A METHOD FOR COMPUTING THE KERNEL
OF A MAP OF DIVISOR CLASSES OF LOCAL RINGS
IN CHARACTERISTIC p#=0

Jeff Lang and Piotr Blass

Introduction. Let £ be an algebraically closed field of characteristic p > 0 and
G e k[x,y] be a polynomial in two variables. Affine surfaces in A% defined by
equations of the form z?" = G were introduced by Zariski in [19]. Samuel, in his
1964 Tata notes [18], uses techniques of Galois descent to calculate the divisor
class group of several examples of these surfaces for the case m = 1. Blass studies
their geometry, where he calls them “Zariski surfaces”, in [2]. Baba in [1] and
Lang in [13] develop techniques for studying their divisors for the case m >1.

The authors together with D. Joyce describe a programmable process for cal-
culating a numerical invariant that completely determines the class group of the
surface z” = G in [14]. Lang then extends this process in [13] to study the kernel
of a map from the divisor class group of the surface X,,;: zP™*!' = G to the class
group of X,,: 27" = G. Thus this global information used to differentiate between
non-isomorphic surfaces is easily obtained. In the study of divisors, local infor-
mation is often more difficult to acquire.

This article presents an algorithm for obtaining data about the class group of
the surface X,,: 27" = G at a singular point.

For each point (a, b) € k? such that G,(a, b) = G,(a,b) =0 and each integer
m = 0, there is a unique singular point Q,, on X,,. There also exists a map of
divisor class groups Cl(Ox,,, ,,0,,,1) = Cl(Ox,,.0,,) (see Theorem 4.1). Using “Ga-
nong’s formula” (Theorem 3.2) and the “nth order Jacobian derivation” (Theo-
rem 3.1), a technique for determining the kernel of this map is described.

After a few brief preliminaries in Section 1, the divisor class group of the ring
of fractions of a Krull domain is studied in Section 2. Section 3 uses Ganong’s
formula to obtain some tools needed in our calculations.

General facts concerning the class group of X, at a singularity appear in Sec-
tion 4. Section 5 closes this paper with some examples and a theorem concerning
locally factorial rings defined by polynomials of the form z?" = G.

0. Notation.

(0.1) If Ais a Krull ring we denote by Cl1(A) the divisor class group of A.

(0.2) Surface-irreducible, reduced, two-dimensional quasi-projective variety over
an algebraically closed field.

(0.3) If E is a surface we denote by CI(E) the divisor class group of the coordi-
nate ring of E.

(0.4) k—an algebraically closed field of characteristic p # 0.

(0.5) k" —set of all n-tuples of elements in k.
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(0.6) A% —affine n-space over k.

(0.7) Given G e k[x, y] and m = 0 an integer, let X,,, = A3 be the surface defined
by z?"=G.

(0.8) If Fc A3 is a surface and Q is a point on F, we let Fg denote the local ring
of F at Q.

1. Preliminaries. Samuel developed the technique of Galois descent in his 1964
Tata notes to study the divisor class group of the kernel of a derivation acting on
a Krull domain. Lang applied these techniques in [11] to determine the class group
of surfaces defined by equations of the form z7" = g(x, y), where the ground field
is of characteristic p ## 0. Below is a summary of results from Samuel’s notes and
Lang’s article that this paper uses. For the definition of a Krull ring the reader is
referred to Samuel’s notes or to Fossum’s book [6].

THEOREM 1.1. Let A C B be Krull rings. If each height-one prime of B con-
tracts to a prime of height less than or equal to one in A then there is a well-
defined group homomorphism ¢: C1(A) - Cl(B). If B is integral over A or if B is
A-flat then this condition is satisfied. (See [18, pp. 19-20] for details.)

Let B be a Krull ring of characteristic p # 0 and let A be a derivation of the
quotient field of B such that A(B)C B. Let K=ker A and A=BNK. Then Ais
a Krull ring with B integral over 4. Thus by Theorem 1.1 there is a well-defined
map ¢: Cl(A) —» CI(B). Set £ ={r"'A¢: ¢ belongs to the quotient field of B and
t~!Ate B}. £ is called the additive group of logarithmic derivatives of A. Set
L’={u'Au: u is a unit in B}. Then £’ is a subgroup of £.

THEOREM 1.2.

(@) There exists a canonical homomorphism ¢ : ker ¢ — £/L".
(b) If L is the quotient field of B and [L: K] = p and A(B) is not contained in
any height-one prime of B, then ¢ is an isomorphism [18, pp. 63-64].

The map ¢ is described in the following way. If Q eker ¢, then ¢(Q) =¢B for
some ¢ € E. Then ¢(Q) =t "'At. (See [18, pp. 62-63] for details.)

THEOREM 1.3. If [L: K]=p, then

(@) there exists an a € A such that A = aA and
(b) anelement t € K is equal to Dv/v for some v e K if and only if AP~ 't —at =
—t? [18, pp. 63-64].

THEOREM 1.4. Let A be a Krull ring and S a multiplicatively closed subset of
A. Then S™'A is an A-flat Krull ring and ¢: C1(A) — C1(S ~'A) is surjective where
ker ¢ is generated by the divisor classes of height-one primes that intersect S [18,
p. 21].

THEOREM 1.5. Let A be a Krull ring and m an ideal in .ﬁl contained in the Jg—
cobson radical of A. Let A be the completion of A. Then A is A-flat with A C A.
If A is a Krull ring then so is A, and ¢: Cl(A) > Cl(A) is an injection (see [18,
p- 23).
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2. Again let B be a Krull ring of characteristic p # 0 with quotient field L, and
let A be a derivation on L such that A(B)CB. Let K=ker Aand A=BNK. Let
T be a multiplicatively closed subset of B and S=7TMNA. Then S is a multiplica-
tively closed subset of A. Also, the rings of fractions S ~'4 and 7"~'B are Krull
rings by Theorem 1.4, with 7 1B integral over S ~!A. It is easy to see that S "' 4=
KNT7'B and that A(T ~"!'B) Cc T ~'B. By Theorem 1.1 there is a homomorphism
¥:CI(S™'4) - CI(T ~'B). Let £ be the group of logarithmic derivatives of Ain
B and £={v 'AveB:vis a unit in T~ 'B}. Then £ is a subgroup of £. Then
by Theorems 1.1 and 1.4 we have the following commutative diagram of exact
sequences of group homomorphisms:

0 0
l l
keragy — kera,
l . l
(2.0) 0—ker¢p— Cl(4A) 2> CI(B)
1o e ez
0— ker ¢ — CI(S'4) > C1(T~'B),
l l
0 0

where «g: ker ¢ — ker ¢ is induced by «;. Clearly «;(ker ¢) S ker ¢ since the rest
of the diagram is commutative.
We have the following analog of Theorem 1.2.

THEOREM 2.1.

(@) If ag:ker ¢ — Ker ¢ is surjective then there is a well-defined homomor-
phism y:ker ¢ - £/8.

(b) If [L:K] = p and A(B) is not contained in any height-one prime of B
whose intersection with T is empty, then ¥ is an isomorphism.

Proof. (a) By Theorem 1.2(a) there are canonical homomorphisms ¢: ker ¢ —
£/L and ¢¥: ker ¢ - £/Lh, where L={r"'AteB:telL}, &' ={u"'Au:uisa
unit in B}, Lo={r"'AteT'B:te L}, and £4/,={u 'Au:u is a unit in T ' B}.

Since £ 2 £ 2 £’ there is a natural homomorphism £/£’— £/£.

If D e ker ¥, then there exists D) € ker ¢ with ag(D;) =D. Now ¢(D;) =7 for
some ¢ € £, where 7 represents the image of ¢ in £/L£’ (see Theorem 1.2).

Define ¥ (D) = f, where f is the image of 7 in £/£ under the map £/£&’ - £/£.
To show that ¥ : ker ¢ — £/£ is well defined, first of all note that we have a com-
mutative diagram:

kerrbi» L/L’ o
\d surjection
2.1.1) surjection | ap l £./£
injection

ker ¥ 2> £4/Lh
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The map £/L£’ - £y /Ly is induced by the inclusions £ C £, and £’ C L£p. Since
the kernel of this homomorphism is £/£’ we obtain an injection £/£ — £, /£4.
Suppose then that D, e ker ¢ and that «(D;) =D also. Then ¢(D,)=5 for
some s € £. We will show that s—7e £.
From (2.1.1) the image of §— 7 when mapped to £4/L£p is equal to

Y(ao(D2) —ao(D))) = ¢(D—D)=0.

Therefore s—te £4N L = L.

To prove (b), observ~e that Theorem 1.2(b) implies that ¢ is an isomorphism.
Then the inclusion £/£ — £4/Lp is surjective also. Therefore ker Yy = £y /Lo =
£/E£. O

THEOREM 2.2. If
(@) ay: Cl(B) — CI(T ~'B) is an isomorphism, or
(b) [L:K]=p and each nonprincipal height-one prime P of B is unramified
over A,
then oy is surjective.

Proof. (a) Let Dekery. Let D;e ClI(A) be such that «;(D;) = D. Then
ad (D) =y a1(Dy) =y¢(D)=0. Since «, is an injection, ¢(D;) =0, so that D, e
ker ¢ and o (D]) =D.

(b) With D and D,; as in (a), a,¢(D;) =0 implies that ¢(D;)=E, where F e
Cl(B) has the form E = Xn; P; where the P; are nonprincipal height-one primes
such that P,NT# ¢. Let Q; = P;N A for each i, and let D, e Cl(A) be given by
D, =Xn;Q;. For each height-one prime Q in 4, ¢(Q)=e(P: Q)-P, where P is
the unique height-one prime in B lying over Q, namely, P={be B: b’ € Q}, and
where e(P: Q) is the ramification index of P over Q.

By (b), ¢(D,) = E, and clearly Q; NS # ¢ for each i. Then D;— D, e ker ¢ and
ao(Dl—Dz) =D. L]

This theorem uses (2.0) and an argument employed by Hallier in [9, p. 2]. In
this theorem B is a Krull ring of characteristic p % 0, n is a prime ideal in B, and
T is the complement of » in B. We assume that all of the conditions in the intro-
duction of this section hold.

THEOREM 2.3. Let I = A(B)-B be the ideal in B generated by A(B). Suppaose
that a € A is such that AP =aA. If ICn and a & n then
(1) an element te £ isin £ if and only if t € n, and
(2) if the conditions of Theorem 2.1 hold then the map
¥: CI(S 'A4) — CI(T ~B) is injective if and only if £ C n.

Proof. (1) If t € £, then ¢ = f “'Af for some f e L. Replacing f by an element
of B?f we can assume that feB. If f¢ n then f is a unit in B, and te £. If
fen, then by induction (af)'A’(f) e nB, for all positive integers j. Let u=
—14(af) 'A?71f. Then u is a unit in B, and A(u~!)/u"!=f"'Af=t¢. Hence
te L.

Conversely, e £ implies that # =u ~'Au for u a unit in B,,. Since 7 C n, then
t e nB,N B =n. (2) is now an immediate consequence of (1) and (2.0). O
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3. Applications of Ganong’s formula and the nth order Jacobian derivation.
Let k be an algebraically closed field of characteristic p#0. Let G e k[x, y] be
such that G, and G, have no common factors in k[x, y]. Define a derivation D
on k(x,y) by

0 i}
dx Gx ay’
D is called the Jacobian derivation for G on k(x,y).

For each nonnegative integer n, let A, = k[x?", y?", G]. Note that Ao = k[x, ].
If E, denotes the quotient field of A4, then E, is a field extension of E,,; of de-
gree p. In a moment we will show (see Theorem 3.1) that each A4,, is Noetherianin-
tegrally closed domain and hence a Krull ring. Since A5 <€ A4,,,; = A4, we have that
A, is integral over A, ;. By Theorem 1.1 there exists a well-defined homomor-
phism ¢,: Cl(A4, ) = Cl(A,). Define D,: E,, —» E,, in the following way: Given
a € E,, it can be written as o =Y%";! «?"G’ for unique «; € k(x, y). Then define

pr—-1 n o
Dy(a)= 2 (Da)” G'.
i=0
In [13] Lang showed that D, is a derivation on E, which he called the nth order
Jacobian derivation. He proved the following result.

THEOREM 3.1. Let a € k[x, y] be such that DP =aD. Then

(a) D, is a k-derivation on E,,

(b) kerD,NA,=Ap4,

(c) kero,=L,, the group of logarithmic derivatives of D, in A,, and
(d) D?=aP"D,.

(See [13, pp. 393, 394, 404].)

The fact that there is an @ € k[x, y] such that DP =aD is proved in [13, p. 394].
Alternatively, one can prove (a) and (b) of Theorem 3.1 first, the proofs of which
do not depend on the existence of @, and then apply Theorem 1.3 to the case n=0.

This next result is known as Ganong’s formula. It was first conjectured by Ga-
nong [7] and proved by Lang in [13] for the case where deg(G,) = deg G —1. Stohr
and Voloch then proved it for arbitrary G € k[x, y] in [17], where it was used to
study the Cartier operator.

THEOREM 3.2 (Ganong’s formula). Let D be the Jacobian derivation for G on
k(x,y). Then for all a € k(x,y),

p—1 .
D la—aa=—3 G'V(G? "),
where =0
aZp—Z

P _ —_
D?=aD and V= axP—1gyp—1"

(See [13, p. 395].)

The next two theorems, which will be used extensively, utilize Ganong’s for-
mula.
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THEOREM 3.3. Let A, =k([x?",y?", G] and £, be the group of logarithmic
derivatives of D, in A,. Let t = af"+af"G+ - +a§:_lGP"“1 €A,. Thente £,
if and only if

(1) V(G'a;)=0for0<i=p—-1,0=<j=<p"—1,and j=0 (mod p), and

(2) V(Glag)=alip—i—1ypn-» for 0=s=p"V-1and 0=si<p-1.

Proof. By Theorems 1.3 and 3.1(d), t e £, if and only if D? 't —a?"t = —¢P.
The definition of D,, implies that 7 € £,, if and only if

p 1 —1 n i Pl (n+1) i
(3.3.1) ‘20 (DP" aj—an;)? G/ =— ‘20 af G’?.
j= j=
Comparing coefficients in (3.3.1) we obtain 7 € £, if and only if

(1) D?P 'aj—aa;=0for j#0 (modp),0=<,;=<p”"—1, and
(3.3.2) pn—1_1 n pi—1 (1)
) S DO lag—aw,)?'GP=— 3 of TG,
s=0 r=0
Taking pth roots, (2) of (3.3.2) becomes
pln—1_1 —1) - ph—1 n
(3.3.3) > DP lag—acg)’ TG =— 3 af "G
s=0 r=0
Compare both sides of (3.3.3) and we have that (2) is equivalent to

p—1 _
(3.3.4) D lag—acgy=—3 ofyjpe-nG' for O<s<p" V1.
i=0

1=

Now apply Ganong’s formula to the left sides of (1) of (3.3.2) and (3.3.4) and

compare coefficients of G to obtain the desired result. (]
THEOREM 3.4. Let
0 d
D=G,——G,—
Y ox * oy

be the Jacobian derivation and (3 be such that D? = 8D. If (a, b) € k? is such that
Gy(a,b)=G,(a, b) =0 then B(a, b) = (\/H(a, b) )P~ !, where H = G}, — GxxG,,.

Proof. If p=2, then Dx = G,, D?x= G,,G,, and hence 8= G,,. Since Gy, =
G,, =0, H = G}, so that in this case 8 = /H and the formula holds for all
(a,b) e k> . .

If p>2 then for each xek(x,y), D”‘la-—Ba:——Ef:_(} G'V(GP~ ") by
Ganong’s formula (Theorem 3.2).

Set @ =1; then B=3X7_1 G'V(G?~'~1). Let

_ p-1 _ .
G=G(x+a,y+b) and B=3 G'V(G*~i™h.
i=0
Then 3(0,0) =3?-} G(a, b)'V(G?~ ") (a, b) =B(a, b). By Taylor’s formula,
2

x_.
G(x, ») = Ga, b)+ Gx(a, b) *—
(y—b)*

2

+Gyy(a,b)(x—a)(y—>b)

+G,,(a, b) + (higher degree terms).
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Thus )

G(x,y) = G(a, b)+ Gyx(a, b) % + Gyy(a, b)xy

2
+G,y(a, b) y_ + (higher degree terms).

Let G = G—G(a,b) and B = —Ef’_lGV(Gp ~1). Since (G), = (G)x and
(G)y— (G), it follows that B(x V)= B(x,y) and B(0,0) =B(a, b). Since G(0,0) =
0 it follows that 3(0, 0) = V(G‘” (0, 0). A simple calculation yields that the
lowest-degree term in G?~

(p= 1)/2 , i i
O (%) () Jome
t=0

+ (other monomials of degree2p —2).

Thus the lowest-degree term of V(G?~!) is the constant term
(p—1)/2 . —1)/2 . )
s o (Y7 )es 1 Gn G f@ .
1=

In this step a combinatorial identity is used (see [8, p. 90, identity_2.40]). Thus
the constant term in V(G?™!) is (H(a, b))?—V/2, Therefore V(G?1)(0,0)=

(N H(a, b))?~ 1. O
COROLLARY 3.5. Let t =32"' a?"G' € A,. If t € £, then the degree ofeach
«j is less than or equal to deg G — 2 Furz‘hermore t=0ifand only if ag=
Proof. If j =0, then by Theorem 3.3 V(G? 'ag) = af, where
aZp—Z
- axpP—1lgyp—1°

Compare degrees on both sides of the equality to obtain

pdegag=<(p—1)deg G+degag—2(p—1).
This implies that (p —1)deg ag < (p — 1)(deg G — 2) and therefore that deg oy <
deg G—2.

Now proceed by reverse induction on v(j), where v(J) is the highest power of
p that divides j.

If v(j) = n then j = 0. Assume then that v(j) = m < n. We can write j =
s+(p—(i+1))p"~! for unique s=0,1,...,p"~Y—1and i=0,1,..., p—1. Since
v(j) = m, it must be that s = rp™ for some r =1, ..., p—1. By Theorem 3.3,
oy (p—i+1ptn-» =V (G'asp) = V(G'a,pem+1). Comparing degrees we see that

pdeg(aj) =deg(a,pim+n)+idegG—2(p—1)
=deg(a,pm+n)+(p—1)deg G—2(p—1).
From the induction hypothesis it follows that
pdeg(a;)=degG—2+(p—1)deg G—2(p—1).

Thus pdego; < pdeg G—2p and deg a; <deg G—2.
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The argument for the last statement of this corollary is again by reverse induc-
tion on v(j) and is almost identical to the above. (See also the discussion of the
algorithm in Section 5.) O

COROLLARY 3.6. Let t =373 o?"G’ € £,,. Let Q € k? be such that G,(Q)=
G,(Q)=0and H(Q) #0, where H = ny— GxxGyy. Then t(Q) =0 if and only if

a;(Q) =0 for each j=0,1,...,p"—1.

Proof by induction on v(j), the highest power of p that divides j. If v(j) =0,
then j # 0 (mod p). By Theorem 3.3, V(G'«;) =0 for each i=0,1, ..., p—1. By
Ganong’s formula this implies that D”~'a; —ao; =0, where D is the Jacobian
derivation on k[x, y] and D? = aD. Substitute the coordinates of Q for x and y.
By Theorem 3.4, (\/H(Q) )p—laj(Q) = 0. Therefore «;(Q) =0.

Now assume that v(j) =u+1>0. Then j = rp“*!forsomer=1,...,p—1. Let
s =rp*. By Theorem 3.3, V(Giaj) =V(G'asp) = afy (p—(i+1)pn-». By induction,
054 (p—(i+1)ptn-» (Q)=0for 0=<i=<p—1. Thus V(Gia;)(Q)=0for0=i=<p—1.
By Theorems 3.2 and 3.4 we obtain «;(Q) =0 as above.

If v(j) = oo, then j = 0. Since «;(Q) = #(Q) = 0 for j # 0, it follows that
ao(Q) =0. u

4. The class group of ZP" = G at a singular point. For each nonnegative integer
n, let X, < A3 be the surface defined by the equation z?"= G(x, y), where Ge
k[x,y] and G, and G, have no common factor in k[x, y]. By the Jacobian cri-
terion, X, is a normal affine surface (see [16, p. 125]). Therefore the coordinate
ring of X, and the local ring of X, at a point of X,, are Noetherian integrally
closed domains and are thus Krull rings (see [18, p. 5]). For the definition of the
local ring of a variety at a point, see [10, p. 16]. For an affine surface such as X,
and a point Q on X, the local ring of X, at Q is isomorphic to the coordinate
ring of X, localized at the prime ideal corresponding to Q [10, p. 17].

For each pair (a, b) € k? and integer n =0, there is a unique point Q, on X,
with x coordinate ¢ and y coordinate b. In this section we will study a group
homomorphism Cl(Og,,,) = Cl(Og,), where Og_is the local ring of X, at Q,,.

THEOREM 4.1. Let (a, b) € k%, n=0 an integer, and X,, and Q, be as above.
Let A, =k[xP", yP", G]. Then, for each n,

(a) the coordinate ring of X, is isomorphic to A,, and

(b) there is a well-defined group homomorphism 0,: Cl(Og, . ) — Cl(Og,).

Proof. (a) The coordinate ring of X, is R, = k[x, y,z1/I, where I is the ideal in
k[x,y,z] generated by z”—G. Let ®: k[x,y,z] — A, be the map that sends each
aektoa?”, xtoxP”, yto yP", and z to G. ® is a surjective ring homomorphism
since k is perfect. Then the kernel of ® is a height-one prime containing /. Since
I is height one, I =ker ®. Therefore R,, is isomorphic to A4,,.

To prove (b), note that we have the following commutative diagram for every »:

OQn+l - GQn

l =- =
(An+l)Jn+l_" (An).ln:
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where for each n, J, is the maximal ideal in A4,, generated by x?" —a?", yP"—pP",
and G.

Clearly, (An)s, is integral over (An+1),,, and both rings are Krull rings. By
Theorem 1.1 there is a well-defined group homomorphism 8,,: Cl(A4,,+,) T ™
Cl(A,),, inducing a homomorphism 6,: Cl(Og,, ,) = Cl(Og,).

A point (a, b,c) € X,, is a singular point of X,, if and only if

G.(a,b)=G,(a, b)=0.

Thus, if Q,, is not a singular point of X, then Q, . is not a singular point of
Xn+1, and in this case Cl(Og,, ., ,) = Cl(Og,) = 0. Thus the only interesting case for
analyzing 6, in Theorem 4.1 is when G.(a, b) =G,(a, b) =0.

In [14] the writers described an algorithm for computing the group of logarith-
mic derivatives of the Jacobian derivation acting on a polynomial ring. With the
assistance of Joyce [5] this algorithm was converted to a computer program when
the ground field & is an algebraic closure of a finite field. Using Theorems 2.1-2.3
we will show how this algorithm can be modified to produce an algorithm for cal-
culating the kernel of the homomorphism 6,,: C1(Og, , ) = C1(Og,) under suitable
conditions.

In addition to assuming that G (a, b) = G, (a, b) =0, we will hereafter assume
(unless stated otherwise) that H(a, b) # 0, where H = G2, — G G),.

Let Q, and Q, ., be the singular points of X, and X, corresponding to (a, b).
Then we have a commutative diagram of group homomorphisms,

0—> ker ¢y —> Cl(Xpi1) 25 CI(X,)

(4.2) J.Bn lo‘n l %n+1
0
0— ker 6, —Cl(Og, , ) = Cl(Og,),

where «a;: Cl(X;) — Cl(Og;) is the surjection of Theorem 1.4 and S,: ker ¢,, —
ker 8, is induced by «,. Our final assumption will be that 3, is a surjection.

One easily checks that all of the conditions of Theorem 2.1 are met. Therefore
the kernel of 6, is isomorphic to £, /£,, where £, is the group of logarithmic
derivatives of the nth order Jacobian derivation D, on A, (see Theorem 3.1), and
&, ={u"'D,u:u is a unit in Og_}.

By Theorems 3.1, 2.1, and 2.3, H(a, b) # 0 implies that £,, = £,,Nm, where m
is the maximal ideal of A, corresponding to Q,, € X,,. Thus if we could calculate
£, and £,Nm then we would be done. But first some facts about Cl1(Op ) and
ker 0,, need to be collected.

THEOREM 4.3. If H(a, b) #0, then C1(Og )=Z/p"Z for some r <n.

Proof. Assume first that p > 2. Let &g, be the completion of Og,. After a linear

change of coordinates we can assume that ¢ =0 and b = 0. By Taylor’s formula,
X2

G(x,y)=G(0,0)+Gxx(0,0) -t Gy (0, 0)xy

2
+G,,(0,0) _,)_’2_ + (higher degree terms).
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Since H(0, 0) # 0, we can make another linear change of coordinates and assume
that G(x,y)=G(0,0)+xy+ (higher degree terms). Finally, if z is replaced by
z+ (G(0, 0))1/P™), then the surface z?" = G(x, ») is seen to be isomorphic to z?" =
xy + (higher degree terms). Therefore we may assume that G has this form and
that Q,, =(0,0,0) on X,,.

Then @)Qn = k[[xP", yP", G]]. In k[[x, y]], G factors into G = uv, where u =
Xx + (higher degree terms) and v = y + (higher degree terms). Then k[[x, y]] =
kl[u,v]] and O¢, = k[[u?", vP", uv]]. It is known (see [12, p. 630]) that the class
group of k[[uP", vP", uv]] is Z/p" Z generated by the height-one prime (u«?”, uv).
By Theorem 1.5, C1(Og ) injects into Cl(@Qn). Therefore C1(Op, ) is cyclic of or-
der p” with r = n. O

The case p =2 is left as an exercise for the reader.

THEOREM 4.4. The kernel of 6,: C1(Og, ,,) = Cl(Og,) is 0 or Z/pZ if H(a, b) #
0.

Proof. As in the proof of Theorem 4.3, we can assume that Q,, and Q,,,, both
haveﬂcoordinates (0,0, 0) on X, and X,,,; and that G = xy + (higher degree terms).
Let Og; be the completion of Og; for j=n, n+1. Then we have a commutative
diagram

01’1
Cl(Og,,,) — Cl(Og,)

8 8

Cl(@g,,,) 2> Cl(dg,)

where the maps Cl(Og;) — Cl(@Qj) are injections for j =n, n+1. Therefore the
kernel of 8, injects into the kernel of §,. In the proof of Theorem 4.3 we noted
that Og, = k[[uP", v?", uv]] and that Cl(Og,) is isomorphic to Z/p"Z generated
by (u#”", uv). This prime clearly does not ramify over Og,,,. It follows that §,
is surjective with kernel isomorphic to Z/pZ. Therefore the kernel of 6, is 0 or
Z/pZ. N

REMARK 4.5. Note that in the proof of Theorems 4.3 and 4.4 only the condi-
tions that G, and G, have no common factors and H(a, b) # 0 are needed. The
hypothesis that «, restricts to ker ¢, to give a surjection in diagram (4.2) was not
used. The proof of the next theorem also assumes only the first two conditions.

So far we have used the fact that the coordinate ring of X, is isomorphic to
A, =k[xP", yP", G] and that A,, is integral over A4,,, ; to study the homomorphism
of class groups of local rings 8,: Cl(Og,,,,) = Cl(Og,).

We have that A2c A, S A, and A, is integral over A%. It is also easy to
show that the quotient field of A4, is of degree p over the quotient field of A%.
Since k is perfect, A, is clearly isomorphic to A%. Thus by Theorem 1.1, the in-
clusion A4 C A,,,; induces another homomorphism Cl(X,) —» Cl(X,41). In [13],
Lang showed that this global mapping is an injection for all #. We now will prove
the local version of this fact.
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THEOREM 4.6. For each n, let Q, be the singular point on X, corresponding
to (a, b), where G,(a,b)=G,(a,b)=0. If H(a, b) # 0 then for each n there is an
injection w,: Cl(Og ) — Cl(OQn+1).

Proof. As in Theorem 4.3 we can assume that, for each n, Q, is the origin on
X,. If we think of Og,, as the localization of A% = k[x?"*!, y#"*! GP] at the maxi-
mal ideal generated by x?"*", y»"*P Gp, and of Og, ., as the localization of 4,
at the maximal ideal generated by x#"*', y#"*', G, then we have that Og, C 9g, 1
with Og,,, integral over Og,. By Theorem 1.1 there is a mapping w,: Cl(Og,) —
Cl(Og,,, ). Passing to completion we have a commutative diagram

Cl(0g,) = Cl(9g,, ,)
@.7) v )
Cl(bg,) = Cl(bg, . ),

where the maps Cl(Og;) — Cl(@Qj) are injections for j =n, n+1. As in the proof
of Theorem 4.4 we have that

@Qn=k[[upn+1, vpn+1’ uPv?]] and @)Qn+1=k[[up"+l’ vpn+1, uvll,

where G =wuv in k{[x, y]]. Also, Cl(@)gn) =7 /p"Z is generated by the height-one
prime (u?"*', uPv?) and Cl(Og,, ,) =Z/p"+V Z is generated by (u”"*", uv). Since
(uP"*, uPvP) ramifies in @Qn +1» the map &, corresponds to multiplication by p
from Z/p"Z to Z/p'"*VZ. Thus &, is clearly injective. From the diagram, so
1S w,. O

COROLLARY 4.8. If Cl(Og, ) =0, then Cl(Og,) =0 forall r =n.

COROLLARY 4.9. If the order of C1(Og,) is p", then the order of C1(Og,_,,) is
pn orp"“.

Proof. Use Theorems 4.4 and 4.6. O

5. In this section we provide an algorithm for computing the kernel of 6,:
Cl(Og,,,) = Cl(Og,) when H(a, b) # 0 and when @, in diagram (4.2) is a surjec-
tion. By Theorems 2.1 and 2.3 we have that ker 8, = £, /£,,N\m, where £,, is the
group of logarithmic derivatives of D, in 4, and m is the maximal ideal in A4,
corresponding to Q,,.

A typical logarithmic derivative of D, in 4, will have the form 7 = E‘,’-’ZBI af"Gj ,
where o; € k[x, y] is of degree less than or equal to N=deg G—2 by Corollary

3.5, and where the «; satisfy the equations of Theorem 3.3:
(1) V(G'ej)=0for0=<i=p—1,0=<j=<p"—1,and j#0 (mod p) and
@) V(Glap)=alip-i—npr-1for0=s=p" V-1, and0=i=p—1.

5.1

Beginning with ag we let g =X o<, +m=<~n TrmXx y"™, where the T,,, are indecter-
minants over k.
Let j=0in (1) of (5.1) and s=0and i =p—1 in (2); we see that

(5.2) V(G lag)=af and V(G'ap)=0 for 0<i<p-2.
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Substitute « into the equations of (5.2) and compare coefficients to obtain a
system of p-linear and linear equations of the form

Lemy=Th,, 0<r+m=<N and

5.3
>.3) Il =0, 0=qg=<M for some positive integer M.

It is easy to show (see [13, p. 397]) that there are only a finite number of solutions
to (5.3).
Let ap now correspond to a solution of (5.3). Using (2) of (5.1) we obtain

p—i—npn-1=[V(G'eg)]? for 0<i<p—2.

Continue to use (2) of (5.1) to obtain the rest of the «; in #. It is easy to see, by
the same argument used in the proof of Corollary 3.5, that all of the «; are deter-
mined in this way. Now substitute the «; into (1) of (5.1). If any of the equations
in (1) is not satisfied then 7 ¢ £,,.

Thus for each o determined above we find the corresponding candidate for ¢
and finally test it against the equations in (1) to determine if 7 is a genuine ele-
ment of £,,. This gives an algorithm for determining £,,.

We then evaluate ¢(a, b) for each t € £,,. If for each t e £,, t(a, b) =0, then
£,=L,Nm=E, and ker §, =0. Otherwise £, =Z/pZ by Theorem 4.4.

EXAMPLE 5.4. Let k be an algebraically closed field of characteristic 3. Let
G=x(1+x—y+xy+y*>+x3+x%y—xy2+y3) and let X, be the surface defined
by z3=G. It is easy to show that G,, G,, and H do not meet. If (a,b) ek’ is
such that G, (a, b) = G,(a, b) =0, then in diagram (4.2) for the case n =0 we have
the commutative diagram

ker ¢o— Cl(X;) 2% 0= Cl(X,)

1 Bo d o de
ker 6o — Cl(Qg,) %> 0,

where Q is the corresponding singularity on X;. By Theorem 2.2, ker ¢g — ker 6,
is a surjection since Ay = k[x, ¥] has no nonprincipal height-one primes. There-
fore we can use the algorithm to find Cl1(Og,) at each singular point. We then find
that £4, which by Theorem 3.1 is isomorphic to ClI(X,), is Z/pZ generated by

= —1+x—y+x2+xy. X, has nine singularities and G, = x¢. When x = 0 there
are three singular points whose y coordinates are the roots of y3+y2—y+1=0.
Also ¢ = —1—y when x =0, and since y = —1 is not a root of y3+y2—y+1it fol-
lows that ¢ # 0 at the three singular points with x coordinate 0. We conclude that
Cl(Og,) =Z/pZ at these singularities. When x # 0, X has six singular points and
t =0 at these since G, =x¢. Thus at these points Cl (Og,)=0.

EXAMPLE 5.5. Continuing Example 5.4: Let X, be the surface defined by z 3% =
x(1+x—y+xy+y2+x3+4+x2y—xy2+y3). Then one calculates £, and finds that
L£r=27Z/pZ generated by t =(—14+x—y +x2+4xy)3. We then have an exact se-

quence s
0— Z/pZ — CI(X,) 2 Cl(X)).



COMPUTING THE KERNEL OF A MAP OF DIVISOR CLASSES 79

In Example 5.4 we saw that Cl(X;)=7Z/pZ and is generated by the height-one
prime (z,x)=P;. Clearly the height-one prime in Cl(X,) given by (z,x) =P,
is not principal. Also, P, does not ramify so that ¢, is surjective. Therefore
Cl(X,) =Z/p?Z is generated by P, and ker ¢, is generated by pP,.
Let @, be a nonprincipal height-one prime of X;. Then, from Remark 4.5 and

the above discussion, we have a commutative diagram:

Z/pZ P Z/p*Z
(5.5.1) 1= =

Cl(X]) m Cl(Xz).
Since P, does not ramify, the map Z/pZ — Z/p*Z must be multiplication by p.
This implies that if Q, = Q;N A, in ClI(X3) then pQ, # 0 and hence ¢,(Q,) =0;.
So by Theorem 2.2, ker ¢; — ker 6, is surjective. Repeating the argument used in
Example 5.4 we have that Cl(Ogp,) =0 at six singularities and Cl(Og,) = Z/p%Z
at the three others.

EXAMPLE 5.6. It is not always necessary to know that ker ¢, — ker 6,, is sur-
jective in order to determine the ker 8,,. In the proof of Theorem 2.1(a) we saw
that there is a natural injection from £, /£, — (£,)0/(£5)0, Where

(Ln)o={t"'DnteOg,: t is in the quotient field of Og }
and
(L)o=fu"'D,u: uis a unit in Og,}.

Thus if H(a, b) 0 and if there is a r € £, such that #(a, b) # 0, then kerd, is

isomorphic to Z/pZ. Consider for example the surface X, defined by Z?" =G,

where G =xy +x?P+14 yP*1 For each n, D(G,)?"/(G,)?"=1€ £,. Then if Q,, is

any singular point of X, ker 8,: Cl1(Og, . ,) = Cl(Og,) is isomorphic to Z/pZ.
We have an exact sequence for each n,

(5.6.1) 0—Z/pZ—Cl(9g,, )~ Cl(Og,).

In case n=0, Cl(Og,) =0 and Cl(Og,) =Z/pZ, generated by P,=(z+xy, x+y°).
For each n, let P, e Cl1(Og,) be the contraction of P; to Og_. One sees immedi-
ately that P, = (x+y?, z?" '+ xy).

Note that
1 ] ZP " —xp+1
, y=—.

n O, [x+y1’ x+y>P

Therefore Og,[1/(x+ y?)] is a localization of k[x, z]. This implies, by Theorem
1.4, that C1(Og,[1/(x+yP)]) =0 and that C1(Og,) is generated by P,,.

The homomorphism Og, — O, _, maps z to z, x to x?, and y to y?; zP"+xy is
a parameter for P, and its value in Op, is p. Therefore the map Cl(Og,,,) —
Cl(Og,) is just multiplication by p. By induction we conclude that for each » the
sequence 0 » Z/pZ — Cl(Og,) — 0 is exact. That is, C1(Og, ) = Z/pZ for all nand
at all singularities of X,.

Another application of this technique is the following theorem.
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THEOREM 5.7. Let G € k[x, y] be of degree d and assume that G, and G, in-
tersect in k* at the maximum possible number of distinct points. Thus number is
(d—1)? if d #0 (mod p) and is d*—3d+3 otherwise (see [4, p. 284]). Then the
coordinate ring of X,: z?" = G is factorial if and only if it is locally factorial.

Proof. If the coordinate ring of X, is factorial then certainly Cl (0g,)=0 at
each singular point Q, € X,,, by Theorem 1.4.

We prove the converse by induction. So assume that Cl1(Qg,) =0 at each sin-
gularity of X,. If n=0, then X is isomorphic to the affine plane 4%, and thus
Cl(Xo)=0

Now assume that » > 0 and that the theorem holds for all integers r such that
0 =r <n. Since X, is locally factorial, so is X, for all r < n by Theorem 4.6. Thus
Cl(X;) =0 for r <n. By Theorem 3.1, CI(X,,)) = £,,_;.

Let £ € £,_,. Since Cl(X,_;) =0, Theorems 2.1 and 2.2 imply that Cl(Og,) =

£,_1/£,_, at each singularity Q, € X,,. Therefore £,_, = £,,—1, so it must be that
t(a,b) =0 at each point (a, b) € k2 such that Gy(a, b)=Gy(a,b)=0. We have
that ¢t =327 "1 o?" "G’ for some o; € k[x, y]. By Corollary 3.6, ag(a, b) =0
for each (a, b) as above. Since G, and G, have no common factors, if ag 0 then
we can factor «g in k[x, y] into oy = uv, where u is relatively prime to G, and v is
relatively prime to G,. Then u and G, intersect in at most deg(«)-(d —1) points
and v and G, intersect in at most deg(v)-(d —1) points.

By Corollary 3.5, the total number of these intersection points is at most

(d—1)(degu+degv)=(d—1)degag=(d—1)(d—2).

Since G, and G, intersect in at least (d —1)(d —2)+1 points, oy must be identi-
cally 0. By Corollary 3.5 this implies that # =0.
We conclude that CI(X,,)) = £,,_;=0. ]

REMARK 35.8. The condition that Gy and G, intersect in the maximum possible
number of distinct points is a generic one (see [4, p. 284]).

QUESTION 5.9. A significant question to ask is, “What conditions on G will
guarantee that the map ker ¢, — ker 4, is surjective?” Certainly the condition that
each nonprincipal height-one prime of A, is unramified over A,,,; does not al-
ways hold (see, e.g., Example 5.6). Of course if Cl1(X,,) =0 then ker ¢,, — ker 6,
is surjective by Theorem 2.2, and we have that £,/£, = Cl(Og,, ,)-
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