PROPER HOLOMORPHIC MAPS BETWEEN BALLS
OF DIFFERENT DIMENSIONS

John P. D’Angelo

Introduction. The proper holomorphic mappings from the unit ball in C to it-
self are exactly the finite Blaschke products. The higher-dimensional result seems
quite different. Alexander [1] proved that a proper holomorphic map of the unit
ball B, in C” to itself is actually biholomorphic. This result is actually a special
case of a general result on proper maps of smoothly bounded strongly pseudo-
convex domains, or even certain weakly pseudoconvex domains of finite type. It
is not hard to see that there can be no proper maps from B,, to B, for m less than
n, so it remains to classify them for m larger than n. The boundary behavior of
such maps appears to get worse as the codimension (72 —n) increases; see Low
[10]. Thus it is reasonable to ask to classify only those proper maps that are suf-
ficiently regular at the boundary (the unit sphere). Webster [14] has proved that a
proper holomorphic map from B,, to B,, . that is three times continuously differ-
entiable at the boundary must be equivalent to a linear imbedding if » is at least 3.
Here equivalence is up to automorphisms of the two balls. Faran [7] proved that
a proper map that extends holomorphically past the boundary must be equivalent
to a linear imbedding when m is at most 27— 2. He also gave a complete analysis
[6] of the case n = 2, m = 3, assuming three continuous derivatives up to the
boundary. He proved that there are exactly four equivalence classes; thereis a
monomial map in each class. Cima and Sufifridge [4] showed that, for some of
these results, one needs only two continuous derivatives at the boundary. Forst-
neric [8] then showed that when m is at most 2n — 2, proper maps with m—n+1
continuous derivatives on the sphere extend holomorphically past the sphere. By
Faran’s result above, such maps are equivalent to linear ones. Forstneric has also
some interesting results that apply when the range is any strongly pseudoconvex
domain, and Rudin [12] has analyzed the homogeneous case.

The purpose of the present paper is to investigate the proper maps between
balls of different dimensions by proving several results about polynomial proper
maps, by exhibiting a one-parameter family of inequivalent proper maps from
the n-ball to the 2n-ball, and by formulating a conjecture that unifies many of
these results. We also list (omitting the tedious proof) all the proper monomial
maps from the 2-ball to the 4-ball, and show how to obtain polynomial proper
maps that are not equivalent to any monomial map.

Perhaps the main result of the present paper is the statement that, if two poly-
nomial proper maps are equivalent up to automorphisms of the balls, and they
preserve the origin, then they are actually unitarily equivalent. A simple example
shows that the hypothesis on preserving the origin is necessary. From this we
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derive easily the fact that the maps in our one-parameter family are mutually in-
equivalent. Another corollary is the existence of polynomial proper mappings that
are not equivalent to monomial maps. One of the tools used in the proof is the
investigation of the properties of the quotient (| f|>—1)/(]z|*>—1) and its com-
plexified form ({ f(z), f(w))—1)/({z, w) —1). These expressions satisfy the chain
rule, even though no limit has been taken.

The author thanks Joe Cima for his lecture on proper holomorphic maps at
the meeting at Penn State in March, 1986, and acknowledges helpful discussions
with Jim Faran.

I. Statements and proofs of the theorems. We let O(n, m) denote the set of
proper holomorphic maps from the unit ball B,, in C" to B,,,. We write P(n, m) for
the subset of O(n, m) consisting of maps that extend holomorphically past the
boundary. We say that f, g are spherically equivalent if there are automorphisms
of the domain and range balls, ¢ and ¢, for which fo =y g. We write O*(n, m)
and P*(n, m) for the set of equivalence classes. The results of the introduction
include the following:

0O*(1, 1) is infinite;

O*(n, n) has one element for n=2;

P*(n, m) has one element for n=m=<2n-—2;

P*(2, 3) has exactly four elements;

O(n, m) and hence O*(n, m) is empty for m < n.

We will prove in this paper that P*(n, m) and hence O*(n, m) are infinite for
mz=2n.

If fand g are proper holomorphic maps from the same domain ball B, to (per-
haps different) range balls B,, and By, and if e*’ is a complex number of modulus
1, then we define the #-juxtaposition of f and g, written Jy(f, g), to be the proper
map from B, to B, given by

1. Jo(f, 8)(z) = (cos(0)f(z), sin(6)g(z)).
We define the extend map E from B, to B,,_; by
2.1 E(Zl, '"szn) = (zls cee3Zn—15<13%n5<2%n> ""z3)°

More generally, if f is any proper map from B, to B,,, we write Ef for the
proper map to B, ,n—15

2.2 Ef(zl, ---,Zn)=(f1, "',fm——lszlfm’ Zmes -"’znfm)-

Note that £ and Ef are proper. This is easiest to see by noting the fact that a
map H is proper if and only if H(z,) tends to the boundary whenever z, does.
Hence a nonconstant map that extends holomorphically past the sphere is proper
if and only if its norm is 1 there.

We use this fact to analyze the notion of spherical equivalence. Given any
proper map f: B, to B,, that extends holomorphically past the sphere S,,,—;, we
can find a unique real analytic function Q, (analytic also in a neighborhood of
the closed ball) for which we have
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3.1 | /()P —1=(Iz]*-1) Qs ().

We will use this formula in several cases, including when f is an automorphism.
More generally, we define the complexified form of 3.1 as follows:

3.2 Qr(z, w)=(S(2), f(W)—1)/(Kz, w)—1).

See Lemmas 6, 7, and 8 below for the properties of Q.

We recall the following description of the automorphism group of the ball (see
Rudin [11]). Every automorphism is of the form U¢,, where U is unitary and ¢,
is a linear fractional transformation of the form {,(z)=(L,z+a)/(1—<{z,a)).
Here «a is a point in the ball, and L, has the following particular form:

5. L,(z) =—(sz+({z,ada/(s+1))), where s’=1—]al|>.
From formula 5, we derive the following formula. We write £ for £&,.
6. LEMMA. Q;(z, w) = (1—[a[*)/((1—(z, a))(1—<a, w))).

Proof. A proof of this formula appears in [11, p. 27], but the reader can ezasily
work out the algebra using formula 5 above. 1

Now we study the formal properties of the quotient Qy. We gather these to-
gether in the following lemma and proposition.

7. LEMMA (Chain Rule). If f, g are proper and h=g- f, then

7.1 On(z, w) = Qg (f(2), f(W)(Qr(z, W)).
If all the maps are proper and f¢ =y g, then
7.2 (Qg(z, w))(Qy(g(z), 8(W)) = (Q(z, w))(Qr(E(2), E(W))).

Conversely, if 7.2 holds then there is a unitary matrix U for which Uft =yg.

Proof. Calculation using formula 3.2 shows that 7.1 is equivalent to the iden-
tity of < gf(z), gf(w)) and {A(z), h(w)). The statement 7.2 is then clear, while
the converse follows (after putting z = w) from the often-used fact [5] that norm
squared equalities between holomorphic functions imply the existence of such uni-
tary matrices. ]

Some other properties of Q(z, w) are in the next proposition.

8. PROPOSITION. Let f be a proper map between balls. The quotient Q satis-
fies the following properties:

8.1 0<Qs(z,2)<o0 for |z|<1.
8.2 Qy is a polynomial if and only if f is.

8.3 Qrr(z,Ww)=Qs(z, W)+ fin(2)fm(w). (Here Ef is the extend map defined in
equation 2.2.)

8.4 Qyis 1if and only if f is unitary.
8.5 Qs e (2, W) =cos?0Q/(z, w)+sin® 0Q,(z, w).
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8.6 Qy(id, E.id)(z, w) =14sin’ 0z, w,.
8.7 (Schwarz lemma) For z,w in the ball, |Qs(z, w)|* < Q/(z,2)Q (W, w).

Proof. All the results are simple computations except for 8.7 and 8.2. Since we
do not use 8.7, we refer the reader to [11]. To see 8.2, note that if Qf is a poly-
nomial then so is f. To verify the converse, suppose that f is a polynomial. We
use the complexified equation 3.2 that Q/(z, w)(1—(z, w)) =1—<{f(z), f(W)).
We know that Qy is analytic in z and conjugate analytic in w. For any fixed w, we
will find an integer N=N(w) so that (3/3z)*Qy(z, w) vanishes identically in z
for |o| = N. By the Baire category theorem, it then follows that there is an open
set of w’s for which (3/9z)®Qr(z, w) vanishes identically with « as above. Since
Qy is also analytic in the w variable, this holds for all w in C”. By symmetry in
z and w, Qy is then a polynomial in each variable. To establish the existence of
N(w), note first that it is clear for w = 0. Otherwise, we suppose without loss of
generality that w; does not vanish. We make the substitution that z} =(z, w)—1
and z; =z, for k> 1. This does not change the fact that f is a polynomial in the
z* variables, but makes Q into ({f(z), f(w))—1)/zf. Now it is clear that if the
quotient of a polynomial by a coordinate is analytic, the quotient is still a poly-
nomial. Thus such an integer N(w) exists for each w, and the result follows. [

We now combine these lemmas to prove our first theorem.

9. THEOREM. Suppose that f,g: B, to B,, are proper polynomial maps. Sup-
pose that f(0)=g(0)=0. If f and g are spherically equivalent, then f and g are
actually unitarily equivalent. Thus, if there are automorphisms & and y for which
g& =y f, then & and Y must be unitary maps.

Proof. From the description of the automorphisms preceding formula 5, we
may assume that £ = U, and that y = V¢, for unitary maps U and V, and £, and
&p are as in that description. Next we use formula 7.1, 8.4, and apply Lemma 6.
We obtain the formula

(Qr(z, W) (1—|b]*)(1—<z,a)) (1—<a, w))
=(Qg(Uka(2), UL, (W) (1—|al>) 1 =< f(2), b)) (1— (b, f(W)).

We set w=01in 9.1, and note that {(¢£,(z),a)—1= (||a||2— 1)/(1—<z,a)). This gives

(f(z), f(0)>—1
= ((g8(Ut4(2)), g(Ua)) —1) (1 - f(2), bY) (1—<b, f(0)>)/(1—|b|?).

In the special case that f(0) =0, we see that 9.2 shows that a constant is the prod-
uct of a polynomial and a rational function. If g(Ua) does not vanish, the in-
ner product {(g(U&,(z), g(Ua)) does not vanish at z =0, and hence nearby. The
denominator of this rational function is 1—{z, @) to some power, but this does
not divide the numerator, because 1—{(z, a) does not divide a+ L,z. It is impos-
sible for the product of this with a polynomial to be a constant. This shows that
g(Ua) must vanish. Putting this into 9.2, and using f(0) = 0, we get that { f(z), b}
must be a constant. Since f(0) =0, this constant is 0. Put into 9.1 the fact that

9.1

9.2
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{f(2), by =<(b, f(w))=0. The left side is then a polynomial in z, while the right
side is singular along the variety 1=z, @). This is possible only if this variety is
empty, or that a = 0. Now we can write g = U§, fV*. From here we cannot con-
clude that b =0, as example 15.2 below shows. However, if also g(0) =0, we ob-
tain that 0=U§, fV*(0) =Ub. Thus b=0 and g=UfV*, which is the unitary
relationship. (]

As a corollary of this theorem, we obtain the following result. In formula 10
below, we are taking the 6 juxtaposition of the identity map and the extend map
defined in equation 2, and composing with a linear transformation so as to map
into the smallest possible ball.

10. THEOREM. P*(n,2n) is infinite. Hence P*(n,m) is infinite for m=2n. In
Jact, the proper maps Fy, defined by 11, are inequivalent for all 0 with0 <60 < /2.

11. Put Fyp(z) = (Z1y - » Zn_1, COS(0)Zn, SIN(O)Z1 Zp,s -, SIN(0)2Z2).

Proof. Suppose that F, and F, are equivalent. By Theorem 9, they are re-
lated by unitary matrices. In particular, there is a unitary matrix U= (U;;) for
which |Fy(z)|* = | F,(Uz)|*. From this it follows from Lemma 7 that Qy(z,z) =
0,(Uz, Uz). Here we have written 8 for Fy to avoid an extra subscript. Calcula-
tion or 8.6 shows that

12. Q0(2,2) =2, |* sin’(0) +1 = |Uz,|* sin®(n) + 1 = Q,(Uz, Uz).

Equating coefficients of each variable shows us that |Uy,| =0 for k < n, therefore
that |U,,| =1 and hence that sin?(8) = sin?(n). Because of our restriction on § and
7, we obtain the desired result that 6 = 7. l

13. COROLLARY. P*(n,m) is infinite for m=2n.

Proof. Compose the maps Fy with linear isometric imbeddings into the larger
ball. O

14. REMARK. We noted above that the maps Fj can be obtained by taking the 0
juxtaposition of the identity map and the extend map. We compose with a linear
map that amounts to identifying the result with a map into the ball of smallest
possible dimension. This description amounts to a factorization in the sense of
the conjecture of the next section. More generally we can derive other infinite
families by other juxtapositions.

15. EXAMPLES. There is exactly one other one-parameter family of proper mo-
nomial maps (preserving 0) from the 2-ball to the 4-ball. This is also a § juxta-
position and can be written as follows. Write (z, w) for (z;, 22).

15.1 Go(z, w) = (z2, (1+cos?(8))?zw, cos?(0)w?, sin(8)w).

In the statement of Theorem 9, it would not be enough to assume only that
JS(0) =0. Suppose, for example, that g(z) = Jy(f, 1), where 1 denotes the constant
function. Then g will be a proper monomial map that does not preserve the ori-
gin, but is equivalent to the map (f, 0). To be more concrete, put
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15.2 g(z)=—(1—|b|*)"*(z1,2122,23,0)+(0,0,0, b).

Then g is proper, g(0) does not vanish, and g is equivalent to (zy, 2: 22, z3, 0) via
the map £,, where b=(0,0,0, b).

We now give an explicit example of a polynomial map that preserves the ori-
gin, yet is not equivalent to a monomial.

16. THEOREM. For a generic unitary map L, the proper map f obtained by f =
ELF is a polynomial map that is not equivalent to a monomial.

Note. By f=ELE, we mean the following: begin with the map £ in definition
2, apply a unitary map L, and apply E to the result. For example, put

fﬂ(z’ W) =

16.1 2 . 2 2, o 3 . 2
(z,cos(0)z“w+sin(0)zw*, cos(B)zw*+sin(8)w", —sin(8)zw+cos(8)w*).

Then, for 0 <0< n/2, fyis not equivalent to a monomial.

Proof. By Theorem 9, if f is equivalent to a monomial map then it is unitarily
equivalent to one. It is then a trivial matter of linear algebra to see that this is im-
possible. We omit the details. O

17. REMARK. Note that 16.1 gives an example of a nonmonomial map from the
2-ball to the 4-ball. In general, for n > 1, this idea gives an example from the n-
ball to the (3n—2)-ball. When n =1, however, £ and L commute, sO we cannot
have a proper polynomial map that is not a monomial in the unit disk.

II. A conjecture. In this section we formulate a conjecture that casts all the re-
sults of the introduction into one framework. We try to “factorize” each proper
map into simpler ones. We consider, in addition to the extend map and linear
maps, the inverse of the extend map. We call this the collapse map. It is not prop-
er, but seems to be necessary for the factorization result. More precisely, we con-
sider the following operations.

1. OPERATIONS. Let f be a proper map between balls. Let ¢ be an automor-
phism of the domain, ¥ an automorphism of the range. Let U be an isometric
linear imbedding of C” into some higher-dimensional C”, and let P denote an
orthogonal projection from C™ to C”. We define new proper maps as follows:

1.1 L, f=¢-f;

1.2 Ryf=fov;

1.3 E,f=(/1sesSm-1sC1Sms P2Sms s PnSm)s

1.4 C,g=hif g=E_h;

1.5 Lyf=U-f;

1.6 Lpg=Pog.

Note that the operations 1.1, 1.2, 1.3, and 1.5 send f to a new proper map for every

S, while 1.4 and 1.6 preserve properness only for certain g. Of course, in 1.3, 1.4,
1.5, and 1.6, the image ball may lie in a different dimension.
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2. CONJECTURE. Suppose that f is a proper map from B, to B,, that is suffi-
ciently regular at the boundary. Then there is a finite list of intermediate balls and
operations A; (each in the above list) so that

2.1 F=TLA;(id).

3. EXAMPLE. The proper map f(z, w) = (z°>, </3zw, w?) can be factorized as fol-
lows: Each FE is of type 1.3, while each L is of type 1.5 or 1.6, and C'is of type1.4.

(z, W) = (2, 2w, w?)
(2, 2w, 2w, W)
(zw, zw? w3, 2)
(zw, zw?, w3, 22, zw)
(zw, zw3, w3, zw, z2)
(zw, zw?, w3, zw, 23, 2%w)
(23, zw, zw, w3, 22w, zw?)
(23, zw, zw, w3, zw)
(23, \3zw, w3)

Similar factorizations apply to all the maps listed in this paper. In fact the au-
thor has proved and will show in a future paper that all monomial proper maps
admit such a factorization, and, if one allows slightly more general linear trans-
formations, that all polynomial proper maps do also. It is also easy to see that if
Jf and g have factorizations, then so does Jy(f, g).

IS T o T o I o I e B o B oy Tl

III. Monomial maps from the 2-ball to the 4-ball. There is a simple algorithm
that generates all the monomial maps from B, to B, that preserve the origin. This
algorithm amounts to recognizing that such monomial maps are in one-to-one
correspondence with polynomial maps with at most & terms, with nonnegative
coefficients in the # real variables x; =|z j|2, that equal 1 on the hyperplane in R”
defined by Xx; =1. One can use elementary methods to find all such maps.

We have seen above, however, that there are infinitely many polynomial (non-
monomial) examples that result from intertwining linear maps and the extend
map. Nevertheless, the reader might be interested in the list of fifteen maps be-
low. We omit the calculations.

1. THEOREM. If f is a monomial proper map from B, to By, then f is equivalent
to one of the following:

1.1 (z,w,0,0);

1.2 (2% zw,w,0);

1.3 (2% 2zw, w2 0);

1.4 (z3,/3zw, w3, 0);

1.5 (23, 32w, V3zw?2 w?);
1.6 (23, z°w,zw, w);



90

1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

JOHN P. D’ANGELO

(22 2%w, zw? w);

(22, 22w, \2zw2, w?);

(23, V322w, \2z2w2 w?);

(z, 2w, V2zw2, w?);

(4 23w, 32w, w3);

(2%, /322w, zw3, w);

(23, V523w, /52w, wi);

(z, cos(8)w, sin(8)zw, sin(8)w?);

(z2, (14 cos?(0))zw, cos(8) w?, sin(9)w).

Note that the families of maps in 1.14 and 1.15 are inequivalent as € runs between
0 and n/2. Thus there are the four examples that map to the 3-ball, nine new dis-
crete examples, and two one-parameter families.

1

2.

10.

11.
12.

13.

14.
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