Zeros of the Successive Derivatives of
Hadamard Gap Series in the Unit Disk

ROBERT M. GETHNER

1. Introduction

Polya [8] defined the final set of an analytic function to be the set of all 7 in
the complex plane such that every neighborhood of z contains zeros of in-
finitely many derivatives of f. He and others [1, 2, 3, 5, 6, 7, 8] have deter-
mined the final sets of various entire and meromorphic functions. Here we
examine the final sets of Hadamard gap series with radius of convergence
one (and hence with natural boundary {|z|=1} [10, p. 223]).

We consider power series of the form

(1.1 f@=3 e
satisfying A > 1, where )
1.2) AN=liminf n;/ny.
We define o
(A=DNU=D  when 1< <o,

1.3 A= {1 when A= co,
THEOREM 1. Let f, N\, and H(\) be defined as above, and suppose that
(1.4) lce |V —>1 as k—oo.

(@) If 1<\<oo, then the final set of f is
(1.5) (OJU{H(\) <|z|=1].

(b) If \= o, then the final set is contained in (1.5). If A= oo, and if
lim sup nZ|cy| >0 for some B=0, then the final set is (1.5).

In Section 4 some functions are constructed which satisfy (1.4), and for
which A = «, but for which the final set is {0}.

For encouragement, suggestions, and valuable conversations concerning
this work I am grateful to W. H. J. Fuchs, W. K. Hayman, L. R. Sons, and
W. Bergweiler. I also thank the referee and the editor, whose careful reading
and many suggestions helped me to simplify the presentation.
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2. Proof of Theorem 1

Our main lemma (Lemma 1 below) gives information about the location of
zeros of /) for large j. Its proof, which will be given in Section 3, was sug-
gested by a paper of Fuchs [4] which employed “the idea, due to Hardy and
Littlewood, of accentuating the dominance of the largest term [of the series
(1.1)] by successive differentiations” [4, p. 167]. It will be shown in the proof
of Lemma 1 that the first term of £ dominates the sum in a punctured disk
centered at the origin, so that ) has no zeros there. The outer boundary
of the disk is close to the circle where the first and second terms are equal in
modulus. On the other hand, the sums of certain pairs of successive terms
of f) are dominant in certain annuli; Rouché’s theorem implies that £}
has zeros in these annuli.

Choose a function f of the form (1.1), where {c,} satisfies (1.4) and the A
given by (1.2) is in (1, eo]. Pick L in (1, A) such that, for all positive integers
s and ¢ satisfying s > ¢,

2.1 ng/n,=L"",

All statements in this section and the next refer to the £, \, and L just chosen.
Also define

(2.2) I(j)=min{p:n,=j}.
Finally, for all positive integers p and j such that n, = j, let
_ ny(ny—1)--(n,—j+1)  \Yp+177)
@y (e 2t ) .
npp1(npp1—1)---(np 1 —Jj+1)

Then v(J, p) is in (0, 1) and is the value of |z| for which |(d’/dz’)z"?| =
[(d’/dz’)z"p+1].

LEMMA 1. (a) For each € >0 there exists N >0 such that, if j > N and
0<|z|<v(J,I(j)e~, then fY)(z)#0.

(b) If N\= o and lim sup|cy|>1, then there exist infinitely many m such
that, for each real o, the set

(re?: ) <r<land a<0=<oa+2n/(Nyp1—ny))

contains at least one zero of f ",

(c) Suppose that 1 < A\ < oo, and let S be a set of integers m such that
Nyyi/Bp—>Nasm—ooin S. Set r=1—(log L)/(L—1). Then 7> 0. For
each A in (0,1) and each € in (0, A7/(3N)), there exists N >0 such that, if
mesS, ifn,,=j=[An,]1 > N, and if a is real, then the set

{re’: y(j,m)e *<r<~vy(jmye‘and a <0< a+27/(Nyi1—Nm))}

is contained in {|z| <1} and contains at least one zero of fY). (Here [An,,]
represents the largest integer no greater than An,,.)
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We now deduce Theorem 1 from Lemma 1. First, the gap condition ensures
that the origin is in the final set of f. Next, we will show that the assumptions
that |c,|'"/" -1 and that 1 <\ < oo imply that the final set is contained in the
set (1.5). This will follow from Lemma 1(a) once we derive a suitable lower
bound on y(/, 7(j)). Now for fixed q, (4, q) decreases as / increases, since,
by definition of 1,

v(h—1,q) _( Ng41—h+1) )1/("q+1—nq)
'Y(h’Q) B nq‘—h'l"l

But n;(;, = j by definition of I1(j), so v(/,1(j)) = v(nyy,1(j)). A lower
bound on the right-hand side of this last inequality is provided by the fol-
lowing lemma.

(2.4) >1.

LEMMA 2. Let H(\) be given by (1.3). Then:
(@) lim inf y(n,, p) = H(N);

p— 0

(b) if p— o through a sequence of integers such that n,,/n,— \, then
v(np, p) = H(N).
Proof. By (2.1), n,—n,— . Thus, by Stirling’s formula,

npt (Npp1—np)!
]

v(np, p)'rH1 7=

np+1-
n — Np+1
=< M )"(”P‘“ "P)” 27s, (1+0(1)
Np1—Hp Rpi1

as p— oo, where S, =n,(n,4,—n,)/Ny,1. But s}/ "e+1=") 1 since, for p
large, ‘
-1
1<n,(1-L7)<n,(1—n,/n, ) =5,<n, 1—Hp.

Hence, by the definition (1.3) of H()\),

1 1/("p+1/"p"1)
v(n ,p)=<————>
g ”p+1/np_1
-1 (n +1/” )/ (n +1/n —-1)
X(M) P o1y
np-i-l/np
=H(np,1/np)(1+0(1)),

and (b) follows. Next, H(x) is increasing for x >1, which gives (a) when
A < oo, Finally, H(x) —» 1 = H() as x — oo, so that (a) also holds when
A\ = oo, L]

Lemma 2(a) and the remarks preceding it give the following.

COROLLARY. The final set of f is contained in (1.5).
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To complete the proof of Theorem 1(b), it is enough to show that the unit
circle is in the final set of f whenever A = o and there exists B = 0 such that
lim sup ng|c,|>0. We may assume without loss of generality that B is an
integer, and, because f and f®*D have the same final set, we may assume
that lim sup|cg| > 1. Then, since n,, ;| — n,,, = ©, Lemma 1(b) guarantees that
the final set intersects {re”?: 1 <r=<1j for each real 6. But by the Corollary,
this intersection can only be {e’?}. This establishes Theorem 1(b).

Finally, we complete the proof of Theorem 1(a). Choose 4 in (0, 1). It fol-
lows from Lemma 1(c) that {|z|= R} is contained in the final set whenever R
is a limit point of numbers v(j, m), where m is in S and j is in ([4n,,], n,,,).

To determine where such y(j, m) accumulate, we first note that, by (2.4)
and (2.1),

1< 7(]1._.1’ m)/'y(h’ m) <n:n/.(I_”lm+l—"m) < n:n/[(L'—l)nm] -1
as m — co, Hence, for m sufficiently large,
vy, m)<y(n,—1,m)<--- <y([An,l, m),

and the difference between consecutive numbers y(j, m) in these inequali-
ties becomes uniformly arbitrarily small as m — co. Furthermore, by Lem-
ma 2(b), y(n,,, m) > H(\) as m — o in S. Also, as we will see in a moment,

2.9 log y({An,,],m)=—(A"'=14+0@1))7L
Therefore the final set contains {H(\) <|z|=<exp[(1—A~")"!]}, and Theo-
rem 1(a) follows when we allow A4 to approach 0. O

We will derive (2.5) from the following lemma.

LEMMA 3. When n, = j,
j—1 i—1

i
- Eo(np+l —t) '=logvy(j,p)=— Eo(np —t)~L.
t= =

Proof. By the definition (2.3) of v and the mean value theorem,

: Ig! log(n,, —t)—log(n,—t)  JZ]
log (J:p)='— £ - = 2_19
K t=0 (npp1—t)—(n,—1t) z§0 ‘
where n, —t <£,<n,,,—t. The lemma follows. ]

From Lemma 3 we have

—1
log y([An,,1, m) = [An,] ———— = —(A"'=1+0(1))7},
K " " Ry — [Anm]
which proves (2.5). This completes the derivation of Theorem 1 from Lem-
ma 1. O
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3. Proof of Lemma 1

In this section and the next we will write

(3.1 fP2)=3 op@)= T oil2),
ne=j k=1(j)

where

(3.2) bk (2) = (g —1)- -+ (g —j+ 1)z,

The first step in the proof of Lemma 1 is to show that each term ¢;,(z) is,
for |z| suitably restricted, significantly larger than the sum of the succeeding
terms of ). This step is taken in the following lemma.

LEMMA 4. (a) For each € >0 thereis an N > 0 such that, if n, = j > N and
1z| =v(J, q)e ", then

S |$jq(2)]
Y @)= —J‘qé—*-

k=q+1
(b) Suppose that \ = co. Then there exists N >0 such that, if n,_ >N, if

|| =leq| ™y (g1, g)e~"a-1/C"0),
and if |c,|'/"a = |c; [/ whenever k > q, then

|én,_1, q(Z)!

E ¢nq lk( )‘

k=qg+1
Proof. Fix z in C and j and q such that n, = j. Then, for k>gq,
$ie(2) | _| 9 (2) || $ik-1(2) | | $ig+1(2)
®iq(2) i k-1(2) || ¢j,k-2(2) $jqg(z) |’
The definitions (3.2) and (2.3) of ¢ and v give

¢ju(z) Cu ( ”u(”ﬂ"l)"'(nf‘-j-l_l) )IZ]ﬂg—ng—l
d’j,,u—-l(z) n,u-—l(np.—l_1)"'(ny—l—j+1)

Cu 1 ’h—ﬂ%_llln —n,_;
= M
Gt I\ 7 p=1) ‘

Now by Lemma 3, v(J, p) is, for fixed j, an increasing function of p. There-
fore, for p=g+1,

bj(2) Cy ( Iz )"F'”f*—‘
®j,u-1(2) | | camr |\ (U, Q) .
It follows that, whenever k£ > g,
$jx(2) Ck ( |z] )
3.3 log| | =<log| —=|+(ny—n,) 1o ; .
(3.3) g %0 (2) g ) (ny—ng)log ~U.9)
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Suppose now, to begin the préof of part (a), that |z| <y (/, g)e ¢ for some
€ >0. Then by (3.3) and (2.1),

P (2) — —nk(l—ﬁ>eslog Sk
®iq(2) Cq ny Cq

Let 8 = (1 — L™")e/4. Then (1.4) implies that log|cy /c,| < ény. + én, < 26n;
whenever ¢ is sufficiently large and k& > ¢. Thus, when j (and hence g) is suf-
ficiently large and £k > ¢,

log <log| —ny(1—=LYe.

log| 22 (2) <26n;, —46n, < —28k.
$iq(2)
So whenever j is large enough and n, = j,
-—26(q+1)
—26k <1
2 |¢Jk(3)|—|¢1q(z)| _Eq;“e = ]—e-20 3 .
This completes the proof of Lemma 4(a). O

For the proof of Lemma 4(b), suppose that
lz|= |Cq|—l/nq7(nq—la Q)e_n"“l/(zn"),

and that |c, |V <|c,|"/"a whenever k > g. Then (3.3) gives, for k> g,
q

®n,_1,k(2) Ci loglc,| n,-;
log —~—"—’—————- <log| = |+(n,—n )( 4 _ .4 )
_1¢(2) Cq £ nq 2n,
Again for k>q,
c log|c log|c log
Cq ny ng, ng

so that, for g large,
Prg1,k(2) S(nk_nq)<_ "q—l) =__”_q:1<f_fg_1> <_£(L’1<__ )
_1,q¢(%) 2n, 2 \n, 3\ n,

But by (2.1), ny /n,—1>LF~9—1=e* DL _1 > (k—g)log L. Therefore,
for g suﬂ“lciently large,

log

o

2 |bn,_ k@)=|¢n,_1,q()| X exp{—(g/3)(log L)(k—q)]

k=qg+1 k=qg+1
_ |¢nq—l!q(z)|e_(Q/3)logL |¢"q—lsq(z)|
- 1—e—(a/3)logL 3 )
The proof of Lemma 4(b) is now complete. ]

Proof of Lemma 1{a). Choose e >0. Let I(j) be defined by (2.2). If j is suf-
ficiently large and 0 <|z| <+ (J, I(Jj))e ¢, then (3.1) and Lemma 4(a) (with
g =1(Jj)) imply that
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Iﬁbj,l(;) (z)| 0.

This completes the proof. O]

If(j)(z)|2f¢j,,(j,(z)l—’ Y (=) =|dj,10)(2)| -

k=1(j)+1

In the proof of parts (b) and (c) of Lemma 1, we need the following applica-
tion of Rouché’s theorem. '

LEMMA 5. Let ry and r, be in (0,1) and let j <n,,. Suppose that
(3.4) 21/t =t ry <[y fCypga |V =y (i) < 27Vt =iy
and that
B.5) 1@ = bjm(2) = ), mr1(D) | = (D (2) |+ 8, m1(2)])/3
when ry <|z|<r,. Then, for each real o, ) has at least one zero in the set
(re’:ri<r<ry,and a <0<a+2r/(N,.1—nm)).
Proof. When |z|=ry, the definitions (3.2) and (2.3) of ¢ and v, along with
(3.4), give
®;,m+1(2)
¢jm(Z)
Hence, again for |z|=r,
|9m @+, m 41D _ 14|85, me1 @/ 1djm(2)] _ 3/2 _
|6jm(2) + &), m11(2)] 1149 m+1(2)/Djm(2)] 1/2
and thus

_( lcm+1/cmll/(nm+l—nm) Izl)"’"+l_n’" < 1
v(Jj, m) 2°

3,

1S O) = b (2) = b ms 1) | < | D () + &) 41 (2)]-

Similarly, this last inequality holds when |z|=r,. Finally, the same inequal-
ity holds for z on each of the (n,,,,—n,,) rays

{z:arg z =(arg(c, /Cpn+1))/ (Nmi1— 1)}

This is because, for such z, ¢;,,(z) and ¢; ,,;1(z) have the same argument
(mod 27), so that |¢;,(2)| + [9), m+1(2)| = |Djm(2) + &), im+1(2)|. Lemma 5
now follows from Rouché’s theorem. [

Proof of Lemima 1(b). By hypothesis, there are infinitely many positive in-
tegers k such that ]ck|1/”k > 1. Furthermore, |ck|1/”k — 1. Thus, by [9, p. 24,
problem 108], there is an infinite set 7" of positive integers m such that

(3.6) |Cms1| /1= ||V and  |cpuq|>1
whenever me T and k> m+1. Set
n=} and ry=|cup| " mety(n, mot e/ @),

We will show that £m) r,, and r, satisfy the hypotheses of Lemma 5 for
sufficiently large m in 7. This will establish Lemma 1(b).
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First, r, <1 when m e T because |c,,,;|>1and y(n,,, m+1)<1.
Next, (3.1), (3.6), and Lemma 4(b) (with g =m+1) give, for large m in T
and IZl in (rl,rz),

| fO(2) = by m(Z)—bn mr1(2)]|=

This gives (3.5).
It remains to prove (3.4). By (1.4), the hypothesis that A = oo, and (1.2),

log|cm /Crm+1 =10g|c,,,| Ny, /(1_ R >_10g|Cm+1|(1+_"_m_>
Ny

Rpt1— Ay ngy, (7R Ny Nyt Nyyr1—

l¢nm m+l(z)l

2 ¢nm,k( )'

k=m+2

(3.7) =0(1) Ry IOgICm+1| (1)

Am+1 T ES|

as m — oo, Therefore, by Lemma 2(b),
|Cn/Cmaa|/Cm1™ )y (myy, )27 1 =) 17l = (14 0(1)) H(o0) (14 0(1))2
=2+4+0(1).

This gives the first half of (3.4).
Finally, (3.7) and the definition of r, yield

log{|Cm /Comy |Vt 1 =" md oy (1, )21/ Cne = M) 1)

Ny 1og|Cpei]

(3.8) =o0(1) +log v(n,,, m)
Rt Ryt
1
+o0(1) m_ 4 0g|c"’+1|—log~y(nm,m+l)+
LS N1 20,4

We now need an upper bound on log{vy(n,,, m)/v(n,,, m+1)}; this bound is
given in the following lemma, which we will establish after completing the
proof of Lemma 1(b).

LEMMA 6. If n,=>j, then

WETLRPE G
v(J;p+1) np+2/np+1_l Rp+1

Lemma 6 and the hypothesis that A = o imply that the left-hand side of (3.8)
is bounded above by

o(1) ny + ny +log< v(ny,, m) )

Npi1  2Mp44 v(n,, m+1)

<o(l) 4 —m +<1— ) fm_
Pp1 2N 4 Nt
which is negative for large m. This gives the second half of (3.4), and thus
completes the proof of Lemma 1(b).
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Proof of Lemma 6. By the proof of Lemma 3,

. il log((np—8)/(npy1—18)) 1
—log y(J,p+1)= £ L .
t§0 (np+2_t)/(np+l—t)—1 Ny —1

But (n,,,—1)/(n,,—1) is increasing for ¢ in [0, n,), while (log x)/(x—1)
is decreasing for x >1, so

IS log(npya/npy) 1
—logvy(j,p+1)= Y frenb :
f=0 Mpi2/Npy1—1 npy—t

Now (log x)/(x—1) <1 for x> 1. From Lemma 3 and this inequality, we get

. ) IS log(ny 42 /Nps1) 1
log y(j, p)—log y(j, p+1) < { p+2/Mp —1]
t§0 Np42/Npr1—1 Rpy1—1

<j{ log(n,.5/np41) _1} 1
np+2/np+l_1

This completes the proof of Lemma 6. ]

Rp+1

Proof of Lemma 1(c). Choose A in (0,1) and e in (0, A7/(3\)), where 7=
1—(log L)/(L—1). (Note that 7 > 0 because (log x)/(x—1)t1asx —»1%.) Let
ri=v(Jj,m)e ¢ and r, =y(j, m)e‘. We will verify the hypotheses of Lemma
5 for all sufficiently large »2 in S and all j in ([A4n,,], n,,,).

We first show that r, <1. Lemma 6 and (2.1) imply that, for large m in S,

log( f2 )< T e AT

,m+1 n n
(3.9) v(J ) n;;—l m;l—41
T

whence r, <y(j,m+1)<1.
Next we verify (3.4). By (3.7) and (2.1), |¢;n /Cns1 |1/ (m+1="m) _ 1 even when
A< oo, 50

21/(”m+1_"m)r1’cm+1/cmll/("m+l_"m)/'y(j, m) = 3_6(1 +0(1))'

This gives the first half of (3.4); the second half is derived in a similar way.

Finally, we must estimate 1) (z) for r; < |z| < r,. The first step is to show
that the terms of f¥)(z) preceding ¢;,(z) (if any) are small when |z|=r,.
To accomplish this, we first write, for k satisfying I'(j) <k <m,

@k (2) ik (z) || bj,k+1(2) ?j,m-1(2)
®im(2) @i, k+1(2) || D),k +2(2) bjm(z) |
Calculations similar to those that led to (3.3) then show that

< v(j,m—1) )"“*"““

z|

¢j,ﬂ_1(2)

C,u—l

Cu

=

for p < m, and that
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Pk (z)
Oim(2) m
Meanwhile, by Lemma 6 and (2.1),

0g<7(1,fn—1))s(logL_ )__j_z_j_f_
v(J, m) L-1 R, .

So if |z| = ry, then

< log

Iog ’Y(J’m_l)>'

+(nm ng) log( ]

log 3)5,]:1(()) <log| — c +(nm—nk)(——;+>
Therefore, because j=[An,,] and e < A7/(3\) < A7/3,
log If"(()) <log| £ |+ (n,, — ny) (—Ar(1+ 0(1)) + A7/3).
jm Cm

Let §=(1—L"")7A4/8. Then (1.4) implies that log|c, /c,,| < ény + én,, <
20n,, for m sufficiently large and for k£ < m. Thus, by (2.1),

ik (2)
¢jm (Z)

Now for large m there are at most {—log(4/2)}/(log L) terms of £ pre-
ceding ¢;,,. For let ¢;; be such a term. Then n,, > n; = j =[An,], so that

log L*=™ > log(ny, /n,,) =log{[An,,]1/n,,} >log(A/2),

whence m+ {log(A4/2)}/(log L) < k <m. This proves the claim.

Hence, for sufficiently large m in S, for j in ([4n,,], n,,), and for |z|=r,
m-1 log(A/2) _ |Bjm(2)]
2 di(z) <__lo—gT—e 22| §jm (2)| = J"; .

k=1(j)
Next, by (3.9), r, < v(Jj, m+1)e ~4/@V for large m in S. Therefore we may
apply Lemma 4(a) (with g =m+1) to conclude that

|¢j,m+l(z),
3

for all large m in S, all j in ([An,,], n,,), and all z such that |z|<r,.

From (3.10), (3.11), and (3.1), we see that (3.5) of Lemma 5 holds when
m, j, and |z| are restricted as above. Lemma 1(c) now follows from Lem-
ma 5. 1

log <26n,, —n,(1—L ') (A7/2) = (26 —48)n,, < —26m.

(3.10)

Y du@)=

k=m+2

(3.10)

4. Counterexamples for Large Gaps

The following result shows that, when A = oo, it is possible for the coeffi-
cients of f to decrease so rapidly that, for all large j, the first term of £ is
dominant in the entire unit disk. In this case, the only zeros of /) are those
at the origin.
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THEOREM 2. Let f be given by (1.1) and suppose that (1.4) holds. If
(4.1) lim sup ng 4 q|cr|/* <1,

then ny | /n;, — o and the final set of f is {0}.

Proof. We first show that ny .| /n; — . By (1.4),
N 1|t [V = Rge gy (|| /41) 41 = e (14 0(1))%41/7%,

By (4.1), the left-hand side is bounded; the right-hand side can only be
bounded if ny . ;/n; — oo.

Next we show that the final set is {0}. By (4.1) and (1.4), there exist ¢ in
(0,1) and N > 0 such that |c; | < (6%/ng1)" and |c;|> o when n; > N.
Thus, whenever n;, = j >N and |z| is in (0, 1),

®j k+1(2) Cht1| Prp1(Ngg1=1) - (Mgpy—J +1)
®jk(2) Ck n(ng—1)---(ng—j+1)
| Sk+1 <nk+1—j+1)’
o Cr nk—j-i—l

< (a/nk+1)"k(nk+1—nk+1)"k< ok <gl,

Therefore, for j sufficiently large and |z| in (0, 1),

o $ip(2) § (677~ 1) = o/ <1,
p=I+1| 8, 1H () | p=i(j)+1 1—0o/
so that
| fD(2)] ->-|¢j,1(j)(2)|—p_IE(JJ_)HI@p(Z)I>0-
This completes the proof of Theorem 2. ]

The following corollary to Theorem 2 shows that the factor nf in Theorem
1(b) cannot be replaced by a larger function of #,.

COROLLARY. Suppose that y:Z+ - R, that y(n)"/" > 1, and that
y(n)/nB - for each B=0.

Then there exists a sequence {n;}, satisfying ny/n;, — o, such that the fi-

nal set of f(z) =X =¥ (n)} "'z is (0).

Proof. We define {n;} inductively. The choice of #n; is arbitrary. Having
chosen ny,, we pick ny .1 so that ¥ (ny.)/ng% > 2". (This is possible because
¥(n)/n"™ — o as n— .) Then for each k, ny 4 ;{1/¥(ng41)}/" <1, so that
(4.1) holds. The corollary now follows from Theorem 2. O
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