimensional at all finite and infinite points. He obtains in that case
the sharp estimates:
max deg(q;f;) =deg f+N(n,d,,...,d,).
l=sj=<m

Moreover, his estimates remain valid for any algebraically closed field (even
when the characteristic # 0).

3. Complete Intersection Varieties

In this section we consider polynomials fi, ..., f,,€Clz], 2<m=<n—1. We
suppose their respective degrees are dy=---=d,,. Let V={ze€ C": fi(z) =
-+ = fn(2) =0}. We assume throughout this section that

(20) dim V=n—m.

Under these conditions we want to show the analogue of Theorem 2 still
holds. Note that the case m = n is included in Theorem 2 and the case m =1
is trivial.

THEOREM 3. Let fi, ..., fin be given as above, and feI(fy,..., fi,). Then
one can find q; € C(z] such that

S= § ﬁ%‘
j=1
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and

21 max degq;<deg f+«(m,n)d,...d,,
l<j=<rs

where =

k(m,n)=6(n+1)2Qm™* 1 +n).

The proof depends entirely on the fact that the family f;, ..., f,, is slowly de-
creasing in the sense of [1]. Here we must follow the bounds in the process
of Jacobi interpolation and the Koszul complex associated to a “good” cov-
ering of V, which have been described in [1, §5]. The only extra element we
have at our disposal is the local Lojasiewicz inequality of [4]. We take here
the opportunity to clarify certain obscure points from [1, §5].

Before proceeding with the proof, we will give a few preliminary observa-
tions. The first one is a simple consequence of the classical Noether normali-
zation theorem [16]. A more precise version of the following lemma can be
found in [2].

LEMMA 4. There is a linear change of coordinates, 7 = Aw, and constants
n9, K > 0 such that if g;(w) = f;(Aw), then the set

22)
Spo=[weC":log max |g;(w)|<logno—(n+1)*d,...d,, log(1+|w|*)}

l<j<m

is included in the cone
(23) C=fw=(w,w")eC"xC" " |w|=K{1+|w"|)}.

Proof. 1t is a well-known consequence of the Noether normalization the-
orem that there is a linear change of coordinates, z=Aw, and a constant
K’ >0 such that

(24 W={weC": g(w)="---=g,(w)=0} S {w:|w|=K'(1+|w"])}.

(This is a result of Sadullaev; for a more general statement see [7].) On the
other hand, it follows from the argument of the proof of Theorem A in [4]
that the following local Lojasiewicz inequality holds:

(25)
log max [g;(w)|=—vy—(n+1)%d,...d,,[log(1+|w|*)—log d(w, W)],
1<j=<m
where v > 0 and d(w, W) = min{l, dist(w, W)}. If 5o > 0 is chosen sufficiently
small then inequality (25) implies that, for any point we S, ,, d(w, W) <
1/2. The inclusion (24) now shows that &, < € for a convenient choice of
K. O

The second observation is that we can assume that for any &, 1 <k <m, the
dimension of the variety of {z € C": f(z)=--- =f(z) =0} is exactly n—k.
In fact, if necessary, we can use [12, §4, Lemma 2] to find a triangular invert-
ible matrix M e C"*™ with the property that the sequence of polynomials
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fis ..., fop defined by f= Mf is a regular sequence in C[zy, ..., z,]. (Here f, f
are the column vectors of components f;, resp. jf,-.) We can further assume
that the change of variables from Lemma 4 (applied to f;) has been per-
formed. Henceforth we will revert to the old notation fi, ..., f,, for the poly-
nomials and z = (z’, z”) € C” X C"~"™ for the coordinates. The constants
K, 79> 0 will have the meaning given in Lemma 4. To simplify the notation
we will set

(26) A=(n+1)2d,...d,.

As we have said above, one can show that the polynomials f, ..., f,, form
a slowly decreasing family in the sense of [1, Def. 5.1], with respect to the
family £ of m-dimensional affine subspaces {z” = constant}. Namely, given
O<np<mnoand ueC"" let

27) D=D(u,n)=5,N{z=(z",2"): z2"=uj.

The connected components of this set are bounded since $, < €. Moreover,
if z;, z, are in the same connected component & of ® then

Izl =lzil+]ul = (K+ DA +]u]) < (K+ D1+ |z2]).
Since the weight p is given by p(z) =log(1+]z|?), we conclude that

(28) P(z1) = p(z22)+ Ky

for some K> 0.

Following [1, §5], given 0 < 5 < 9o and 7 > 0, we consider the family
€(n, 1) of “good” open sets  defined as follows: Fix ue C"™", and G a
component of D(u, ). Let Q be the union of balls:

(29) Q= ;U@B(f’ 7 exp[—(A+3d)p(D)]).
€

It is clear that €(», 7) is a covering of G,. Also, if »’<7 and 7' <7, then
S(n’, ') is arefinement of €(7, 7). In fact, the refinement map p: €(y’, 7’) -
C(n, 7) is defined as follows. Let Q'e €(n’, 7). Its definition depends on a
choice of ue C"~"" and &' € D(u, ’). This connected set &’ is included in
a unique connected component G of D(u, ). The corresponding set { de-
fined by (29) clearly contains {2’, so that p(Q’) = is well defined. This re-
finement map has the extra property, called almost parallelism in [1], that
for any €(n, 7) there is a refinement €(»’, 7’) such that, if Qf, Q5 €(y’, 7'),

(30) Q{NQ5 0 implies that Q] UQ} S p(Q])N p(Q4).

This is an immediate consequence of the fact that there is a constant A >0
for which

afi (%)
ISk

These observations show that f, ..., f,, is indeed a slowly decreasing family.

(d,—Dp()
2

sAexp[ ], Jj=1....,m, k=1,...,n, {€C.
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The main idea of the proof of Theorem 3 will be to show that there is a set
9, and holomorphic functions 4, ..., 4, in S,, with good bounds in &,,
chosen so that

(31) f=f1h1+"'+f;nhm in 6,7.

Once this is done, the remainder of the proof will follow the argument in
Theorem 2. '

The construction of the 4; involves two double complexes. The first one is
a local version of the Koszul complex used in Section 1. Given a covering
C=GE(n, 7), we can define the group U =U"(C) of alternating analytic r-
cochains. Namely, v € U” means that for Q, ..., 2, € C we have

v(Qoy .-, 2 )EH(QoN---NQ)NLT(QoN ---NQ,),
and v is alternating on the indices (2, ..., 2,) € € 1. We denote
32 [7(Q, ..., 2)] =sup{|¥(Qo, ..., 2,)(2)|: 7€ BN +-- N, J;
(33 Iv@)|=supl|v(Qo, ..., )] for every (Qy, ..., 2,) e €"*
such that ze QyN---NQ,J.
The associated Koszul complex is given by
(34 Ug=URcAIC”, r=0, g=0.

Its elements can be represented as families {wj} of analytic functions, Je
e+l rc{l,...,m}, #I=q, which are alternating in both indices. Formu-
las (32) and (33) define norms for {w{}, simply by considering the largest
entry in the index 7. As in Section 1, we consider the commutative diagram
of maps:

l !

r 3 r+1
_—

—> 1 u _
q q
" 3 ur+1
-1 q-1

given by
m

(35) P(w){ =3 wii fi
=

and
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r+1
(36) (6w)/= 3 (=1)/w/Y,

ji=0
whereif I = {iy,...,iJand J = {Qo,...,Q, 44}, then i = {i},...,i,,i} and
JG) = Q05 s Q1 Qjggs - v o5 @rgy}. Clearly P2 = 0 and 6% = 0. All the
above considerations clearly depend on the covering €. Moreover, if C’ =
C(n’, 7') is a refinement of C and p: C’— C is the corresponding refinement
map, then p induces maps

(37) p:Ug(C)—Uy(C)
such that Ppo = pP and pd = ép. 5

The second complex, as in [8, Prop. 7.6.1], relates the Cech cohomology
to the de Rham cohomology. Let L, ,(C)=L; , be the spaces of r-cochains
for the covering © with values in the space of (0, s) differential forms in C",
which have finite Z?-norms in the following sense. Namely, let

¥R, .., X)= T v;dZ’;
li|=s
¥ 7oy oo ) €LH(QoN - NQ,, dN);

lv(Ros -, @) 2= X 17 (2)|* d\(z) < 0.

li|=s Sﬂoﬂn-ﬂﬂ,
For v an r-cochain, we define a new pointwise norm (compare with (32) and
(33)):

(38)  [lv() =sup{|v(Q, .., @) ,: for every (Qy, ...,2,) e """

such that ze QN ---NQ,}.

The following three technical lemmas, involving properties of these two
complexes, are crucial for the proof of Theorem 3.

Let f be a polynomial in I(fy, ..., f,), and consider the element g€
UJ(C(no, 1)) defined by
(39) ao(@) = f .

For some constant Ay > 0, we have

lao(z)| = Ap expl3(deg f)p(z)] (zeC™).

Moreover, we can show the following.

LEMMA 5. There is a refinement C; = C(ny, 1) of €(ng, 1) and a Bye
UEC,) such that

(40) p(ag) = PGy,
(41) |Bo(z)| =< Af expl(}(deg f)+Ng)p(z)] (zeC")
Jor some constant Ay >0, and
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Proof. Let Qe Cy=C(n9,1). Q is defined in terms of ue C" " and G S
D(u, ng). Fix a point {( e G and define o by

(43) o = 310 exp[—Ap($o) —AK,).

For 7>0, let ro=17 exp[—(A+%d1)p(§’0)]. We can choose 7> 0 so that, if
z€® and |w—z|<r(, then we have we Q and | f;(z) - fi(w)|<o (i=1,...,
m). Therefore, for |t — u| < 7y, we have max,-;,,|fi(z)| = 30 for any
z€d(QNfz”"=1t}). Let

G, = {ze@: max |fi(z)|=< E}.

I<i<sm 2

It is clear now that we can find a refinement C; = €(#,, 7;) of €, such that
if Qe C; and p(Q’) =9 then the following condition holds:

Y ci{z+w:zel,, W <15} Sp(Q)=0.

Therefore, whenever | —u| < 7y, one can conclude that

QNz"=t}c {zeﬂ: max |fi(z)|< 3—0}

I<ism 2

Using Sard’s theorem we can choose ¢’, 30/2 < ¢’ < 20, with the property
that for any ¢, |t — u| < 7, the analytic polyhedron in C” x {¢} given by

U ={z=(s,t)eQ: max |fi(z)|<0c’}

l<i<m

has a smooth boundary whose (2 —1)-dimensional volume L satisfies
L =exp[m(A+d;+1)p($o)]

for some constant A > 0 that depends on m, K,, and 5, (see [1, Cor. 1.6]).
We can now apply [1, Prop. 1.3 and following Remark] and the fact that
S €1, to obtain a C" valued holomorphic function 8,(Q’) such that

P(Bo(2)) =aglq

and for which, at any point z € (’, we have

d
1Bo(2') ()] = Ab eXpK%f +N0>p(2)} :

This concludes the proof of Lemma 5. (]
Lemma 5 can be generalized as follows.

LEMMA 6. Given a covering C=8(n,7) (0n<ng, 7T<1) and integers q =1
and r =0, there is a refinement C'=G(y’, 7’) such that, if a € mg(e) satis-
fies Pa =0 and the estimate

(44) |a(z)| = B exp[Dp(z)],
then there is 8 € Uy 1(C’) with PB =« and
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(45) |8(z)| = B’ exp[(D+N,)p(z)],
where N, =m9(Ny+d, /2).

Proof. Note that Lemma 5 covers the case where g =0 and r =0. For r =0,
the proof in [1, Thm. 5.3] reducing the case ¢ =1 to the case g =0 leads im-
mediately to the existence of the refinement and the above estimates. It is
here that one needs to use that the sequence {fi, ..., f;;} is regular.

In [1] the reduction of the case r =1 to the case r =0 is not done, so we
furnish a proof here.

Fix r = 1. Given a covering C, first construct a refinement C’ with the
property that if ;e €’ (j=0,...,r) and corresponding ;= p({}/), then

(46) QSQN---NQ, if QN ---NQ.LZD.

This is a consequence of the almost parallelism. Now we apply the result for
r =0 to the covering €’ and obtain a covering C” so that the conclusion of
the lemma holds (still for r =0). Let o« € U4 (C), Pa =0, and Qg, ..., 27 € €”
with QgN --- N Q # B; it follows that (46) holds with Q; = p(©2/), because
Q5N ---NQ/ QN ---NQ/. Consider

Y =7(20) = (R0, -, ) a,;

then Py =0. Hence, there is € UJ,(C”) such that P3 = p(y), and  satis-
fies the estimate (45) if « satisfies (44) (the constant B’ might change). Now
we define _

B(QG, ..., ) =B(Q5) [egn .- nay-

Then BeUg1(C”), PB=p(x), and (45) holds. O

For the complex L; , we have an effective version of [1, Thm. 5.2] (see also

[8D).

LEMMA 7. Given a covering C=8(n, 7) and r € N, there exists a refine-
ment C’'=G(n’,7’) such that if Be L; ,,(C), 68=0, d8=0, and the esti-
mate

(47) 18(z)|| = Aexp[Dp(z)]
is satisfied, then there is y € L ,(C') such that 6y = p(B), dy =0, and
(48) Iv(z)| = A’ exp[(D+M,)p(2)],

with M, =(r+1)(A+d,/2+2)+n/2.

Proof. We prove this lemma by induction on r starting with »r =0. Let C =
C(n, 7/2). Then we can consider a covering Q of C" by open cubes Q; with
sides parallel to the axes, centered at points a;, such that
(i) if @'e € and Q'NQ; =0 then Q; < p(Q’);
(ii) diam Q;=c exp[—(A+d;/2)p(a;)] for some constant ¢ >0; and
(iii)) vze C": #{j:ze€ Q;} <A,, where 4, is a positive constant depending
only on the dimension #.
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The existence of such a covering Q follows from the well-known Whit-
ney’s lemma. Associated with Q there is a partition of unity ¢; € C5°(Q;),
for which |d¢;(z)|<c’exp[(A+d,/2)p(z)] for some c¢’>0.

Let J={j: Q;NQ'#0 for some {’e C’}. For j € J let Q; be any choice of
p(Q’) with Q’NQ;#@. Now we can define an element be L ((C’) by

b(Q)= Wjﬁ(ﬂ(ﬂ'),ﬂj)lﬂ'an-
jed
Since 68 =0, 6b = p(B). We claim now that dbe L, (€’). In fact, we
have the estimate

_ d
(49 10b(z) || < c”||B(z)|| exp[(A + —2—1>p(2)] .

The constant ¢” depends on ¢’ and A4,,.

We have 63b = 36b = 33 =0. Hence we can extend db as zero outside of
Ugee Q' and obtain a global differential form in L9, (see §1). We can ap-
peal to the same theorem of solvability of d used in Section 1 and obtain
ve L? with v =3b and

gcnlv(z)lz expl— (2D +2A+d,+n+2)p(z)] d\(zZ) < .

In fact, one can also conclude that when we consider v as a 0-cochain
(50) o)l <c”expl(D+A+1+1(d;+n)p(z)],

for some ¢” > 0. Consider now b—veL; ((C"). We have that (b —v) =
p(B), d(b—v)=0, and ||b—v|| satisfies the same estimate (50) (with a dif-
ferent constant ¢”). If we take M0=A+2+%(d1+n), v=b—v, we have
proved the lemma in the case r =0.

For the inductive step from r to r +1, we need to take a bit more care with
the refinement. We start as before with a first refinement C’'= (5, 7/2),
and Q as above. We can define b similarly:

(5D b(Qp, ..., Q)= _EJ 0iB(p(2o), ..., p(27), ) [gyn---nazno;-

J€
We have 6b = p(8) and db € L, ,,1(C’) with the estimate (49) still correct.
Since 60b =38 =0, we can apply the inductive argument and find a refine-
ment C” and yoe L, ,(C”) such that dyo=0, 6y, = p(db), and

d
(52) Ivo@l=a'exp| (D+a+ 5 +M,)p(a)]

As we have done in the proof of Lemma 5, we can construct another re-
finement C” such that if Qe C€” then there is an analytic polyhedron U
such that

Q"cUSUSp(Q”).

We can apply [8, Thm. 4.4.2] to solve the equation dy; =+, in 2. One has
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2dX\
J, LG < 0@ i@ < Totao

for zo any point of 2. From here we conclude that vy, e L, ,(€”) and

d
) <A exp[(D+A+ 2 +M,+2)p<z)] .

Finally, consider v = p(b)—6%,. Then
dy=08p(b)=p(B),  dy=p(db)—8(3v,)=p(db)—bv,=0,
and v satisfies the estimate
lv(z)]| = A" expl(D+M, ,1)p(2)],
with M, ., =M,+A+2+d, /2. O
REMARK. LetL], =L, ,&Q@AYC™. One can see without difficulty that Lem-

ma 7 holds when we replace L; , by L?, for any fixed g, 0 <g =<m; it is
simply a question of using the above construction one component at a time.

Proof of Theorem 3. Finding the h; required in (31) amounts to construct-
ing a covering € and 8 € UY(€) such that P8 = «y and 8 = 0. We recall that
oy is defined by (39).

We first construct a sequence (g, ..., 3,,, using the local Koszul complex,
following the diagram:
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What we mean is that, modulo successive refinements, we can define

BoeU], PBy=cy (Lemma 5)
oy =068peU}, Poay;=06PBy=0cy=0
B,eUl, PBi=q (Lemma 6 and ff.)

-1
Bm—lemm ’ Pﬁm—-l=am—l
am=66m—legugg
o, =PB,, I3m€‘uf';'+1-

In the last line we have U;,;,;=0, hence «,, =0. Furthermore, we have

d
69 Ig@IsAen|(SFE Nt Nt tN)p(@)

for some A4 > 0.

We know that 68,,_; =0 and 38,,_; =0. Since all the sets in any covering
have uniformly bounded volumes (they are very thin by construction), we
have that the L?>-norm ||8,,_;(z)|| has, up to a multiplicative constant, the
same bounds as the L*-norm |8,,_(z)|. That is, for some constant A >0,

deg f

69 War@l=ae| (G r2mm @ dy)pe)|

We have 8,_,e W% 'NLY ,,_;. Hence we can apply the remark following
Lemma 7 and find, after a refinement of the covering, v,,_,€ L{ ,,_, such
that d7,,_,=0, 6v,,—2=p(Bm_1), and v,,_, satisfies the estimate

‘ d
55 Itme2 @I =AIBrr (@] exp[((m —1)(A+ o +2) + g)p(z)]

for some new constant 4’ > 0.
As in Proposition 1, we consider the element

— m—1
€m—2=Bm—2—PYm-2€ Ll m_1.

We have that de,,_, =0, Pe,,_»=0p_»,

0€,—2 =082 —Po(y;-2) =0t —P3,_,=0,

and the estimate
d
len-2@l=a”ex] (v4'+ 5 )p(o)
holds, with

— m+1
(56) { b=(deg f)/2+2m" " (A+d,),

V=(m—-1)(A+d/2+2)+n/2.
We can now iterate the procedure and obtain e¢ge Lf o with deg=deg=0,

Pey = ag, and having similar estimates. This means that ¢, is a holomorphic
"_yalued function defined on the support 3 of a covering C, Ugee 2=73,
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such that Peq=f in 3. We need pointwise bounds for €; these can be ob-
tained in the support 3’ of a refinement €’ of €, by means of Cauchy’s for-
mula. Recall that we have

[ d

lleo(z) || < Aexp (b+(m—2)<b’+ —2—l>>p(z)]
[/ deg f

&

which holds for € = §(#, 7). Hence on J’, the support of &' =€(7, 7/2), we
will have

(>7) d d
leo(2)] sA’exp[(—ei—f +3m’"+‘(A+d1)+n(A+ ?1)+m2n>p(z)] .

<Aexp

+3m”’+l(A+d1)+m2n)P(Z)],

The set 3’ contains the set S;. We take a C* function x with 0 < x <1,
supp x € 9;, x =1 0n S;/2), and such that one has

|0x(z)] < const. exp[(A+ %)p(z)] .

We are now ready to follow the proof of Theorem 2. We set
1-x)f5f
|Fi2

where eg={(€q, 1, -++5€0,n)s F=(f1,--+s fm), and |[F|*=3"_|| f;|*. Therefore
"_1h; f;=f. Moreover, |F| has good lower bounds on the support of dy.
Namely, from (22) we have that

log|F(z)| =log(§i/2)— (n+1)2d,... d,,log(1+|z|?).
This allows us to conclude that

|0h;(z)| < A” explap(2)];

hj=xf(),j+

d d
a= ——ei—f- +3m’"+1(A+d1)+(n+l)(A+ 7‘)+m2n.

Furthermore, if we let

C=2a+02m—-3)A+n+1,
then we have

S|F|‘2(2’"‘3)I3h|2 exp[—Cpld\ <.
As in Theorem 2, we have a A2C™-valued function u such that
|lup? expi—Cp1dn <o,

with C'=C+2(m—2)d;+2m—2 and Pou = dh.
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Let now g = h— Pu; then g is a C™-valued function, Pg=f, dg =0, and
(58) Scnggﬁ exp[—(C’+d,)pl d\ < .

Therefore the components g; of g are polynomials of degree
deg g;<C’'+d,<deg f+(6m"* ' +3n)(A+d)).
This concludes the proof of Theorem 3. O

REMARKS. (1) Theorems 2 and 3 remain valid in K{z] for any number
field K of characteristic zero, as a consequence of the Lefschetz principle,
and in particular for polynomials with rational coefficients.

(2) In case f, fi, ---, /€ Q[z] and the situation of Theorems 2 and 3 oc-
curs, it would be interesting to find good estimates for the logarithmic heights
of the polynomials g; € Q[z]. One would hope for bounds analogous to those
found in [2] for the case 1€ I(f}, ..., f,,). The existence of good bounds
would be an indication that there must be in these cases algorithms capable
of finding g; in polynomial time.

Added in proof. F. Amoroso has recently found an algebraic proof of our
results; see Tests d’appartenance d’apres un Théoréme de Kolldr, C.R. Acad.
Sci. Paris 390 (1989), 691-694.
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