FRECHET ENVELOPES OF CERTAIN ALGEBRAS
OF ANALYTIC FUNCTIONS

C. M. Eoff

1. Introduction. Let D denote the open unit disc in the complex plane. The
Smirnov class (or Hardy algebra) N+ consists of those analytic functions on D
for which

. 1 (=
lim — S
r—1— 27 J-
where f(e®) are the boundary values of f on aD [2]. Although N* has appeared
in the classical literature since 1932 (see [2, p. 31]), it was not until the early 1970s
that a study of the linear topological properties was carried out by Yanagihara
([12], [13]). He showed in [13] that N+ is an F-space (complete, metrizable linear
topological space), in fact an F-algebra (multiplication is jointly continuous) with
the translation-invariant metric d defined by

. 1 ¢7
log+ i —
] og*| f(re?)| do 27rS

log*| f(e%)] df < +oo,

1 ¢~ . .
d(f,8)=5-|" log(1+|/(e)~g(e™)) db.
Like the Hardy spaces H?, for 0 < p <1, Yanagihara showed that N+ is not lo-
cally convex but still has a rich dual space. However, in contrast to H”, he showed
that N+ is not locally bounded (i.e., has no bounded neighborhood of zero).
The Fréchet envelope for N+ was identified by Yanagihara [12] as F*, those

analytic functions on D for which

lim (1—r)log*(max|f(z)|)=0.

roi-— lz|=r
He showed that the topology of F* can be given by a family of seminorms,
(J*lc)e> o0, defined by

o= lan| expl—cnl/2], ¢>0,
0

where (a,) are the Taylor coefficients of f. Natural generalizations of N+ have
been studied by Stoll in [11]: (Log* H)%, o > 1, the Hardy-Orlicz algebra of ana-
Iytic functions on D which satisfy

sup El—gi [log*(|f(ref®)|1*d6 < +oo,

O<r<l &

and (Logt H(D))%, a =1, the Bergman-Orlicz algebra of analytic functions on
D for which
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| og*lr @)D dA(z) < +eo,

where dA is normalized area measure on D.
Stoll observed that for any o, 8 (1<a<f<+) and all p >0,

HPG (Log*H)? G (Logt H)*G N+,
also, that
sup = (" [log*|frei)[1ed0 =" [log*|f(ei)[12ab.
0<y<l1 211' - 27(' -7
One could equivalently define (Log* H)®, o > 1, to consist of those fe Nt for
which

S;W[logﬂf(e”’)l]“dﬂ < 400,

From this viewpoint, it would be consistent to write (Logt H)*=N"* for a =1.
For our purposes, nothing is lost, and this is the view we shall take in the sequel
since it allows us to subsume N+ as a special case of our general results.

Stoll showed that (Log* H)%, when given the metric d, defined by

- ' . 1/
do(f, &)= {-21? S_w [log(l+|f(e"’)—g(e"’)|]ad0} ,

is an F-algebra with separating dual (e.g., point evaluations are continuous). He
obtained similar results for (Log* H(D))?, o =1, given the metric p, defined by

1/
pulfi) = | Tlogt1 +17@) - @ D1 dAca)]

In connection with these spaces Stoll also studied the spaces Fjg, consisting of
those analytic functions on D for which

lim (1—r)#log*(max|f(z)])=0.

r—l- |z|<r

He proved that for each ¢ >0 and fEeFg, f(2)=27-0a,2",

o0

|fle= ZOIanI exp[—cnf/(1+8]
n=

defines a seminorm on Fjg, and with the topology given by this family (||c)c>o0,
Fpg is a Fréchet algebra. Additionally, Stoll showed that (Log* H)“ is a dense
linear subspace of Fy, («>1), and that the topology given by the seminorms
(I'lo)e> o is weaker than the metric topology. He indicated that analogous results
hold for (Log* H(D))®, o =1, and for F;,, but included details only for the case
a =1 since the general case follows from similar arguments. The spaces Fj have
also been studied independently by Zayed ([14], [15]); many of the results in [14]
parallel those of Stoll in [11], albeit in a more general setting.

In view of the results of Stoll and Yanagihara, clearly F, and F;, are the
natural candidates for the Fréchet envelopes of (Logt H)> and (Log* H(D))?,
respectively. Results in Section 4 will show that this is in fact the case. Although
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somewhat similar to Yanagihara’s argument for N+, our method of proofis dif-
ferent in certain essential features. In Section 2, we recall some of the basic facts
about the Fréchet envelope of a nonlocally convex F-space. Section 3 consists of
technical lemmas we will need for the proofs of our main theorems.

The author would like to gratefully acknowledge the many helpful suggestions
of Nigel Kalton during the preparation of this paper.

2. The Fréchet envelope of an F-space. For an arbitrary F-space X, with trans-
lation-invariant metric d, let V,, denote the d-ball of radius n~1, n=1,2,.... The
collection {V,] is a countable base for the zero-neighborhoods. Let ¥, denote
the absolutely convex hull of ¥, and let ||, be the Minkowski functional of V,.
Each ||, is a seminorm, and the collection {|-|,} generates a locally convex topol-
ogy on X (possibly non-Hausdorff) that is clearly weaker than the original topol-
ogy. This construction describes the Mackey topology, m = m(X), the unique
maximal locally convex topology on X for which X still has dual space X* ([8,
Thm. 1] or {9, §2.8]). If X is not locally convex, then because of the failure of the
Hahn-Banach theorem (see [7, Chap. 4]) it can happen that X*= {0}, as the ex-
ample L”[0,1], 0< p <1, shows; if X*={0}, then m is just the indiscrete topol-
ogy. If X* separates the points of X, this is necessary and sufficient for m to be
Hausdorff; in this case m is metrizable and the completion of X with respect to
m is a Fréchet space, called the Fréchet envelope of X and denoted X. X and X
have the same dual spaces, in the sense that every continuous linear functional on
X restricts to one on X, and every continuous linear functional on X extends con-
tinuously to one on X.

If an F-space X has a bounded neighborhood of zero B (i.e., locally bounded),
then a base for the zero-neighborhoods can be given by thesets n !B, n=1, 2, ....
A locally bounded F-space is called a quasi-Banach space. It is not difficult to
check that the Fréchet envelope of a quasi-Banach space (with separating dual) is
a Banach space, the Banach envelope X (see [7, Chap. 2]).

The sequence space /, and the Hardy space H?, for 0 < p <1, are the classical
examples of non-locally convex F-spaces with separating dual spaces; both are
locally bounded. For /,, 0 < p <1, the absolutely convex hull of the unit ball of /,
is the /;-unit ball; it follows that the Mackey topology on /, is the /;-topology. The
l,-closure of /, is /; and thus /; is the Banach envelope of /,. The situation is not
so transparent for the Hardy space H”, 0 < p <1; Duren, Romberg, and Shields
identified the Banach envelope of H” in their milestone paper of 1969 [3]. Some-
what later, Shapiro gave a different proof of this result, utilizing his convex hull
characterization of the Mackey topology via a reproducing kernel [9]. The Banach
envelope of H? is a Bergman space which turns out to be isomorphic to /; [8].
Kalton showed that the Banach envelope of any non-locally convex quasi-Banach
space X (with separating dual) must be /;-like in character; precisely, /; must be fi-
nitely representable in X [7, Thm. 4.14]. Further examination of the special struc-
ture of Banach envelopes was carried out by Kalton in [6], where, for example,
he constructs a non-locally convex quasi-Banach space with an unconditional ba-
sis whose Banach envelope is isomorphic to c¢,. However, he shows that this case



416 C. M. EOFF

is pathological by proving that ¢, can never be the Banach envelope of a non-
locally convex “natural” space (a concept which includes all the non-locally con-
vex quasi-Banach spaces that are commonly studied in analysis).

3. Preliminaries. In this section we consider the function
f(z) =ex £ c>0
p(c 1= )3 ,

obtaining certain estimates to be used in our arguments in Section 4. First note
that for z =re’f,

Re % _ (r+3r3)cos+2r4 s§in2@—r4—3r2
(1-z)3 (1—2rcos0+r2)3
=g(r,0), say.

Fixing r, we notice that g(r, -) is an even function of #; elementary calculations
show that there exists (r) > O such that g(r,6) <0for6e[0(r), ] and g(r,0) =0
for 0 [0,0(r)], and that 6(r) > 0as rt1l.

Next, for 8 =0, because

3 2
cosf < 1—%—+96— and 1—2rcos 0+r2>(1—r)2+%)—
for r = 1, we observe that
r(1—r)3—Sr(1—r)(4r2+r+1)62+ 103
(1=r)>+(2/7%)8%)?
= A=r)+3(1-r)62+6°
T ((A=r)2+(2/72)62)3
for re[4,1) and 0 € [0, 7].

LEMMA 3.1. Let f(z) =explcz(1—z) 3] and fr(z) = f(Rz), where Re[3,1)
and ce (0,1). For a =1, there exists a constant M = M(«) such that

g(r,0) =

2_17; Sw [log*| fz(ei®)| 1 d6 < Mca(1— R)! -3,

Proof. Applying our earlier observations, we have

o= | ttog*|fa(em |1 =5 " (1og*Texp ce(R, 0)1)* a0

=< [P 1g(r, 0010 a0
_ce S” (1-R)3+3(1— R)02+03} 40
T o{ [(1—R)2+(2/72)62)3
c* x| p343p0%2+63 T~
=_7r_50[(p2+(2/7r2)92) ] dl (where p=1—R)
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© 2 3 o
SCO‘pl“3°‘—1—S [ 1+3¢%2+¢ ]dt

w o | (1+(2/72)t2)3
= co(1—R)1-3ap,
where ,
1 po[ 1432243 ¢
M_M(az)_;FS0 [(1+(2/7r2)f)3] dt. 0

LEMMA 3.2. Let f(z) =explc(z(1—2)73)] and fr(z) =f(Rz), where 0<c<1
and % <R<1. For a=1, there is a constant M = M («a) such that

SD [log*|fr(2)|1*dA(z) < c®M(1—R)2~ 3,

Proof.
1 ¢tpr cRrei® \1“
+ o —__ +
|, logt @1 dacy=— | ™ [log exp(Re —_”(1—Rrei6)3)_ r do dr
—LVSW logtexp( Re ﬂje—)—audﬁdu
aR2 Jo Jo g p (l_uei0)3 |
2ce (172 (60(u) o
== ] L, 017w do a
2c® (R (0(w) N
+mfl/2 SI/Z Lg(u, 0)12u db du.
Now,
2Ca 1/2 0(u) o 8coz ]/2 Q(u) N
N e orududo < == { T T g (u, 0010w do du
=M,=M(a)
and
2ce

R (0(u) . 8ce (R cn((1—u)3+3(1—u)f%+03
Iy [g(”"”]“d"dl‘s““gl/zgo[ [(1—u)2+ /D0

7R? Ji2 Jo T
_ 8ce Xl/z Sw[ p3+3p02+63
1-R Jo | (p%2+(2/72)62)3
(where p=1-u)

1/2 8 o[ 1432+ 1«
— o 1-3a) =
¢ Sl_Rp {77 S‘0 [(1+(2/7f2)12)3] dtz a

} db du

™

] do dp

1/2
=cody | p1=dp  (My=My()

= c*M,(3a—2)"1[(1— R)2~3x—23-2]

<c*M,(1—R)% 3e,
Consequently, :
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SD [logt| fr(z)|1¥ dA(z) < M, +c*M,(1—R)2-3=

<c*M(1—R)2 3
with M =M(a). |
LEMMA 3.3. For f(z)=explcz(1—2z)73] and f(z) =2 y-0a,(c)z", 0<c<]1,

we have that log|a,(c)|=4-3-3/4c1/4n3/A—\/3cn —v, with y<A+Blogn, A, B
constants independent of c, n.

Proof.

o ck zk
k§=;1 k! (I—Z)3k
o k o _
RS <3k+)\ l)z"“
k=1 k! \=o A
© n ck/p—2k—1
=1+ R n
n§1k§=;1 k'( n—k )z
® n ck/n42k 3k
=1+ — n,
n§1k§1 k'(n—k )(n+2k>z

so that a,(c)=1 and

noock fn+2k 3k
a"(c)—k{;;_k_!( n—k )n+2k

for n=1,2,3,.... Thus

ck <n+2k) 3k

W=\ Lk ) a2k

for k=1,2,3,...,nand n=1,2,3,....
For 1 <r < n, we apply Stirling’s formula and observe that

<n> n" 1 1 1
> exp|— - .
r (n—r)"—"r" \J27n 12(n—r) 12r

nn nn—rnr
log ———=log ——
©8 (n—r)yr=rrr g (n—=r)yr=rrr

=(n-r) 108(;{2‘;) +r log(;)

Also,

(using the inequality —log(l—u) = u for u <1). Consequently,
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n r? n
=r—— l I ’ ’
log(r) ! p +r og<r> vi(n,r)

where
(n,r)= ! + I +llo (wn)
Y = oy T =) T2 08
1 1
< S + > log(27n);
thus,

9k? 2k
=>3k— et +3k10g<n+ >_')’2(nak)3

v, K) =72(n) < <+ logl2m(n+2/)]

< 1 + % log(67n).

(=)

Since log k! <k log k—k+1log /2wk +1/12k, we have

ck /n+2k\ 3k n+2k Ok?
log| <~ > 1 -
og[k! ( n—k >n+2k]>4k+3k Og( 3k ) n+2k

—klog k+klog c—vy;(n)

3-3/4c1/4p3/4 2k
=4k+4k(log ¢’ )+3klog<l+7)
9k?
- n+2k _73(’1)’
with
n+2k 1
=1 —
v3(n) og( I >+10g 27k + ok +v,(n)
<(3+log+/127)+2logn
=A+Blogn.

For [373/4cl/4p3/4] = 1, set k = [373/4c1/4n3/4] = 3-3/4¢c1/4p3/4 — 5, with 6 =
6(n,c), 0 <6< 1. Consequently, we obtain

log a,(c) =4-3=34c1/4n3/4— \[3cn —y5(n),
v3(n) <A+ Blogn.
for the appropriately chosen constants A, B independent of ¢ and n. This com-

pletes the proof. O

4. The Fréchet envelopes of (Log* H)* and (Logt H(D))®, a=1. Let X be
an F-space with Fréchet envelope (X, 7); recall that 7 is weaker than the metric
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topology on X and is the strongest locally convex topology on X such that X still
has dual space X*. Now if (Y, u) is a Fréchet space, X is a dense linear subspace
ofAY such that 7 Sy, and u is weaker than the metric topology, then necessarily
(X,7)=(Y,p).

The aim of this section is to show that the topology of Fj,, (resp., F,/,) is
stronger than that of the Fréchet envelope of (Logt H)“ (resp., (Logt H(D))%)
for o = 1. In view of our earlier remarks and Stoll’s results, this will prove that
Fy/y (resp., F5;,) is the Fréchet envelope of (Log* H)* (resp., (Logt H(D))*),
a =1. Of course the case o =1 has been done by Yanagihara in [12], as previously
mentioned; it will follow as a special case of our results. For completeness, wein-
clude statements of the results of Stoll (o« > 1) and Yanagihara (a =1).

THEOREM A ([11], [12], [13]). Let a =1, fe (LogtH)?*, and f,(z) = f(1z),
0<r<l1. Then
(1) lim,y, d (f, f)=0;
(ii)) (Log*H)® is a dense subspace of F,; and
(iii) the topology in F,,,, defined by the family of seminorms (|*|c)c >0, is
weaker than the metric topology in (Log* H)<.

THEOREM B ([11}). Let o =1, fe (Log* H(D))*, and f,(z)=f(rz), 0<r<1.
Then
(1) limrTl pa(fr9f) =0;
(i) (Log* H(D))* is a dense subspace of F5;,; and :
(ili) the topology in F,,,, defined by the family of seminorms (|+|.)c>0, is
weaker than the metric topology in (Logt H(D))<.

Now for X = (Logt H)* or (Log* H(D))%, o =1, the metric d =d,, or p, isro-
tation-invariant; that is, d(fy, 0) =d(f, 0) where f,(z) = f(e%z). Recall the con-
struction of the Fréchet envelope X as described in the introduction. It is easy to
see that the Minkowski functional of the convex hull of a d-ball must be rotation-
invariant. Thus the topology of X can always be given by a family of rotation-
invariant seminorms. We will exploit this via the next useful proposition (sug-
gested by N. Kalton).

PROPOSITION 4.1. Let X = (Log* H)® or (Log* H(D))%, a=1, and let ||-|| be
any continuous, rotation-invariant seminorm on X. Let e,(z) =z(n), w,=|le,||,
and fe X, and let f(z2) =X ,~-0a,2" be the Taylor series expansion of f. Then the
Jollowing hold:

() 1715 E5m0 anwis
(i) |a,\w.=<|f|, n=0,1,2,....

Proof. (i) If P is any polynomial, P(z) =3_o b,e,, we clearly have
N
1PY= 3 [,

For feX and f(z)=X,-0a,2" f is the uniform limit of the partial sums of
its Taylor series on each circle |z| <r <1, so that if Py .(z) =3%_0a,r"z" then
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d(Py,;, f;) =0 as N — oo, whereby [|Py,, —f;[| -0 as N — c. Consequently, for
eachr (0<r<1),

I/l =tim|| Py, | < X r"|an|w,.
N n=0

Now d(f,, f) —0as r11(Theorems A and B), whence || f,—f| —0as r?1and so

[£l=tim|f = X |an|w,.
rtl n=0

(ii) As the argument for (i) demonstrates, we need only show that (ii) holds
for any polynomial P(z) =3/_qb,z" For z,we D and 0 € [—, 7], let Py(z) =
P(e'9z) and P,(w) = P(zw). Since ||-|| is rotation-invariant, || P,|| =|| P||. For each
zeD, P,(w)=3XN_(a,z")w" so that

a,z"= -;— r P,(e'%)e = do.
T J—7

For clarity, write F(z, 0) = P(ei’z); note that F(-,0) = P,. For each z e D,

a,e,(z) = % S" e—i"F(z,0) do.

—n

Since
L i —inf . — L i —inf
ESUE N P
1 T
<— Pyl do
— " inl
=|P],
we have
a,e,= "2%{ S:r e=in0F (., 8) do.
Consequently,
Ianlwn = "l a,ép |||
— _1_ T —ind .
_\ - S_Te F(,@)dom
=|Pl,
and (ii) follows. L]

Proposition 4.1 and the lemmas from Section 2 furnish us with the necessary
tools to prove our main results. Also, for (Log* H)%, o =1, it is straightforward
to show that the sets

B(e,a) = {ge(LongH)“; Si [log*(a|g(e?)])] d0<e}

(a>0, e >0) form a base for zero-neighborhoods that defines a topology equiv-
alent to the metric topology on (Log™ H)“. An analogous situation exists for
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(Log* H(D))«. This observation allows for certain simplifications in the proofs
of Theorems 4.2 and 4.3. It is worth remarking that while there are some techni-
cal differences between the cases (Logt H)® and (Logt H(D))®, a>1, the idea
behind both proofs is the same.

THEOREM 4.2. For a =1, Fy,, is the Fréchet envelope of (Log* H)*.

Proof. As noted previously, the topology for the Fréchet envelope of (Log* H)“
can be given by a family & of rotation-invariant seminorms. Let ||-|| € ¥ and w, =

leall-

Now |+|| is continuous on (Log* H)<, so there is a zero-neighborhood ¥ such
that if 2 eV then | 4] <1. Notice that by Proposition 4.1(ii), for each nonnega-

tive integer k,
wi <inf{|ay(h)|~1: heV},

where a; () is the kth Taylor coefficient of 4. Keeping in mind the remarks made
at the beginning of Section 4, we see by Proposition 4.1(i) that an appropriate
estimate of the coefficients of a suitable family of test functions will yield the de-
sired result. To this end, recall that we may take V to be of the form

V= {ge (Log* H): SW [log+(r]g(e"")|)]°‘d6<6}
for some r >0, 6§ > 0. Notice that if
g” [log+|g(ei®)|]*db <o

then ag e V, where a = min{r —1, 1}. Consider the family of analytic functions
Ji(z) =explciriz(1—ryz) 3] for sequences (c;), (ry), 0<c¢, <1 and % <r,<l,
which are to be specified later. With ¢ =min{r —1, 1}, as before, if

|” nogtlsicean<s

then
fafi V.

From Lemma 3.1 we have that
|” Dog*| fu(e™ 1% do = Meg(1—r)' =

for some constant M = M(«). For each k, put
cy =M Va§l/a(] —r,)Ba—D/a
= )\1/0‘(1 _rk)(3oz—l)/a,

with A =M ~1§. For any choice of ry t1and ry = %, af, €V for all k. In particular,
set

_ da/(1+a)
rk=1_3-—3&/(a+1))\1/(1+a)(3a 1) e —a/(a+1)
(07
=1 _Alk—a/(a+l),
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so that
= A/ (@+1)33((1=30)/(@=1) G4(Ba~1)/(a+ D) g (1=3)/(a+1)

and
4.3—-3/4ck1/4k3/4 ___4_3—-30:/(a+1))\1/(a+1)B4a/(a+l)k1/(a+1)
=A2kl/(a+l)

with 8 = (3a—1) /. Following the notation of Lemma 3.3, if £ (z) =X 2= b{z"
then b$®) = rf'a,(c;). Apply Lemma 3.3 and obtain that

log b{¥) =log r{ay(cy)
=log a,(c; )+ k log ry,
>4.374cHA3 A1+ o(1)] +k log ry
= kV/(@+D[ A4, + ke/(@+D) Jog(1 — Ak —/(@+D) 4 0(1)].

Now,
lim ke/(etD]og(1—Ak—o/(2+D)=—4,

k—

and

A, — A =4.3—3a/(a+1)6(3a—l)/(a+1))\1/(a+1)<1 _ _ﬁ_) >0,

because 8 =(3a—1)/o=3—1/a. Consequently, there exists n=»(V, a) >0 and
kg so that
log b = nkV/(+D

for all k = k. It follows that
(b)) = Olexp(—nk '/ @+D)].

Since {afi}x SV, || fkl|<=a~'forallk=1,2,.... By Proposition 4.1(ii), we have
w,b*) <a-1, so that

w, <a~1(b) ™! = Clexp(—nk /(1))

for some constant C=C(V, a) > 0.
For any g e (LogtH)* and g(z) =Xn=0 ¢,2" we have

GEPRIA

=C ¥ |$a] exp[—nn!/tx+D]

n=0
=Clgl,,

thereby demonstrating that the topology of Fj, is stronger than the topology of
the Fréchet envelope of (Log* H)“. In view of our remarks at the beginning of
Section 4, this completes the proof. O]

We next consider the case (Logt H(D))*, a=1. Since the idea of the proof of
the next theorem is essentially the same as for Theorem 4.2, we shall keep the
argument as brief as possible.



424 C. M. EOFF

THEOREM 4.3. For a =1, F,, is the Fréchet envelope of (Log* H(D)).

Proof. 1t is enough to show that, for any continuous rotation-invariant semi-
norm on (Log* H(D))= (say, ||-||) and ||e,| = w,, we have

w, = O[exp(—qn?/(@+2))]  for some 5> 0.

There is a neighborhood V of zero such that if 2e ¥V then |4 <1. Consider
again the family f}, (z) = exp[c;ry z(1 —riz)~3]. There are constants ¢ > 0 and 6 >
0 such that, if

|, tog*lfe)Deda) <o,
then {af,}, € V. From Lemma 3.2 we know that
|, (og 1 /(@))*dA(@) = cgM(1—r,)>~>

for some M = M(a). Set
Cp= M—l/a5 l/a(l _,-k)(3a—2)/a
= )\1/0‘(1 —ry) Ba—2)/a
with A=M ~14, so that {af,}, S V. Set
rp=1—3"3/(a+2)g4a/(a+2)\|/(@+2) | —a/(a+2)
=1—Ak—e/(@+2)

with 8= (3a—2)/a, so that
¢ = 33(Q2=30)/(a+2) B 4(Ba—2)/(a+ ) \/(2+) (230 /(a+2)

and
4. 3_3/4C,§/4k3/4 =4 _3—3a/(a+2)ﬁ (3a—2)/(a+2))\1/(a+2)k2/(a+2)

=A2k2/(a+2)-

As in Theorem 4.2, with f,.(z) =32, b{Fz" =3y a,(c,)rfz", we apply Lem-
ma 3.3 and obtain:

log b{¥ =log a(c) +k log ry
=4.373 )31+ 0(1)]+ Kk log ry,

= k2/@+2[ 4, 4 2 @D og(1— Ak ~H @+ 4 o(1)].
Since

Ay— A, _.___4,3—301/(a+2)6(3a-—2)/(a+2))\2/(a+2)<1 _ ﬁ) -0
4 bl

it follows that there is y =%(V, ) >0 and k, such that
log b*) = yk ¥/ +2)
for all £ = k3. Consequently,
(b~ = Olexp(—nk ¥/ +)].
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Applying Proposition 4.1(ii), we obtain

Wb < fel <a
or
w, <a () = Cexp[—nk?/ e +2))

for some constant C = C(V, a) > 0, which completely proves the theorem. |

REMARKS. Recall the construction of the Fréchet envelope given in Section 2.
By analogy, one may take |-|, , as the Minkowski functional of the absolutely
p-convex hull of V,,, 0< p<1. The family {|-|, ,} generates a locally p-convex
topology on X (see [7, Chap. 1]); the completion of X with respect to this topology
is called the p-envelope of X Elnd i§ denoted X ». Using the results proved above
and [5], we show in [4] that X, =X for X =(Log* H)“ or (Log+HA(D))°‘, o= 1.
By contrast, if X is locally bounded but not locally convex, then X, and X can
never coincide [4]. For example, see Coifman and Rochberg [1] for the g-enve-
lopes of H, where 0 < p < g <1; see Duren, Romberg and Shields [3] for the case

g=1.
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