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1. Introduction

There are a few occasions when a relation between the generators of a group
implies that it holds throughout the group. Two classical examples are:

(1) if the generators of a group commute, the group is Abelian; and

(2) if the commutator of any pair of generators of a group commutes
with all the generators of that group, then the group is nilpotent
class 2.

It is well known [and trivial —see the proof of Theorem A(i)] that (1) holds
for arbitrary lattice-ordered groups. In this paper, we establish

THEOREM 1. (a) There is a lattice-ordered group G generated by elements
a and b such that [a, b] is in the center of G but G is not nilpotent of any
class.

(b) Any lattice-ordered group generated by elements a and b and satisfy-
ing [a,b,a]l=1[a,b,b]l=1 must be metabelian.

Part (a) confirms a belief stated in [6]. Indeed, we will show (Theorem B)
that any finite set of commutators being central is not enough to guarantee
that the resulting lattice-ordered group is nilpotent. (If the number of gen-
erators exceeds 2, the resulting lattice-ordered group need not even be met-
abelian.) Part (b) states that although the relations [a, b,a]=[a, b, b]=1
on the generators are not enough to ensure nilpotency of the entire lattice-
ordered group, they do ensure that the metabelian law [[x, ], [z, f]] =1
holds for all x, y, z, and ¢ belonging to the lattice-ordered group. So a com-
mutator identity is in fact implied by the original commutator relations, al-
beit a weaker identity than that for groups. A generalization is given in Sec-
tion 3.
Theorem 1 may also be viewed as follows:
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THEOREM 2. Let H be a lattice-ordered group and G a subgroup of H.
Let G* denote the sublattice subgroup of H generated by G. Then:
(a) G* need not be nilpotent even if G is nilpotent class 2;
(b) G* is metabelian if G is a 2-generator nilpotent class-2 group; and
(c) G* need not be solvable even if G is metabelian.

2. Notation

As usual, we write [a, b] for a~'b~1ab, [a, b, c] for [[a, b], c], and so on.
$1(G) will denote the center of a group G. Since [ab, c] = b Ya,clb[b, ],
a group is nilpotent class 2 if [a, b, c] =1 for any generators a, b, c.

A group G is said to satisfy the n-Engel condition if [x,y,...,y]=1 for
all x, y e G, where n y’s occur. Any nilpotent class-n group satisfies the n-
Engel condition; hence a group which satisfies no Engel condition is cer-
tainly not nilpotent of any class.

A group G with a lattice ordering on the underlying set is called a /attice-
ordered group if a(bV c)d = abd V acd and a(b A c)d = abd A acd for all
a,b,c,d e G. Throughout we will adopt the abbreviations ¢-group for lat-
tice-ordered group and ¢-subgroup for a subgroup that is also a sublattice.
An f-subgroup that is closed under arbitrary joins and meets that exist in the
entire ¢-group is called a closed £-subgroup.

The lattice of an ¢-group is distributive (see, e.g., [1, Proposition 1.2.14],
[5, Lemma 1.11.2], or [15]); so if an ¢-group G is generated by a4, ..., a,, then
every element of G can be written in the form V; A jw;;, where i and j range
over finite index sets and each w;; is an element of the group generated by
[/ SO /

A homomorphism between ¢-groups that preserves both the group and
lattice operations is called an ¢-homomorphism; its kernel is called an ideal.
The ideals of an ¢-group are precisely the normal convex f-subgroups. An
¢-group G is said to be {-solvable of length m if there are convex £-subgroups
Ao, ..., A,, of G with Ay = {1} and A,, = G, and if each A; is an ideal of
A;j 4 with A4;,{/A; Abelian (0 <i <m—1). Note that any ¢-group that is £-
solvable of length m is solvable of length m as a group. The converse fails
[14]; it is trivial to give metabelian polycyclic ¢-groups (generated by three
elements as a group) that are not £-solvable of any length — the derived group
need not be convex.

If xVy=x orxVy=y for every pair of elements x and y of an ¢-group G,
we say that G is a totally ordered group, or o-group for short. An £-group
that is a subdirect product of o-groups (with f<#4 in [] G, if f, <A, in G
for all \) is called representable. Any {-group that is nilpotent of any class is
representable ([9] or [10]).

Let Z be the totally ordered additive group of integers. The group Z Wr Z
is the set of all pairs (f, m), where m e Z and f is a function from Z into Z;
the group operation is defined by (fi, m) - (f5, my) = (h, m; + m,), where
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h(n) = fi(n)+ fo(n+my). ZWr Zis an £-group under the ordering (f1, m;) <
(fo, my) if m; <m,, or if m;=m, and f(n) < f,(n) for all neZ; see |5,
Chapter 5]. B = {(f, 0): f:Z — Z} is an Abelian ideal of Z Wr Z. Hence
Z Wr Z is {-solvable of length 2 (¢-metabelian).

A group G with a total order on the underlying set is said to be a right or-
dered group if, for any elements a, b, c € G, a < b implies ac < bc. If (G, <)
is a right ordered group, G can be embedded by the right regular representa-
tion into the ¢-group Aut(G, <) of all order-preserving permutations of the
ordered set (G, <).

If (G, <) is a right ordered group and f, g € G, write | f| for max{f, f ™!}
and f << g for f"<g (neZ). A right ordered group in which |[x, y]| K
max{|x|,|y|} for all x, y is called a C-right ordered group. 1t is easy to see
that, in any C-right ordered group, if 1 <f;<g"/ for some n;eZ (j=1,2)
then f, f, < g” for some n € Z [11, Lemma 7.4.2]. Moreover, if G is a torsion-
free nilpotent group, then it is right orderable and G is a C-right ordered
group with respect to any right order on G [11, Theorem 7.5.1].

For any undefined terms from group theory, see [13].

3. Proofs
We now prove the following, which implies (a) of Theorem 1.

THEOREM A. (i) Any representable lattice-ordered group in which the
commutator of any pair of generators commutes with every generator is nil-
potent class 2.

(ii) There is a metabelian lattice-ordered group G generated by two ele-
ments a, b such that [a,b,a]l=[a,b,b]=1 but G is not n-Engel for any n.

Proof. (i) If G is an o-group, then every ¢-group word is a group word.
Hence, as noted above, if the commutator of any pair of generators of G
commutes with each generator of G then G is nilpotent class 2. Consequently,
the same holds for any subdirect product of o-groups.

(ii) Let @ = (0, 1) and b = (b, 1) be elements of the ¢-metabelian group
Z Wr Z, where 0(n) =0 (neZ) and H(n) = —n (neZ). An easy computa-
tion shows that [a, b] = (f, 0), where f(n)=—1 for all neZ. Thus [a, b] e
$1(Z Wr Z). Therefore, if G is the £-subgroup of Z Wr Z generated by ¢ and
b, then G is f-metabelian and [a, b,a]=1=]a, b, b]. Moreover, if m; and
m, are distinct integers then

minm, | @™t if my>my,
atvpTzr = e s
b2 if my <my;
hence

[a™vb™,a,al=1=[a™Vb™,a,bl=[a™Vb™,b,al=[a™Vb™,b,b].

However,
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—n if n=<0,

V = h =
avb=(g,1), where g(n) {0 i >0,

Consequently,

1 if n=<1
V b = ’0 H h = ‘ . ’
[avb,a]l=(h,0), where h(n) {0 I

It follows that [aV b, a,a,...,a]#1 for any number of a’s. L]

Actually, if c=[aVb,a,a] then cAa lca=1, but ¢ 1. This shows directly
that the (-subgroup of Z Wr Z generated by a and b is not representable. Be-
cause nilpotent £-groups are indeed representable ([9] or [10]), this big theo-
rem and the computation are also enough to establish Theorem A(ii).

The above proof permits the following easy generalization:

THEOREM B. Let {w,(x,y):1<r <R} be any finite set of elements of the
Jree lattice-ordered group on two generators x and y. There is an {-metabelian
lattice-ordered group G generated by a and b such that [w,(a, b), ws(a, b)]
belong to the center of G forall r,s €{l, ..., R}, yet G satisfies no Engle con-
dition.

Proof. Let w.(x,¥)=V; A\ jw.(x,y), where w,;;(x,y) belongs to the free
group on x and y. Let M, and N, be co-prime positive integers such that
M, /2 exceeds the sum of the absolute values of the exponents of x in all
w,ij(x,y), and Ny /2 exceeds the sum of the absolute values of the expo-
nents of y inall w,;;(x, y). Let a=(0, Ny) and b = (b, M), where b(n) = —n
(neZ). Note that [a,b] € {;(Z Wr Z) and [a,b]=1. Since [a, b] € {;(G),
every element w,;;(a, b) can be written in the form a"b"[a, b1*. Moreover,
m equals the sum of the exponents of x in w,;; and 7 that of the exponents of
y in w,;;; hence 2|m| < My and 2|n| < N,. Furthermore, for any such words,
my Ny + nyMy = m, Ny + ny My, if and only if m; = m, and n; = n,, by our
choice of M, and N,. Therefore, if kK =min{k, k,} then

a™b"[a,b11Va"b"[a, b1

a™b™M[a,b]*t if myNy+nMy>m,Ny+n,M,,
=3 a™b"[a,b]*2 if m Ny+n My< m,Ny+n, M,
a™b™{a,b)* if m =m,and n;=n,.

Consequently, [w,(a, b), ws(a,b)] € {(G) for all r,se(l,..., R}. However,
[aMovpNo a, a, ..., a] #1 for any number of a’s, and this establishes the
theorem. 0

We next prove a result that implies Theorem 2(c). For this we observe first
that Aut(Q, <), the group of automorphisms (order-preserving permuta-
tions) of the linearly ordered set (Q, <) of rationals, is an £-group under
composition and the pointwise ordering (f<g if af <ag forall « €Q). A
subgroup G is called doubly transitive if, whenever «;, 8; € Q with o; <f3;
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(i=1,2), there is g e G such that ;g =, and B;g =03,. As Holland has
shown (see [5, p. 214]), the only £-group identities that hold in a doubly tran-
sitive f-group are those that hold in all ¢-groups. Consequently, any doubly
transitive £-group generates the variety of all £-groups (and hence is unsolv-
able even as a group). This leads to a simple solution to Theorem 2(c).

PROPOSITION C. There is a 2-generator metabelian subgroup G of
Aut(Q, <) such that G* generates the variety of all lattice-ordered groups.
In particular, G* is unsolvable even as a group.

Proof. Since {m/2": m,neZ,n=0} is a dense linearly ordered subset of
(Q, =) without endpoints, it is isomorphic to (Q, <) as an ordered set. We
identify (Q, <) with this ordered set. Let a: « ~ 2« and b: o = a +1. Clearly
(m/2™")a"b*~"a " =k/2", so the subgroup G of Aut(Q, <) generated by a
and b is metabelian and transitive on Q. Moreover, a”b* ~"a =" moves every
point of Q up if kK >m. Now a fixes 0 and, for each o, 8 € Q with 8> a >0,
there is a positive integer ny such that c«a™ > 8. Let g € G be such that ag =8
and g moves every point of Q up. Then a”0A g e G*, a(a™ A g) =f, and
0(a"™A g)=0. It follows that G* is doubly transitive. This proves the prop-
osition, d

We now establish a generalization of Theorem 1(b).

Let N =N, be the free nilpotent class-2 group on m generators ay, ..., a,,.
Then N can be right ordered, and every such order makes N a C-right or-
dered group. The right regular representation N on (N, <) for such an or-
dering embeds N in the £-group Aut(N, <). These in turn (as < varies over
all right orders on N) naturally induce an embedding of N in the ¢-group
A=]T{Aut(, <): < isaright order on N}, ordered componentwise. More-
over, F(N), the {-subgroup of A4 generated by the image of N, is free over
N; that is, if H is any nilpotent class-2 £-group and &, ..., d,, € H, then there
is a unique {-homomorphism of F(N) into H mapping the image of g; in
F(N) to é; (1<i=<m). Theorem 1(a) is equivalent to the statement that the
free {-group over NV, is not nilpotent (which follows from a more general re-
sult in [3]), and Theorem 1(b) is equivalent to the following theorem when
m=2.

THEOREM D. The free lattice-ordered group over any m generator tor-
sion-free nilpotent class-2 group is {-solvable of length at most (7) +1.

Proof. It is enough to prove that, if N is the free nilpotent class-2 group
on ay, ..., a, and < is any right order on N then N*, the ¢-subgroup of
Aut(N, <) generated by N, is {-solvable of length at most (';’) +1.

Now {(N) is a free Abelian group on () generators. Consequently, it
has Hirsch length (7). Therefore, there is a minimal Archimedean class of
§1(N); that is, there is d; € {1(N) such that d, >1and, for all ce {;(N)\({1},
d; = c" for some integer n. Let N(d,) ={ge N:|g|<d} for some neZ"}.
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Since every right order on N is a C-right order, N(d,) is a convex subgroup
of N. Moreover, N(d,) is Abelian since if | =x <y =<df then [x,y] <K y =<
di; but [x,y]e & (N) since N is nilpotent class 2, so [x, y] =1 by the choice
of dl'

If {{(N)=[N,N]SN(d,), then N(d;) <N and N/N(d,) is Abelian. If
$1(N) €N(d,), let dy € §(N) be such that d,>1 and, for all ce {;(N), ce
N(d,) or d, <c" for some integer n. Let N(d,) ={ge N:|g|<d5 for some
integer n}. As before, N(d,) < N(d,) and N(d,)/N(d,) is Abelian. Continu-
ing in this way we obtain, after (< (7)) steps, convex subgroups

(1} S N(d,) SN(d,) S --- € N(d,) S N,

with N(d,) <N(d,'+1) and N(d,-) <N such that N(dl), N(d,'+1)/N(d,'), and
N/N(d,) are Abelian (1<i<r-—1).

Note that if ¥ <y then ax <y for all « e N. Hence x =ex <ey =y. Con-
sequently, N(d;) SN(d;) (1<i=<r), where N(J) = (¥eN: |%|< | 7|” for some
neZ%). Thus N(d,) is Abelian. Moreover, since N is a subgroup of the ¢-
group Aut(N, <) and each d; e {;(N), N(d;) <N (1<i=<r). Furthermore,
if X, e N(d;,) then x,y e N(d;,,); therefore [x, y] <d} for some integer
n. But for all ¢ e N,

al%, ¥l =alx,y]1=[x,y]la <dl'a = ad!

because d;, [x,y] € £{(N). Hence N(d;,;)/N(d;) is Abelian. Since N is con-
tained in the normalizer of the {-subgroup of Aut(N, <) generated by N(d;),
N is contained in the normalizer of N*(d;), the convex f-subgroup of N*
generated by N(d;). Thus N normalizes N7, the closed convex f-subgroup
of N* generated by N(d;). It follows easily (see, e.g., [12, Lemma 10.12.2}])
that N*<<N* (1<i<r). So the theorem will be proved once we establish
that N, N*.,/N# (1<i=<r—1), and N*/N* are Abelian.

By [2] (or easy verification), Nj* is Abelian if N*(d,) is; and to prove that
N*(d,) is Abelian it is enough to show that: if, for some positive integer p,
/\jeJ(WjVI) Sd-lp and Nrex (U V1) _<_5f’, then /\J:EJ(V_VJ'VI) and Niex(UeV])
commute.

Fix ae G and let J(o)={jeJ: aw;=a or aw;a” le N(dy)} and K(a) =
(keK:av,<aoravya e N(d,)}. We first show that, if ad" <8 < ad*+!
for some meZ, then J(8)=J(a) and K(B8) =K(«a). For if jeJ(«), then
either Bw; < B or B < Bw; < ad{"*'w; = aw; d ["*1. Now either aw; <aq, in
which case aw;d{" ! < ad"t' < Bd,; or aw;a” eN(dl), whence aw; aV”+l <
awjo” a’””f1 < d”ad’"“ =ad{t"H < Bd”“ Hence fw; <f3 or 6wj B le
N(d) Consequently, J(a) €J(B). Because Bd; "' < a < Bd[ ™, the same
argument shows that J(3) < J(«), whence J(B) =J(«). Mutatis mutana’ls
K(B)=K(a).

Observe that if jeJ(a) then a(w;V1)a~'e N(d,), and similarly if ke
K(a). Since N(d,) is Abelian,
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a( A (W,-Vl))( A (ﬁkvl))zoz( A (5kv1)>< A (wjv1)>.
jeJ(a) ke K(a) keK(a) JjeJ(a)

Moreover, by the previous paragraph,

a(/\(w,-v1))(/\(vkv1))=a( A (w,-vn)( A (akvn)
jeJ kek JeJ(a) ke K(x)

and

a</\(vkv1))(/\(wjv1))=a( A @vD)( A @)
kekK jeJ ke K(a) JjeJ(a)

[since o <B,=a(A jesew (W V1)) <adf and o =Bk = a(Arek@ (T V1) <
ad?, so J(Bx) =J(a) and K(8,) = K(a)]. Thus

jeldJ keK kekK jelJ

Since this holds for all@ e N, A ¢ ;(W; V1) and A ;¢ k(7 V1) commute. Thus
Nyt is Abelian.

Next let a=A jc;(W; V1) and b= Ay x(U; V1), and suppose that a,b <
d?, |. The above argument shows that, for each a € N, ac < ad?® for some
positive integer p(a), where c=|[a~',b7']|. Hence c =V = (cAdf) e N}.
Thus, by [2] again, N#.,/N; is Abelian (1 <i<r—1). Similarly N*/N* is
Abelian, and the proof is complete.

Otherwise, the last paragraph can be replaced by the use of {5, Corollary
8.3.7] to note that N*/N} acts faithfully on the Nj*-orbits of N, since N*is a
closed ideal of N*; therefore Nj.,/N;* is Abelian by the argument given for
Nt or by induction on the Hirsch length of N. O

4. Concluding Remarks

1. Theorem D gives an upper bound on the ¢-solvable length of the free ¢-
group over a finitely generated torsion-free nilpotent class-2 group. In gen-
eral, the f-solvable length can exceed half of the number of generators, as
we now show. Totally order N, by

a{’llaSZZ . .a”:imm H [ai, aj]nij >1
i<j
if n;>0, or n;=0 and n,,>0, or n;;=0=ny and n;, >0, or njy=Hny=
np=0and n33>0,...,0r n;;=0 (1<i=<j<m)and ng,, >0, o0r n;=0 (1<
i =j<m) and n,,,=0and n,,>0,...,0orn;=0 (1<i=<j<m)and n,,=
Nyp="+++=Nyp_y ,=0and n,_, ,>0. Then N, is an o-group and so (with
respect to this order) N;, = N,,, which has ¢-solvable length (m+1)/2if m is
odd and (m/2)+1if m is even.

What is the £-solvable length of F(N,,)?
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2. If N, is the free nilpotent class-2 group on a countably infinite set of
generators, then it follows from our lower bound that F(/N,) is not ¢-solvable
even though N, is a torsion-free nilpotent class-2 group; that is, the free
lattice-ordered group over a torsion-free nilpotent class-2 group can fail to
be [-solvable.

Is it unsolvable as a group?

3. We now show that F(N,) actually generates the entire variety of ¢-
metabelian ¢-groups. Define a right total order on N, by a"a}?[a;, a,]"2> 1
if n;>0, or ny=0<ny,, or ny=n,=0<n,. Let N* be the ¢-subgroup of
Aut(N,, <) generated by N, the right regular action of N, on itself. Then, if
a=af"a)2[a;, a,]"2, a < ad, if and only if ny = 0 whereas a < aa; '@; 'a, if
and only if n; <1. Consequently, if g =(@,Aa; '@y 'a,;)Vv1 then supp(g) =
{aeN:ag#a)}={a?[a),a,]2: ny,n,eZ}. Hence @ 'ga; Ag=1 and the
¢-subgroup of N* generated by (a;, g} is f-isomorphic to Z wr Z. Because
Z wr Z generates the variety of all £-metabelian £-groups [7] and F(N,) is {-
metabelian, F(N,) indeed generates the variety of all -metabelian £-groups.

If we alter the above ordering by replacing n;, > 0 with n;, <0 in the defi-
nition of the ordering, then the map a; - 0,1, a,— (b, 1) defines an ¢-iso-
morphism between N* and the ¢-group used in the proof of Theorem A(ii).

4. What results hold for finitely generated torsion-free nilpotent groups
of nilpotency class exceeding 2? If d; > 1is an element of the smallest convex
subgroup of the center, then N(d,) is Abelian. However, even if the group is
nilpotent class 3, N(d,)/N(d;) need not be Abelian (d, > 1is an element of
the next smallest convex subgroup of the center).
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