Commutator Relations and Identities in Lattice-Ordered Groups

MICHAEL R. DARNEL & A. M. W. GLASS

To Roger C. Lyndon - In Memorium

1. Introduction

There are a few occasions when a relation between the generators of a group implies that it holds throughout the group. Two classical examples are:

- (1) if the generators of a group commute, the group is Abelian; and
- (2) if the commutator of any pair of generators of a group commutes with all the generators of that group, then the group is nilpotent class 2.

It is well known [and trivial—see the proof of Theorem A(i)] that (1) holds for arbitrary lattice-ordered groups. In this paper, we establish

THEOREM 1. (a) There is a lattice-ordered group G generated by elements a and b such that [a, b] is in the center of G but G is not nilpotent of any class.

(b) Any lattice-ordered group generated by elements a and b and satisfying [a, b, a] = [a, b, b] = 1 must be metabelian.

Part (a) confirms a belief stated in [6]. Indeed, we will show (Theorem B) that any finite set of commutators being central is not enough to guarantee that the resulting lattice-ordered group is nilpotent. (If the number of generators exceeds 2, the resulting lattice-ordered group need not even be metabelian.) Part (b) states that although the relations [a, b, a] = [a, b, b] = 1 on the generators are not enough to ensure nilpotency of the entire lattice-ordered group, they do ensure that the metabelian law [[x, y], [z, t]] = 1 holds for all x, y, z, and t belonging to the lattice-ordered group. So a commutator *identity* is in fact implied by the original commutator *relations*, albeit a weaker identity than that for groups. A generalization is given in Section 3.

Theorem 1 may also be viewed as follows:

Received May 18, 1988.

Research of the first author was supported in part by a Summer Faculty Fellowship, 1987, from the University of Indiana at South Bend.

Michigan Math. J. 36 (1989).

THEOREM 2. Let H be a lattice-ordered group and G a subgroup of H. Let G^* denote the sublattice subgroup of H generated by G. Then:

- (a) G^* need not be nilpotent even if G is nilpotent class 2;
- (b) G^* is metabelian if G is a 2-generator nilpotent class-2 group; and
- (c) G^* need not be solvable even if G is metabelian.

2. Notation

As usual, we write [a, b] for $a^{-1}b^{-1}ab$, [a, b, c] for [[a, b], c], and so on. $\zeta_1(G)$ will denote the center of a group G. Since $[ab, c] = b^{-1}[a, c]b[b, c]$, a group is nilpotent class 2 if [a, b, c] = 1 for any generators a, b, c.

A group G is said to satisfy the *n*-Engel condition if [x, y, ..., y] = 1 for all $x, y \in G$, where n y's occur. Any nilpotent class-n group satisfies the n-Engel condition; hence a group which satisfies no Engel condition is certainly not nilpotent of any class.

A group G with a lattice ordering on the underlying set is called a *lattice-ordered group* if $a(b \lor c)d = abd \lor acd$ and $a(b \land c)d = abd \land acd$ for all $a, b, c, d \in G$. Throughout we will adopt the abbreviations ℓ -group for lattice-ordered group and ℓ -subgroup for a subgroup that is also a sublattice. An ℓ -subgroup that is closed under arbitrary joins and meets that exist in the entire ℓ -group is called a *closed* ℓ -subgroup.

The lattice of an ℓ -group is distributive (see, e.g., [1, Proposition 1.2.14], [5, Lemma 1.11.2], or [15]); so if an ℓ -group G is generated by a_1, \ldots, a_n , then every element of G can be written in the form $\bigvee_i \bigwedge_j w_{ij}$, where i and j range over finite index sets and each w_{ij} is an element of the group generated by a_1, \ldots, a_n .

A homomorphism between ℓ -groups that preserves both the group and lattice operations is called an ℓ -homomorphism; its kernel is called an *ideal*. The ideals of an ℓ -group are precisely the normal convex ℓ -subgroups. An ℓ -group G is said to be ℓ -solvable of length m if there are convex ℓ -subgroups A_0, \ldots, A_m of G with $A_0 = \{1\}$ and $A_m = G$, and if each A_i is an ideal of A_{i+1} with A_{i+1}/A_i Abelian $(0 \le i \le m-1)$. Note that any ℓ -group that is ℓ -solvable of length m is solvable of length m as a group. The converse fails [14]; it is trivial to give metabelian polycyclic ℓ -groups (generated by three elements as a group) that are not ℓ -solvable of any length—the derived group need not be convex.

If $x \lor y = x$ or $x \lor y = y$ for every pair of elements x and y of an ℓ -group G, we say that G is a *totally ordered group*, or *o-group* for short. An ℓ -group that is a subdirect product of *o*-groups (with $f \le h$ in $\prod G_{\lambda}$ if $f_{\lambda} \le h_{\lambda}$ in G_{λ} for all λ) is called *representable*. Any ℓ -group that is nilpotent of any class is representable ([9] or [10]).

Let **Z** be the totally ordered additive group of integers. The group **Z** Wr **Z** is the set of all pairs (f, m), where $m \in \mathbf{Z}$ and f is a function from **Z** into **Z**; the group operation is defined by $(f_1, m_1) \cdot (f_2, m_2) = (h, m_1 + m_2)$, where

 $h(n) = f_1(n) + f_2(n+m_1)$. **Z** Wr **Z** is an ℓ -group under the ordering $(f_1, m_1) \le (f_2, m_2)$ if $m_1 < m_2$, or if $m_1 = m_2$ and $f_1(n) \le f_2(n)$ for all $n \in \mathbb{Z}$; see [5, Chapter 5]. $B = \{(f, 0): f: \mathbb{Z} \to \mathbb{Z}\}$ is an Abelian ideal of **Z** Wr **Z**. Hence **Z** Wr **Z** is ℓ -solvable of length 2 (ℓ -metabelian).

A group G with a total order on the underlying set is said to be a *right ordered group* if, for any elements $a, b, c \in G$, $a \le b$ implies $ac \le bc$. If (G, \le) is a right ordered group, G can be embedded by the right regular representation into the ℓ -group $\operatorname{Aut}(G, \le)$ of all order-preserving permutations of the ordered set (G, \le) .

If (G, \leq) is a right ordered group and $f, g \in G$, write |f| for $\max\{f, f^{-1}\}$ and $f \ll g$ for $f^n \leq g$ $(n \in \mathbb{Z})$. A right ordered group in which $|[x, y]| \ll \max\{|x|, |y|\}$ for all x, y is called a *C-right ordered group*. It is easy to see that, in any *C*-right ordered group, if $1 \leq f_j \leq g^{n_j}$ for some $n_j \in \mathbb{Z}$ (j = 1, 2) then $f_1 f_2 \leq g^n$ for some $n \in \mathbb{Z}$ [11, Lemma 7.4.2]. Moreover, if G is a torsion-free nilpotent group, then it is right orderable and G is a G-right ordered group with respect to any right order on G [11, Theorem 7.5.1].

For any undefined terms from group theory, see [13].

3. Proofs

We now prove the following, which implies (a) of Theorem 1.

THEOREM A. (i) Any representable lattice-ordered group in which the commutator of any pair of generators commutes with every generator is nilpotent class 2.

(ii) There is a metabelian lattice-ordered group G generated by two elements a, b such that [a, b, a] = [a, b, b] = 1 but G is not n-Engel for any n.

Proof. (i) If G is an o-group, then every ℓ -group word is a group word. Hence, as noted above, if the commutator of any pair of generators of G commutes with each generator of G then G is nilpotent class 2. Consequently, the same holds for any subdirect product of o-groups.

(ii) Let $a = (\hat{0}, 1)$ and $b = (\hat{b}, 1)$ be elements of the ℓ -metabelian group \mathbb{Z} Wr \mathbb{Z} , where $\hat{0}(n) = 0$ $(n \in \mathbb{Z})$ and $\hat{b}(n) = -n$ $(n \in \mathbb{Z})$. An easy computation shows that [a, b] = (f, 0), where f(n) = -1 for all $n \in \mathbb{Z}$. Thus $[a, b] \in \zeta_1(\mathbb{Z})$ Wr \mathbb{Z} . Therefore, if G is the ℓ -subgroup of \mathbb{Z} Wr \mathbb{Z} generated by a and b, then G is ℓ -metabelian and [a, b, a] = 1 = [a, b, b]. Moreover, if m_1 and m_2 are distinct integers then

$$a^{m_1} \vee b^{m_2} = \begin{cases} a^{m_1} & \text{if } m_1 > m_2, \\ b^{m_2} & \text{if } m_1 < m_2; \end{cases}$$

hence

 $[a^{m_1} \lor b^{m_2}, a, a] = 1 = [a^{m_1} \lor b^{m_2}, a, b] = [a^{m_1} \lor b^{m_2}, b, a] = [a^{m_1} \lor b^{m_2}, b, b].$ However,

$$a \lor b = (g, 1)$$
, where $g(n) = \begin{cases} -n & \text{if } n \le 0, \\ 0 & \text{if } n > 0. \end{cases}$

Consequently,

$$[a \lor b, a] = (h, 0),$$
 where $h(n) = \begin{cases} 1 & \text{if } n \le 1, \\ 0 & \text{if } n \ge 2. \end{cases}$

It follows that $[a \lor b, a, a, ..., a] \ne 1$ for any number of a's.

Actually, if $c = [a \lor b, a, a]$ then $c \land a^{-1}ca = 1$, but $c \ne 1$. This shows directly that the ℓ -subgroup of **Z** Wr **Z** generated by a and b is not representable. Because nilpotent ℓ -groups are indeed representable ([9] or [10]), this big theorem and the computation are also enough to establish Theorem A(ii).

The above proof permits the following easy generalization:

THEOREM B. Let $\{w_r(x,y): 1 \le r \le R\}$ be any finite set of elements of the free lattice-ordered group on two generators x and y. There is an ℓ -metabelian lattice-ordered group G generated by a and b such that $[w_r(a,b), w_s(a,b)]$ belong to the center of G for all $r, s \in \{1, ..., R\}$, yet G satisfies no Engle condition.

Proof. Let $w_r(x, y) = \bigvee_i \bigwedge_j w_{rij}(x, y)$, where $w_{rij}(x, y)$ belongs to the free group on x and y. Let M_0 and N_0 be co-prime positive integers such that $M_0/2$ exceeds the sum of the absolute values of the exponents of x in all $w_{rij}(x, y)$, and $N_0/2$ exceeds the sum of the absolute values of the exponents of y in all $w_{rij}(x, y)$. Let $a = (\hat{0}, N_0)$ and $\hat{b} = (\hat{b}, M_0)$, where $\hat{b}(n) = -n$ $(n \in \mathbb{Z})$. Note that $[a, b] \in \zeta_1(\mathbb{Z} \text{ Wr } \mathbb{Z})$ and $[a, b] \ge 1$. Since $[a, b] \in \zeta_1(G)$, every element $w_{rij}(a, b)$ can be written in the form $a^m b^n [a, b]^k$. Moreover, m equals the sum of the exponents of x in w_{rij} and n that of the exponents of y in w_{rij} ; hence $2|m| < M_0$ and $2|n| < N_0$. Furthermore, for any such words, $m_1 N_0 + n_1 M_0 = m_2 N_0 + n_2 M_0$ if and only if $m_1 = m_2$ and $n_1 = n_2$, by our choice of M_0 and N_0 . Therefore, if $k = \min\{k_1, k_2\}$ then

$$a^{m_1}b^{n_1}[a,b]^{k_1} \vee a^{m_2}b^{n_2}[a,b]^{k_2}$$

$$= \begin{cases} a^{m_1}b^{n_1}[a,b]^{k_1} & \text{if } m_1N_0 + n_1M_0 > m_2N_0 + n_2M_0, \\ a^{m_2}b^{n_2}[a,b]^{k_2} & \text{if } m_1N_0 + n_1M_0 < m_2N_0 + n_2M_0, \\ a^{m_1}b^{n_1}[a,b]^k & \text{if } m_1 = m_2 \text{ and } n_1 = n_2. \end{cases}$$

Consequently, $[w_r(a, b), w_s(a, b)] \in \zeta_1(G)$ for all $r, s \in \{1, ..., R\}$. However, $[a^{M_0} \lor b^{N_0}, a, a, ..., a] \neq 1$ for any number of a's, and this establishes the theorem.

We next prove a result that implies Theorem 2(c). For this we observe first that $\operatorname{Aut}(\mathbf{Q}, \leq)$, the group of automorphisms (order-preserving permutations) of the linearly ordered set (\mathbf{Q}, \leq) of rationals, is an ℓ -group under composition and the pointwise ordering $(f \leq g \text{ if } \alpha f \leq \alpha g \text{ for all } \alpha \in \mathbf{Q})$. A subgroup G is called *doubly transitive* if, whenever $\alpha_i, \beta_i \in \mathbf{Q}$ with $\alpha_i < \beta_i$

(i=1,2), there is $g \in G$ such that $\alpha_1 g = \alpha_2$ and $\beta_1 g = \beta_2$. As Holland has shown (see [5, p. 214]), the only ℓ -group identities that hold in a doubly transitive ℓ -group are those that hold in all ℓ -groups. Consequently, any doubly transitive ℓ -group generates the variety of all ℓ -groups (and hence is unsolvable even as a group). This leads to a simple solution to Theorem 2(c).

PROPOSITION C. There is a 2-generator metabelian subgroup G of $Aut(\mathbf{Q}, \leq)$ such that G^* generates the variety of all lattice-ordered groups. In particular, G^* is unsolvable even as a group.

Proof. Since $\{m/2^n : m, n \in \mathbb{Z}, n \ge 0\}$ is a dense linearly ordered subset of (\mathbb{Q}, \le) without endpoints, it is isomorphic to (\mathbb{Q}, \le) as an ordered set. We identify (\mathbb{Q}, \le) with this ordered set. Let $a : \alpha \mapsto 2\alpha$ and $b : \alpha \mapsto \alpha + 1$. Clearly $(m/2^n)a^nb^{k-m}a^{-n} = k/2^n$, so the subgroup G of Aut (\mathbb{Q}, \le) generated by a and b is metabelian and transitive on \mathbb{Q} . Moreover, $a^nb^{k-m}a^{-n}$ moves every point of \mathbb{Q} up if k > m. Now a fixes 0 and, for each $\alpha, \beta \in \mathbb{Q}$ with $\beta > \alpha > 0$, there is a positive integer n_0 such that $\alpha a^{n_0} > \beta$. Let $g \in G$ be such that $\alpha g = \beta$ and g moves every point of \mathbb{Q} up. Then $a^{n_0} \land g \in G^*$, $\alpha(a^{n_0} \land g) = \beta$, and $0(a^{n_0} \land g) = 0$. It follows that G^* is doubly transitive. This proves the proposition.

We now establish a generalization of Theorem 1(b).

Let $N=N_m$ be the free nilpotent class-2 group on m generators a_1, \ldots, a_m . Then N can be right ordered, and every such order makes N a C-right ordered group. The right regular representation \overline{N} on (N, \leq) for such an ordering embeds N in the ℓ -group $\operatorname{Aut}(N, \leq)$. These in turn (as \leq varies over all right orders on N) naturally induce an embedding of N in the ℓ -group $A=\prod\{\operatorname{Aut}(N, \leq): \leq \text{ is a right order on } N\}$, ordered componentwise. Moreover, F(N), the ℓ -subgroup of A generated by the image of N, is free over N; that is, if H is any nilpotent class-2 ℓ -group and $\hat{a}_1, \ldots, \hat{a}_m \in H$, then there is a unique ℓ -homomorphism of F(N) into H mapping the image of a_i in F(N) to \hat{a}_i ($1 \leq i \leq m$). Theorem 1(a) is equivalent to the statement that the free ℓ -group over N_2 is not nilpotent (which follows from a more general result in [3]), and Theorem 1(b) is equivalent to the following theorem when m=2.

THEOREM D. The free lattice-ordered group over any m generator torsion-free nilpotent class-2 group is ℓ -solvable of length at most $\binom{m}{2} + 1$.

Proof. It is enough to prove that, if N is the free nilpotent class-2 group on a_1, \ldots, a_m and \leq is any right order on N then \bar{N}^* , the ℓ -subgroup of $Aut(N, \leq)$ generated by \bar{N} , is ℓ -solvable of length at most $\binom{m}{2} + 1$.

Now $\zeta_1(N)$ is a free Abelian group on $\binom{m}{2}$ generators. Consequently, it has Hirsch length $\binom{m}{2}$. Therefore, there is a minimal Archimedean class of $\zeta_1(N)$; that is, there is $d_1 \in \zeta_1(N)$ such that $d_1 > 1$ and, for all $c \in \zeta_1(N) \setminus \{1\}$, $d_1 \le c^n$ for some integer n. Let $N(d_1) = \{g \in N : |g| \le d_1^n \text{ for some } n \in \mathbb{Z}^+\}$.

Since every right order on N is a C-right order, $N(d_1)$ is a convex subgroup of N. Moreover, $N(d_1)$ is Abelian since if $1 \le x \le y \le d_1^n$ then $[x, y] \ll y \le d_1^n$; but $[x, y] \in \zeta_1(N)$ since N is nilpotent class 2, so [x, y] = 1 by the choice of d_1 .

If $\zeta_1(N) = [N, N] \subseteq N(d_1)$, then $N(d_1) \triangleleft N$ and $N/N(d_1)$ is Abelian. If $\zeta_1(N) \nsubseteq N(d_1)$, let $d_2 \in \zeta_1(N)$ be such that $d_2 > 1$ and, for all $c \in \zeta_1(N)$, $c \in N(d_1)$ or $d_2 \le c^n$ for some integer n. Let $N(d_2) = \{g \in N : |g| \le d_2^n \text{ for some integer } n\}$. As before, $N(d_1) \triangleleft N(d_2)$ and $N(d_2)/N(d_1)$ is Abelian. Continuing in this way we obtain, after $r \in \binom{m}{2}$ steps, convex subgroups

$$\{1\} \subseteq N(d_1) \subseteq N(d_2) \subseteq \cdots \subseteq N(d_r) \subseteq N$$
,

with $N(d_i) \triangleleft N(d_{i+1})$ and $N(d_r) \triangleleft N$ such that $N(d_1)$, $N(d_{i+1})/N(d_i)$, and $N/N(d_r)$ are Abelian $(1 \le i \le r-1)$.

Note that if $\bar{x} \leq \bar{y}$ then $\alpha x \leq \alpha y$ for all $\alpha \in N$. Hence $x = ex \leq ey = y$. Consequently, $\bar{N}(\bar{d}_i) \subseteq \bar{N}(\bar{d}_i)$ $(1 \leq i \leq r)$, where $\bar{N}(\bar{y}) = \{\bar{x} \in \bar{N} : |\bar{x}| \leq |\bar{y}|^n \text{ for some } n \in \mathbb{Z}^+\}$. Thus $\bar{N}(\bar{d}_1)$ is Abelian. Moreover, since \bar{N} is a subgroup of the ℓ -group Aut (N, \leq) and each $\bar{d}_i \in \zeta_1(\bar{N})$, $\bar{N}(\bar{d}_i) \triangleleft \bar{N}$ $(1 \leq i \leq r)$. Furthermore, if $\bar{x}, \bar{y} \in \bar{N}(\bar{d}_{i+1})$ then $x, y \in N(d_{i+1})$; therefore $[x, y] \leq d_i^n$ for some integer n. But for all $\alpha \in N$,

$$\alpha[\bar{x}, \bar{y}] = \alpha[x, y] = [x, y]\alpha \le d_i^n \alpha = \alpha \bar{d}_i^n$$

because d_i , $[x,y] \in \zeta_1(N)$. Hence $\bar{N}(\bar{d}_{i+1})/\bar{N}(\bar{d}_i)$ is Abelian. Since \bar{N} is contained in the normalizer of the ℓ -subgroup of Aut (N, \leq) generated by $\bar{N}(\bar{d}_i)$, \bar{N} is contained in the normalizer of $\bar{N}^*(\bar{d}_i)$, the convex ℓ -subgroup of \bar{N}^* generated by $\bar{N}(\bar{d}_i)$. Thus \bar{N} normalizes \bar{N}_i^* , the closed convex ℓ -subgroup of \bar{N}^* generated by $\bar{N}(\bar{d}_i)$. It follows easily (see, e.g., [12, Lemma 10.12.2]) that $\bar{N}_i^* \lhd \bar{N}^*$ $(1 \leq i \leq r)$. So the theorem will be proved once we establish that \bar{N}_1^* , $\bar{N}_{i+1}^*/\bar{N}_i^*$ $(1 \leq i \leq r-1)$, and \bar{N}^*/\bar{N}_r^* are Abelian.

By [2] (or easy verification), \bar{N}_1^* is Abelian if $\bar{N}^*(\bar{d}_1)$ is; and to prove that $\bar{N}^*(\bar{d}_1)$ is Abelian it is enough to show that: if, for some positive integer p, $\bigwedge_{j\in J}(\bar{w}_j\vee 1)\leq \bar{d}_1^p$ and $\bigwedge_{k\in K}(\bar{v}_k\vee 1)\leq \bar{d}_1^p$, then $\bigwedge_{j\in J}(\bar{w}_j\vee 1)$ and $\bigwedge_{k\in K}(\bar{v}_k\vee 1)$ commute.

Fix $\alpha \in G$ and let $J(\alpha) = \{j \in J : \alpha w_j \le \alpha \text{ or } \alpha w_j \alpha^{-1} \in N(d_1)\}$ and $K(\alpha) = \{k \in K : \alpha v_k \le \alpha \text{ or } \alpha v_k \alpha^{-1} \in N(d_1)\}$. We first show that, if $\alpha \overline{d}_1^m < \beta < \alpha \overline{d}_1^{m+1}$ for some $m \in \mathbb{Z}$, then $J(\beta) = J(\alpha)$ and $K(\beta) = K(\alpha)$. For if $j \in J(\alpha)$, then either $\beta w_j \le \beta$ or $\beta < \beta w_j < \alpha \overline{d}_1^{m+1} w_j = \alpha w_j d_1^{m+1}$. Now either $\alpha w_j \le \alpha$, in which case $\alpha w_j d_1^{m+1} \le \alpha d_1^{m+1} < \beta d_1$; or $\alpha w_j \alpha^{-1} \in N(d_1)$, whence $\alpha w_j d_1^{m+1} \le \alpha w_j \alpha^{-1} \cdot \alpha d_1^{m+1} < d_1^n \alpha d_1^{m+1} = \alpha d_1^{n+m+1} < \beta d_1^{n+1}$. Hence $\beta w_j \le \beta$ or $\beta w_j \beta^{-1} \in N(d_i)$. Consequently, $J(\alpha) \subseteq J(\beta)$. Because $\beta \overline{d}_1^{-m-1} < \alpha < \beta \overline{d}_1^{-m}$, the same argument shows that $J(\beta) \subseteq J(\alpha)$, whence $J(\beta) = J(\alpha)$. Mutatis mutandis, $K(\beta) = K(\alpha)$.

Observe that if $j \in J(\alpha)$ then $\alpha(\overline{w}_j \vee 1)\alpha^{-1} \in N(d_1)$, and similarly if $k \in K(\alpha)$. Since $N(d_1)$ is Abelian,

$$\alpha \bigg(\bigwedge_{j \in J(\alpha)} (\overline{w}_j \vee 1) \bigg) \bigg(\bigwedge_{k \in K(\alpha)} (\overline{v}_k \vee 1) \bigg) = \alpha \bigg(\bigwedge_{k \in K(\alpha)} (\overline{v}_k \vee 1) \bigg) \bigg(\bigwedge_{j \in J(\alpha)} (\overline{w}_j \vee 1) \bigg).$$

Moreover, by the previous paragraph,

$$\alpha \bigg(\bigwedge_{j \in J} (\overline{w}_j \vee 1) \bigg) \bigg(\bigwedge_{k \in K} (\overline{v}_k \vee 1) \bigg) = \alpha \bigg(\bigwedge_{j \in J(\alpha)} (\overline{w}_j \vee 1) \bigg) \bigg(\bigwedge_{k \in K(\alpha)} (\overline{v}_k \vee 1) \bigg)$$

and

$$\alpha \bigg(\bigwedge_{k \in K} (\bar{v}_k \vee 1) \bigg) \bigg(\bigwedge_{j \in J} (\bar{w}_j \vee 1) \bigg) = \alpha \bigg(\bigwedge_{k \in K(\alpha)} (\bar{v}_k \vee 1) \bigg) \bigg(\bigwedge_{j \in J(\alpha)} (\bar{w}_j \vee 1) \bigg)$$

[since $\alpha \leq \beta_J = \alpha(\bigwedge_{j \in J(\alpha)}(\overline{w}_j \vee 1)) \leq \alpha \overline{d}_1^p$ and $\alpha \leq \beta_K = \alpha(\bigwedge_{k \in K(\alpha)}(\overline{v}_k \vee 1)) \leq \alpha \overline{d}_1^p$, so $J(\beta_K) = J(\alpha)$ and $K(\beta_J) = K(\alpha)$]. Thus

$$\alpha \bigg(\bigwedge_{j \in J} (\bar{w}_j \vee 1) \bigg) \bigg(\bigwedge_{k \in K} (\bar{v}_k \vee 1) \bigg) = \alpha \bigg(\bigwedge_{k \in K} (\bar{v}_k \vee 1) \bigg) \bigg(\bigwedge_{j \in J} (\bar{w}_j \vee 1) \bigg).$$

Since this holds for all $\alpha \in N$, $\bigwedge_{j \in J} (\bar{w}_j \vee 1)$ and $\bigwedge_{k \in K} (\bar{v}_k \vee 1)$ commute. Thus \bar{N}_1^* is Abelian.

Next let $a = \bigwedge_{j \in J} (\bar{w}_j \vee 1)$ and $b = \bigwedge_{k \in K} (\bar{v}_k \vee 1)$, and suppose that $a, b \leq \bar{d}_{i+1}^p$. The above argument shows that, for each $\alpha \in N$, $\alpha c \leq \alpha \bar{d}_i^{p(\alpha)}$ for some positive integer $p(\alpha)$, where $c = |[a^{-1}, b^{-1}]|$. Hence $c = \bigvee_{q=1}^{\infty} (c \wedge \bar{d}_i^q) \in \bar{N}_i^*$. Thus, by [2] again, $\bar{N}_{i+1}^*/\bar{N}_i^*$ is Abelian $(1 \leq i \leq r-1)$. Similarly \bar{N}^*/\bar{N}_r^* is Abelian, and the proof is complete.

Otherwise, the last paragraph can be replaced by the use of [5, Corollary 8.3.7] to note that \bar{N}^*/\bar{N}_i^* acts faithfully on the \bar{N}_i^* -orbits of N, since \bar{N}_i^* is a closed ideal of \bar{N}^* ; therefore $\bar{N}_{i+1}^*/\bar{N}_i^*$ is Abelian by the argument given for \bar{N}_1^* , or by induction on the Hirsch length of N.

4. Concluding Remarks

1. Theorem D gives an upper bound on the ℓ -solvable length of the free ℓ -group over a finitely generated torsion-free nilpotent class-2 group. In general, the ℓ -solvable length can exceed half of the number of generators, as we now show. Totally order N_m by

$$a_1^{n_{11}}a_2^{n_{22}}\cdots a_m^{n_{mm}}\prod_{i< j}[a_i,a_j]^{n_{ij}}>1$$

if $n_{11} > 0$, or $n_{11} = 0$ and $n_{22} > 0$, or $n_{11} = 0 = n_{22}$ and $n_{12} > 0$, or $n_{11} = n_{22} = n_{12} = 0$ and $n_{33} > 0$, ..., or $n_{ij} = 0$ $(1 \le i \le j < m)$ and $n_{mm} > 0$, or $n_{ij} = 0$ $(1 \le i \le j < m)$ and $n_{mm} = 0$ and $n_{mm} = 0$ and $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$. Then $n_{m} = 0$ is an $n_{mm} = 0$ and $n_{mm} = 0$.

What is the ℓ -solvable length of $F(N_m)$?

2. If N_{ω} is the free nilpotent class-2 group on a countably infinite set of generators, then it follows from our lower bound that $F(N_{\omega})$ is not ℓ -solvable even though N_{ω} is a torsion-free nilpotent class-2 group; that is, the free lattice-ordered group over a torsion-free nilpotent class-2 group can fail to be ℓ -solvable.

Is it unsolvable as a group?

3. We now show that $F(N_2)$ actually generates the entire variety of ℓ -metabelian ℓ -groups. Define a right total order on N_2 by $a_1^{n_1}a_2^{n_2}[a_1,a_2]^{n_{12}}>1$ if $n_1>0$, or $n_1=0< n_{12}$, or $n_1=n_{12}=0< n_2$. Let \bar{N}^* be the ℓ -subgroup of Aut (N_2, \leq) generated by \bar{N} , the right regular action of N_2 on itself. Then, if $\alpha=a_1^{n_1}a_2^{n_2}[a_1,a_2]^{n_{12}}$, $\alpha<\alpha\bar{a}_2$ if and only if $n_1\geq 0$ whereas $\alpha<\alpha\bar{a}_1^{-1}\bar{a}_2^{-1}\bar{a}_1$ if and only if $n_1<1$. Consequently, if $g=(\bar{a}_2\wedge\bar{a}_1^{-1}\bar{a}_2^{-1}\bar{a}_1)\vee 1$ then supp $(g)=\{\alpha\in N: \alpha g\neq\alpha\}=\{\alpha_2^{n_2}[a_1,a_2]^{n_{12}}:n_2,n_{12}\in \mathbb{Z}\}$. Hence $\bar{a}_1^{-1}g\bar{a}_1\wedge g=1$ and the ℓ -subgroup of \bar{N}^* generated by $\{\bar{a}_1,g\}$ is ℓ -isomorphic to \mathbb{Z} wr \mathbb{Z} . Because \mathbb{Z} wr \mathbb{Z} generates the variety of all ℓ -metabelian ℓ -groups [7] and $F(N_2)$ is ℓ -metabelian, $F(N_2)$ indeed generates the variety of all ℓ -metabelian ℓ -groups.

If we alter the above ordering by replacing $n_{12} > 0$ with $n_{12} < 0$ in the definition of the ordering, then the map $a_1 \to (\hat{0}, 1)$, $a_2 \to (\hat{b}, 1)$ defines an ℓ -isomorphism between \bar{N}^* and the ℓ -group used in the proof of Theorem A(ii).

4. What results hold for finitely generated torsion-free nilpotent groups of nilpotency class exceeding 2? If $d_1 > 1$ is an element of the smallest convex subgroup of the center, then $N(d_1)$ is Abelian. However, even if the group is nilpotent class 3, $N(d_2)/N(d_1)$ need not be Abelian $(d_2 > 1)$ is an element of the next smallest convex subgroup of the center).

References

- 1. A. Bigard, K. Keimel, and S. Wolfenstein, *Groupes et anneaux réticulés*, Lecture Notes in Math., 608, Springer, Berlin, 1977.
- 2. R. D. Bleier and P. R. Conrad, a*-closures of lattice-ordered groups, Trans. Amer. Math. Soc. 209 (1975), 367–387.
- 3. M. R. Darnel, A. M. W. Glass, and A. H. Rhemtulla, *Groups in which every right order is two sided*, Archiv. Math., to appear.
- 4. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York, 1963.
- 5. A. M. W. Glass, *Ordered permutation groups*, London Math. Soc. Lecture Notes, 55, Cambridge Univ. Press, Cambridge, 1981.
- 6. ——, Generating varieties of lattice-ordered groups: approximating wreath products, Illinois J. Math. 30 (1986), 214–221.
- 7. A. M. W. Glass, W. C. Holland, and S. H. McCleary, *The structure of ℓ-group varieties*, Algebra Universalis 10 (1980), 1–20.
- 8. A. M. W. Glass, H. A. Hollister, and A. Rhemtulla, *Right orders versus lattice orders*, Notices Amer. Math. Soc., Feb. 1978, p. A222.
- 9. H. A. Hollister, *Nilpotent l-groups are representable*, Algebra Universalis 8 (1978), 65-71.

- 10. V. M. Kopytov, *Lattice-ordered locally nilpotent groups*, Algebra & Logic 14 (1975), 249–251 (English translation).
- 11. R. B. Mura and A. Rhemtulla, *Orderable groups*, Lecture Notes in Pure and Applied Math., 27, Marcel Dekker, New York, 1977.
- 12. N. R. Reilly, *Varieties of lattice-ordered groups*, in A. M. W. Glass and W. C. Holland, eds., *Lattice-ordered groups: Methods and advances*, Kluwer Pub. Co., Dordrecht, 1989.
- 13. D. J. S. Robinson, A course in the theory of groups, Graduate Texts in Math., 80, Springer, Berlin, 1982.
- 14. J. E. Smith, *Solvable and ℓ-solvable ℓ-groups*, Algebra Universalis 18 (1984), 106–109.
- 15. E. C. Weinberg, *Free lattice-ordered abelian groups*, Math. Ann. 151 (1963), 187–199.

Michael R. Darnel
Department of Mathematics
University of Indiana
-South Bend
South Bend, IN 46615

A. M. W. GlassDepartment of Mathematics and StatisticsBowling Green State UniversityBowling Green, OH 43403-0221