Composition Property of
Holomorphic Functions on the Ball

BOO RIM CHOE

THEOREM. Suppose ¢ € A(B), with ¢o(B) C U, is holomorphic across iis
maximum modulus set. Then gep € (o< p< HP(B) for every Bloch func-
tion g on U. If, in addition, {¢™}3_, forms an orthogonal set in H*(B),
then there exists a weight o= a(p) such that hoo € H?(B) for every he
AZ(U) and for every p (0< p < ).

This result will be easily derived from a careful analysis of the behavior of
such a function ¢ near its maximum modulus set. For a class of functions ¢
we obtain the best possible weights a(¢). These are nonhomogeneous (even
rational) functions, unlike the previous examples of P. Ahern, P. Russo,
and the author.

1. Introduction

We will write B = B,, for the open unit ball of C* (n=1) and let $=S§,,=
dB,,. For n=1, we let U= B, and T = S§,; for further notation see Section 2.
Throughout the paper n =2 unless otherwise specified.

It has been known that the homogeneous polynomials

p(2)=n"2z, - z,, (1)
e(@)=z{+-+z5, ([15])
0(2) = Dozt -+ 257, ([2])
normalized so that ¢(B) = U, have the following composition property:
If ge B(U), the Bloch space on U, then gop € BMOA(B).

Here BMOA (B) denotes the space of holomorphic functions in H2(B) whose
boundary functions are of bounded mean oscillations with respect to the
non-isotropic balls on S (see [8]). These results have been recently gener-
alized by the author. In [5] it is shown that the same property holds for
every ¢ belonging to a certain class of holomorphic homogeneous poly-
nomials. It is, however, still open whether the same holds for every holo-
morphic homogeneous polynomial that maps B onto U. It is known that
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BMOA(B) C H?(B) for every p (0< p <o). Thus, before attacking this
problem, one might naturally ask the following:

If geB(U), does gep € (Y HP(B) then follow for every holomorphic
homogeneous polynomial ¢ normalized so that o(B)=U?

Here N HP(B) =Ny« p<w HP(B) for simplicity. In this paper we answer
this question (and more) in the affirmative. In fact, one of the main results
of this paper implies the following.

THEOREM A. If ¢:B— U is holomorphic on B, then ge¢ € N HP(B) for
every ge B(U).

See Theorem 4.1 below. The hard part of proving Theorem A is to analyze
carefully the behavior of such a holomorphic function ¢ near its maximum
modulus set M ,= ¢~ }(T) in 8. For such a function ¢ we obtain the follow-
ing estimate, which is a special case of Theorem 3.3.

THEOREM B. Let ¢ be as in Theorem A. If |¢|.=1, then there exists a
positive exponent o= a(¢) such that

o{,eS: |p(&)|=t}=0[(1—1)*] as t11.

The symbol ¢ = g,, denotes the unique normalized rotation-invariant Borel
measure on S. Theorem B should be compared with the known result on the
maximum modulus sets of functions ¢ € A(B), where A(B) is (as usual) the
ball algebra consisting of functions holomorphic on B and continuous on B:

Ifo:B-U, |p|e=1, and p € A(B)NLip(3), then ¢[M,] =0.

There is a sequence of works towards this result (see [19], [16], [13, §11], and
[11, p. 157]; see also [14, §15] and [18] for related results). Observe that The-
orem B shows in a more precise way how such a function achieves the con-
clusion of the above result.

Note that, if ¢ is holomorphic on B and |¢|. =1, then its maximum mod-
ulus set is precisely the zero set of the real-analytic function 1—|¢|? on S.
We shall derive Theorem B from a more general estimate obtained in Sec-
tion 3 on the behavior of real-analytic functions near their zeros. A classical
result says that if a real-analytic function on a connected domain vanishes
on a set of positive measure, then it vanishes throughout the domain. Hence
the following result gives more precise information on how real-analytic
functions behave near their zeros.

THEOREM C. Suppose { is real-analytic near 0e R"” (n=1). If y(0)=0
and  is not identically 0, then there exist a positive exponent o and a neigh-
borhood W of 0 € R" such that

my{xeW: |[Y(x)|<t}=0(*) as tl0,

where m,, denotes the Lebesgue measure on R".
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In Section 4 we apply a version of Theorem C on the spheres to obtain two
composition properties of holomorphic functions. After proving Theorem
4.1 (which implies Theorem A), we also obtain the composition property
in the H” context. It is shown that the homogeneous polynomials ¢(z)=
n"?z,---z, and ¢(z) = z¥ + --- + z2 have the composition property (cf.,
resp., [1] and [15]), not only in the BMOA context as mentioned at the be-
ginning, but also in the following H” context:

If h belongs to the weighted Bergman space A{’,,_3) 2(U),
then hep € HP(B) for every p (0< p < ).

These results are sharp in the sense that the weight (7—3)/2 is the best pos-
sible. In Theorem 4.3 we obtain an analogue of the above for more general
functions ¢. In case ¢ is a holomorphic homogeneous polynomial normal-
ized so that ¢(B) = U, we have the following.

THEOREM D. 7o every such ¢ there corresponds a weight a = a(¢)<n-2
such that hep € HP(B) for every he A2(U) and for every p (0< p < ).

Unfortunately, our proof of Theorem 4.3 does not produce the best possible
weight a(¢) in Theorem D. In [6] the best possible weight «(¢) in Theorem
D can be found if ¢ belongs to a large class of holomorphic homogeneous
polynomials (see Definition 5.3 below). Finally, Section 5 is devoted to the
examples of nonhomogeneous functions for which the conclusion of Theo-
rem 4.3 holds. For these examples we also find the best possible weights.
Unlike the previous functions, the examples given here are rational functions.

Most of Sections 3 and 4 is a strengthened version of part of the author’s
Ph.D. thesis, completed at the University of Wisconsin-Madison. The au-
thor would like to thank his advisor, Professor W. Rudin, for many helpful
suggestions. The author would also like to thank Professor H. O. Kim for
many conversations about the examples given in Section 5.

2. Notation and Basic Facts

We shall use the notation f*(£) =lim,;; f(r¢) for functions f: B— C, pro-
vided the limit exists at £ e S.

The Hardy space H”(B) (0 < p < ) consists of holomorphic functions f
on B such that

1/15= sup | 7§ doe) <eo.

0<r«li

The space H”(B) is a Banach space with the norm | |, for 1 < p <, and is
a complete metric space with the metric d(f, g) =[f—g|5 for 0< p<1. We
will use the fact that every convergent sequence in H”(B) converges uni-
formly on compact subsets of B. Also, it is well known that if fe H”(B)
then f* exists [o] a.e. and
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1 I715= {1717 do.

See [13] for details.
The Bloch space B(U) consists of holomorphic functions on U such that

lgls = |£(0)] +§UI(3/(1 —INP) g’ ON)| < 0.

We refer to [3] for a more detailed description of the space B(U). In the
present paper we use only the following immediate consequences of the above
definition:

(2) lg(N)] SZIIgllaa(l +log

o) Aes

(3) lele=<lgls (O<r<1).

Here g, denotes the dilated function A — g(r\) for Ae U.
For a > —1, the weighted Bergman space A2(U) (0 < p < ) consists of
holomorphic functions # on U such that

§U|h|P(1—|>\|2)adm<oo.

Here m denotes the normalized area measure on C. It is easily verified for
he AE(U) that

@ lims b, — h|P(1—|\|)*dm =0.
rt1Jv

Let v, (n=1) denote the normalized volume measure on C”. Then, for the

integration with respect to the measures o, (for n=1, g,=d6/2x) and »,,

we have the following formula:

® [ ran=(" )], I, e VITRPE do 1= 22 i)
S k By YS;
for fe LY (o), where n=k+1/. For /=1, (5) can be found in [13, §1]. This
general form can be proved exactly the same way (see, e.g., [6]).
Finally, the class of holomorphic homogeneous polynomials ¢ (on C”),
normalized so that ¢(B) = U, will be denoted by @, (n=1).
Any unexplained notation will be customary or as in [13].

3. Zeros of Real-Analytic Functions

Throughout this section, n=1 except for Theorem 3.3. We first obtain the
asymptotic estimate concerning the behavior of real-analytic functions near
their zeros, as mentioned in Section 1. We write x = (x’; x,,), where x’ e R"~!
and x,eR for xeR".
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3.1. THEOREM. Suppose y is real-analytic near 0 R”. If y(0) =0 and ¥
is not identically 0 near 0 e R", then there exist a positive exponent o and a
neighborhood W of 0 € R” such that

(1 muy{xeW: |Y(x)|<t}=0(t%) as tl0.

Proof. Without loss of generality, we assume that  is real-valued. In case
n=1, the theorem is trivial because zeros of real-analytic functions are iso-
lated and have finite multiplicities. We now proceed by induction on the di-
mension #n. Fix n= 2 and assume, as an induction hypothesis, that the theo-
rem has been verified in all the lower-dimensional cases.

Since ¢ is not identically 0, we may assume (after change of coordinate
systems) that the equation

¥(0; x,)=0

has isolated zero(s) at x,=0. Note that if two functions satisfy inequality
(1), then so does their product (with a possibly different exponent). Hence,
by the Weierstrass preparation theorem [12, Cor. 3.7], we may assume that
V¥ is a distinguished polynomial in O,,_[x,] (O,_ denotes the ring of germs
at 0 € R"~! of real-valued real-analytic functions); that is,

Y(x';x) =xZ+ay(x’)x? '+ .- +ay(x’) near 0eR”

for some d and g; € O,,_; such that ¢;(0) =0 (i =1, 2, ..., d), and further that
¥ is irreducible in O,,_,[x,] (see [12, Remark 3.11]). To avoid triviality let
d = 2. Choose a neighborhood V of 0 € R"~!s0 that all g;’s are defined on V.
By Rouche’s theorem we can choose V in such a way that the complex zeros
of the polynomial ¢, stay bounded uniformly in x’e ¥, where ¢,.(x,)=
¥(x’;x,). Now, given x’ eV, let A(x’) be the discriminant of the polyno-
mial ¢,-. Being a polynomial in a;’s, A is a real-analytic function on V such
that A(0)=0. Since ¥ is irreducible, A is not identically 0. Thus, by induc-
tion hypothesis, we may assume that A satisfies inequality (1) with » and
W replaced (respectively) by (n—1) and ¥, after shrinking V if necessary.
Let E(x’) be the set of real zeros of y,- for x’e V. Define, for (x’; x,) €
VxR,
min |x,—r| if E(x')# ¢,
reE(x’)

1 if E(x')=¢.

o(x’; x,) =

Then there exists a constant C =1 such that
o(x";x,)<C forall (x;x,)eVx[-1,1].

Now fix x’e V and let ¢y, ..., ¢, be the complex, but not real, zeros of the poly-
nomial ¥, (counting multiplicities). Then, for every (x; x,)e Vx[—1,1],

k k
[W(xsx) = II [x%,=r|" I |xp—ci| = C™9[8(x"; x,)19 T] |Im ;]
re E(x’) i=1 i=1
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where m(r) is the multiplicity of the zero at x,, =r. Since A(x’) is the prod-
uct of the squares of the differences of all complex zeros of ¢,., we have

k
IT |Im ¢;| =279A(x").

i=1

Hence the proof of the inequality

(2) mp{(x’; x,) € VX[—1,1]: 6(x"; x,) =t} = O(¢)

will complete the induction. But it is easy to see that, for ¢ sufficiently small,
mf{x,e[—1,1]:6(x"; x,) <t} =0(¢)

uniformly in x”e V. Finally, an application of Fubini’s theorem shows (2).
]
Note that Theorem 3.1 is a purely local theorem. Hence we can easily prove
a global version on S”, the unit sphere of R"*!, by compactness. Let us in-
troduce some terminology. Suppose Yy € C(S"). Then ¢ is called real-analytic
on an open subset V of S" if Y has a real-analytic continuation to some open
set WC R"*!such that V=WNS". Also v is called real-analytic on a com-
pact subset K of S" if y is real-analytic on some neighborhood of K in S”.

3.2. THEOREM. Let ¢ € C(S8"), and suppose that y is real-analytic on
Yy 10). If ¢ ~1(0) has empty interior, then there exists a positive exponent o
such that

h{xeS": |¥(x)|<t}=0(%) as tl0,

where h, denotes the n-dimensional Hausdorff measure on S".

Proof. By compactness, it is enough to show that to each x,e S there cor-
respond neighborhoods V= V(x,) and a = a(xy) > 0 such that

(1) hatx € V: [Y(x)| = 1) = O(1%).

Note that (1) holds trivially if x, & ¥ ~'(0). Fix xo€ ¢ ~'(0). We may assume,
without loss of generality, that P= (0,0, ...,0,1) ¢ ¥ ~1(0). Let ¢: R" - S"\ P
be the inverse function of the stereographic projection from S$”\ P onto R”.
The explicit formula of ¢ is given by

_ @y yP-1
I+ y[?

Note that each component of ¢ is real-analytic everywhere on R". By as-
sumption, yo¢ is therefore a real-analytic function, not identically 0, on
some neighborhood of y,=¢ ~!(x,) € R". Thus, by Theorem 3.1, we have
o> 0 and a neighborhood W of y, such that

2 mu{y e W: |¥odp(y)| <t} =0(t?).

Since J¢, the Jacobian of ¢, is bounded on R” [one may compute Jp(y) =
(2/(1+|»}*)"1, by the area formula [9, Thm. 3.2.5] we obtain (1) from (2)
with V= ¢(W). The proof is complete. ]

d(y) (yeR").
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The following is an immediate consequence of Theorem 3.2.

3.3. THEOREM. Suppose ¢ € A(B) (recall n=2) is nonconstant, |¢|.=
1, and ¢ is real-analytic on M ,. Then there exists a positive exponent o such
that

d{EeS: |p(&))| =} =0[1-1)*] as tT1.

Proof. Since ¢ € A(B) is nonconstant, M, has empty interior by [14, Thm.
1.2]. Also, note that M, is the zero set of the real-analytic function 1— lo|?
on M,. Now the theorem follows from Theorem 3.2. [l

3.4. REMARKS. (1) Even when n=1, Theorem 3.3 holds if M, has empty
interior.

(2) The real-analyticity assumption in Theorem 3.3 implies that ¢ is holo-
morphic on BUM,,. To see this, suppose ¢ is real-analytic on some con-
nected open set W C C" containing a component of M,. Then d¢/dZ;=0
(I=i=<n) on WNB, and hence dp/3dZ; =0 on W by real-analyticity.

4. Composition Properties

In this section we give two applications of Theorem 3.3 concerning the com-
position properties of holomorphic functions on the ball.

4.1. THEOREM. Suppose ¢ € A(B) satisfies the hypothesis of Theorem
3.3. Then gop € (\ HP(B) for every g e B(U).

Proof. Let 0< p<oo and fix ge B(U). First of all, it is clear that goe is
holomorphic on B. By 2.(2) and 2.(3) we have :

1
lg,w*|52llg||%(l+logl—_|;—q> 0<r<1).

Note that, by Theorem 3.3, (1—|¢*|) *e L'(0) for some «>0 and that
(8rop)*=g,o0* for 0 <r<1. Hence, by the dominated convergence theo-
rem and 2.(1), there exists a function fe H?”(B) such that lim,; g,c¢=_fin
the topology of HP-space. In particular, g,c¢ converges pointwise to f on
B as r11, and hence gop = f. The proof is complete. ]

In what follows, a function ¢ € H*(B) is called orthogonal if |¢|.=1 and
(™} _, forms an orthogonal set in H2(B). It is not hard to see that ¢ is
orthogonal if and only if the pullback measure ¢[(¢*) '] is rotation-invariant
on U. Every ¢ € ®, is trivially orthogonal. Using 2.(5), one may construct
nonhomogeneous orthogonal functions for »=2. In Section 5 we consider
a special class of orthogonal functions obtained this way.

Our next application of Theorem 3.3 will be the composition property
of orthogonal functions. Before proceeding, we recall the characterization
of Carleson measures for the weighted Bergman spaces. The set {\ e U:
|1—Xe~"%| < ¢} will be denoted by Q(8, 7).
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4.2. THEOREM ([7], [10], [17]). Suppose p is a finite positive Borel mea-
sureon U. Let a> —1and 0 < p <o, Then there is a constant C,, , > 0 such
that

Sulflp dﬂSCp,a gulflp(l_ l)\|2)(xdm
for every fe A2(U) if and only if u[Q(0, t)] = O(t2**) uniformly in 9.

4.3. THEOREM. Let ¢ € A(B) be an orthogonal function. If ¢ is real-
analytic on M, then there exists o> —1 such that hep € H?(B) for every
he A2(U) and for every p (0 < p < ).

Proof. Let p,= o[(¢*) 1. Then, by Theorem 3.3, I, is concentrated on U
and

(1) pANeU: |\ =t} =0[(1—1)1]

for some o > —1. Since p,, is rotation-invariant, we have by Fubini’s theo-
rem that

@ 100, 01= [ 1,100,012 = | a1\ D (V)

."L‘p ’ - 0 ”"p s 271_ - UUI ’ ﬂgp ’
where I(\, t) =[e® e T: |1-\e~"’| <¢}. Since I(\, ) =¢ for |\|<1—¢ and
a([I(\, )] = O(¢) uniformly in A, we obtain from (1) and (2) that

3) o[ Q(0, ] =, [Q(0, )] = O(***)

for every 6. Now fix p (0 < p <) and he AS(U). Then—by (3), 2.(4), and
Theorem 4.2 —there exists a function f'e H”(B) such that lim,; A, = f in
the topology of H?”-space. It follows that ke € H”(B) as in the proof of
Theorem 4.1. O

We conclude this section with the following remark.

4.4. REMARK. Let ¢ € @®,. Since homogeneity is invariant under the uni-
tary change of variables, we may assume that ¢(1,0,...,0)=1. Then, by
2.(5),

)
[ ledo=n-1] | = leO NVT=IP& doy_(®) (1= D2 dmn)

n—1

for k=0,1,2,.... Since |¢|?* is pluri-subharmonic, the double integral in
the right side of (1) is at least

[ o000, e 0P = N2 dm()

- SU|>\|2dk(1 —~IN»)""2dm(\)  [d =deg(p)]

_ I(dk+1)T(n—1)
N I'(dk+n)
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By Stirling’s formula, the above behaves like k=" as k — . On the other
hand, if

(2) o{éeS: |p(§)|=}=0[1-0)'"*] (a>-1),

then

1
| Jol*do=2k| r*-tofa-n+e1ar

_o| T@k+DT2+a)
B [ I'k+2+a) ]

Again, by Stirling’s formula the above is dominated by £ ~*D_ and there-
fore the exponent « in (2) is at most n— 2. Accordingly, the proof of Theo-
rem 4.3 shows that the weight « associated with ¢ (as in Theorem 4.3) is at
most n—2. This maximal weight n—2 can be achieved for functions ¢ of
the form ¢(z) =a;zf + --- 4+ a,z¢ (d #2); see [6].

S. Examples

For p € H*(B), we let p, = o[(¢*) ~']. If p, << m, we then write w,, = dy,, /dm.
Note that, if ¢ is an orthogonal function such that 1, << m, then w,, is radial.
In this section we will consider a special class of rational orthogonal functions
¢ such that p, << m and

() Wwo(r)=c(1—r)’®2"1140(1)] as rtl

for some constant ¢=c(yp). Here 6(¢)=(2n—1)— (topological dimension
of M,); that is, é(e) is the topological co-dimension of M, in S. [For o€
H%(B), we let M,={£€S:supg<,«1|o(rf)| =|¢|w}.] It is clear that for
such ¢ the conclusion of Theorem 4.3 holds, with the best possible weight
a=0(¢)/2—1. It is known [6] that if o € @, then ho<<mand w,>0onU.

Fix positive integers &,/ such that k+/=n, let fe ®, and ge ®; with
degrees at least 2, and define

g(w)

(*%) vz, w)= - /@) for (z,w)eB.

Since degrees of f and g are at least 2, we have (by homogeneity)
|f(z)|+|g(w)|<1 for (z,w)eB,

and hence ¢ € H*(B). Also, ¢ is orthogonal by 2.(5). Put deg(f) =2d and
deg(g) = 2e. By assumption, d, e = 1. It is not difficult to verify that ¢ € A(B)
if e > 1, while ¢ does not extend to a continuous function on B if e=1. The
case f(z)=z{+---+zZ and g(w) =w}+ --- +w? appears in [4].

5.1. SOME AUXILIARY FUNCTIONS. Let0<s<landO<r<l. Define,
for0=x=<1,
(1—x)°t (1—x)¢t

%)= Toas > P =mas
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By elementary calculus, o , and 8, , are strictly decreasing on [0, 1] unless
d=e=s=1. Let § , and ¢, , be the inverse functions, of (respectively)
and 8, ;, on [0, 7] except for the case d =e =s=1. Define
€5, (1) x¥ 1 1—x)"ldx

%,r) N1=(r/B; (¥)? \(r/a (x))2—1

Now assume k=2 and /=2 for simplicity (the analysis that follows for
the case k=1 or /=1 is a bit simpler in notation). By 2.(5), integration in
polar coordinates, and change of variables, we then have, for an arbitrary
nonnegative Borel function ¢y on [0,1],

(1-x)°g(n)

SS Yo |o*| da=cS; x* 1 1—x) ! SS,( SS, ¢( 1—x9f(%)

Here (and in the sequel) we handle the constants ¢ =c(k, /, f, g) in the usual
manner; they are not necessarily the same at any two occurrences. By defi-
nitions of wy and w,, the triple integral of the right side of the above is the
same as

"S; S;{S; g:xk_l(l_x)z_1¢(

In the double integral inside braces in the above, we make change of variables
e (1—-x)%t
N (1 —x95)242x9s(1—cos §)

and interchange the order of integrations to see that the resulting double
integral is equal to

O=r=y).

®  Edn=|

D do(n) doy (£) dx.

(1—x)°t

1—xdseid ) df dx} tw, (t)swe(s) dt ds.

(s, t, x fixed)

t dr
2SOEs,t(r)¢(f)7-
It follows that

1 1¢1 dr
SS\//°|<p*| do = cSO \ﬁ(r){so SrEs,,(r)twg(t)swf(S) dt ds} —.
In other words, if 7,=o[(]¢*|) '] then
101 d
dr,(r)= cSO SrEs,t(r)twg(t)swf(s) dt dsTr.

But, since p,, is rotation-invariant, there is a simple relation between ., and

T+

dp,(r,0)=d7,(r)dao(0).

Let us summarize these observations.

5.2. PROPOSITION. Let o, f, g be as in (xx). Then p,<<m, w,>0on U,
and

C 11
wor) =~ | | By drytwy(tyswy(s) deds.
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5.3. DEFINITION. Let o€ @®,. We say ¢ €, if w, satisfies (x). Then it
turns out ([6]) that @, contains a large part of ®,. For n=1, we simply let
{3, =®,. We remark in passing that it is not known whether Q,=®, for
n=2.

We now prove the following.

5.4. PROPOSITION. Let ¢, f, g be as in (**), and suppose that g€ ,.
(1) If d>1o0r e>1, then (*) holds for ¢.
() Ife=1, f(z)=z}+---+z# and M, is a disjoint union of compact
manifolds, then (*) holds for ¢.
Proof.
Case (1). Since d>1 or e> 1, it is easily verified that
M,={(0,7): e M,)
and hence 6(¢) =2k+6(g). If d=1and e>1, then

t_
65,,(r)=z,;§[1+0(1—r)1

) t—r
€, (r)=——[1+0(1—r)]
e—s

uniformly in #=r and s. Also, we have by (3) and the mean value theorem

that
2
1—( ! )=2(e—s)(es,,(r)—x)[1+0(1—r)1
Bs,t(x)
@ 2
( ! )—1=2(e+s)(x—65,(r))[1+0(1—r)]
O“s,t(x) ’

uniformly in x € (6 ,(r), €5 ,(r)), t=r, and s.
Insert (4) into 5.1.(1) and make the substitution

X = (es,t(r)—5s,t(r))y+5s,t(r)-
Because

_ t—r( 2sy

-1
= ois e—s+l> [1+0—r)]

by (3) and hence x = O(1 —r) uniformly in ¢ = r and s, we then have

_l/t=r\*'14+00-n] 1/ 25y 'R ay
3) Es,t(l‘)—5<m> Pyl So(e_s +l) ——————,—-—y(l =7

If d>1 and e=1, then a similar (and simpler) argument shows that

(6) E, (ry=c(t—r)*"1[1+0(/1-r)].

The error terms in (5) and (6) are uniform in ¢ = r and s. It follows from (5),
(6), and Proposition 5.2 that
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w,(r)=[c+o(1)] Sl(t—r)"“l(l—t)a(g’/z‘l dt.

Now a little computation shows (*) for w,,. L]

Case (2). In this case, since d =e=1, we have

M, =((rt,T—rZn):0=r<1, e f (1), ne M)

and hence 6(¢) = 6(g) + k. The estimate of w,, is a little complicated because
such uniform estimate for E; , as in (5) or (6) is not possible. We know,
however, the precise formula of wy [15]:

k—1
wp(r) = —— (1=r} =7,

Hence, by Proposition 5.2, w,(r) is the same as ¢[1+ O(1~—r)] times
(7
§1{Sl rs,,(r) x* 11 =x)*+ dxs(1—s2)* =32 gg

08, (1) A/(1=x)2t2—r2(1—xs5)2 \/r2(1+xs)2—(1—x)2t2.

Note that ¢ ,(r) = (¢ —r)/(t —rs) and & ,(r) = (¢ —r)/(¢ +rs). In the double
integral inside the braces we make changes of variables successively:

}wg(t) dt.

r

sx=p (xfixed),

1—
y=—> (pfixed);
I-p
this yields

(1 _yZ)(k—3)/2y1+1 dy

1
Sr/rFy”(r) (t+r)[yt—r

Here
B i(r)=| i
Yy, () \/P—"Yy,t(") Nr+yt+p(r—yt)
and
_yt—r
'Yy,t(r)— yt+r'

It is easy to see that
Fy (r)=c+o(1) uniformly in yt=r,

and therefore the integral in (7) is equal to

(1 _y)(k—3)/2(1 _ t)é(g)/Z—l

[C+O(1)]Sgyrzr T dydt.

This implies (*) for w,,. ]

Note that the proof of Proposition 5.4, Case (1), shows that if
wo(ry=c(1—r)? @271+ e(1-r)],
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where e(f) -0 as 710, then

W (r)=c(1—r)®®/2-1 1+ e(1—r)][1+O0~/1-r )]

Obviously, by the same technique there exists some other type of functions
satisfying (*).

11.

12.

13.

14.

15.

16.

17.

18.

19.
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