ON UNIFORM APPROXIMATION
BY HARMONIC FUNCTIONS

Dmitry Khavinson

1. Introduction. Let X be a compact set in R? and let R(X) denote the uni-
form closure on X of functions analytic in a neighborhood of X. The following
concept of analytic content defined by
6)) AMX)E inf |Z2—¢(2)]w

¢ € R(X)

has been introduced in [7] and studied in [5], [7], [9], and [10] (||« stands for
the supremum norm in the space of continuous functions C(X) on X). As easily
follows from the Stone-Weierstrass theorem, A\(X) =0 if and only if R(X)=
C(X). This simple observation allows us to view A(X) as a certain measure of
solvability of the problem of uniform approximation by analytic functions on
X. As it turns out ([1] and [7]; see also [5], [9], and [10]), AN(X) admits simple
estimates in terms of basic geometric quantities of X such as area and perimeter.
More precisely, ‘

A\Y? 2A4
@ (;) =\ = 22,

where A = area of X, P = perimeter of X (if X has a finite perimeter; otherwise,
P = ); see [3, Ch. IV] and [8]. We mention that the inequality in the left-hand
side of (2) was observed by Alexander [1] and the second inequality is due to the
author [7]. We refer the reader to [5], [9], and [10] for a detailed discussion of
these inequalities and related isoperimetric problems.

The purpose of this note is to develop a similar concept for H(X), the uniform
closure of the space of functions harmonic in a neighborhood of a compact set
X CR"”, n=2. By similarity with (1) we define the harmonic content A(X) of a
compact set X C R” to be

def

A3) AX)E inf ||x]?—u]w,

ue H(X)
where |x|>=3%7_; x?, x=(xy, ..., X,) € R". The analogy with (1) can be seen if
one observes the correspondence between H (X ) = uniform closure of the kernel
of A on X and R(X)=uniform closure of the kernel of 8/dZ, |x|*: A(|x|?)=
2n=const=0 in R" and z:(9/3Z)(Z) =10 in R (We use the standard no-
tation: A denotes the Laplacian 37—, (8%/dx?) and 8/9Z = 1(8/3x+i3/dy), z=
x+iy.) However, in this case the equivalence

“4) AX)=0 H(X)=C(X)
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is no longer trivial, since H(X) is not an algebra and, therefore, one cannot di-
rectly appeal to the Stone-Weierstrass theorem. The major goal of this paper is
to show that (4) still holds.

The rest of the paper is organized as follows. In Section 2 we prove (4). It
should be mentioned that in our proof we are making use of an idea due to Huber
[6]. On the other hand, as a corollary from our theorem we also obtain one of
Huber’s theorems [6, Thm. 1] by a nonconstructive argument which is simpler
than the original proof in [6].

Finally, in Section 3 we obtain some geometric estimates of A(X) which are
similar to (2), and discuss related problems.
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assignment from the University of Arkansas. The author is grateful to both insti-
tutions for their support. Also, the author is indebted to Professor Harold S.
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2. The main theorem. Let X C R” be a compact set contained in a certain ball
B. Define fye C§ to be equal to (1/2n)|x|? on X and = 0 outside of B. It is clear
that A(X) =0 diStC(X)(f(), H(X))=0.

Before proceeding with our Theorem let us discuss some of the notation we
shall be using in the paper.

As usual, Cg(R") denotes the space of C*-functions in R” with compact sup-
port. For a given X one can find a decreasing sequence of smoothly bounded fi-
nitely connected compact sets { X} such that (M;%; X; =X and the Dirichlet prob-
lem is solvable on X for all / (see [11, Ch. 1V, §2]).

If X is a smoothly bounded compact set in R” so that the Dirichlet problem is
solvable on X, then

g(x,y)=gx(x,y): XXX—->R,

denotes the Green function on X (see [11, Ch. IV]). Also, we shall use the notation

1
S | —yl, =2
n|x—y| n

k(x,J’)=kn(x,y)= 1 1

. , 3
* wn(n—2) [x—y["2

X
v

to denote the fundamental solution of the Laplacian taken with an opposite sign.
(Here, w, stands for the area of the surface of the unit sphere in R”.) For u, a
finite, compactly supported Borel measure in R”,

Uk = ka(x, ) du(»)

denotes the potential of u. It is well known that U* is defined almost everywhere
with respect to Lebesgue measure m2,(y) in R”, and is locally integrable there. It
is also clear that U#(x) is harmonic outside of the support of u (see [11]).

THEOREM. H(X)=C(X) if and only if foe H(X).
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Proof. Necessity is obvious. To prove sufficiency let us assume that foe H(X).
We will need the following two lemmas.

LEMMA 1 [6]. Let {X;}{" be as above and let g;(x, y) = gx,(x, y) denote the
Green functions of X, respectively. Define

c=max | gi(x,y)dmy(»).
xeX; vl

Then, im, _, ., ;=0 implies that H(X)=C(X).
Proof of Lemma 1. At first we observe that, since for each / and each x e X

(5) g1(x, ¥)=k(x, y)+hi(¥) (hi(y)e H(X)))

is an integrable function, the integral

Sx, gi(x,y)dm,(y)

is a continuous function in X;. So ¢; are well defined and finite.

To prove the lemma it suffices to show that every measure annihilating H(X)
is identical zero. So let ¢ be a measure orthogonal to H(X'), that is (see [11, Ch.
IvV]),

U¥(x)=0 in R"\ X.
It is convenient to separate the following.

ASSERTION. For all I,
©) | 1UHl dm, () = cilul.

Proof of the Assertion. Let Xo= {x € X: U"(x) is not defined}. Then m, (X,) =
0. Then, for all / and all x € X;\ Xy, we have

D, s du) = ko0 drO)+ [ Y dp(n) = Ut ).

(As hl(y)e H(X)) C H(X) and u L H(X), the second integral in (7) vanishes.) In
particular, (7) holds almost everywhere on X. Therefore, applying Fubini’s the-
orem, we obtain (g;=0) that

SX, Ur| dmy )=

!

HX g1(%, ) dp(y) dm"(x)l
!

< SX, {SX, gi(x,y) dmn(x)} dlp)|=cin].

This proves our assertion. Since (6) holds for all /, ¢;{ 0 implies that U* =0 a.e.
in R” and, therefore, p=0. The lemma is proved. J

LEMMA 2. Let X be a smoothly bounded finitely connected set in R" for which
the Dirichlet p{'oblem is solvable. Let g(x, y)=gx(x,y) be the Green function
in X. Fix xoe X and extend g(xg, y) to R" by setting g(xg, y)=0 on R"\ X. Then
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ag(xo, y) ds
Y

8 A , V)= —8
(8) y&8(X0, ¥) xo o, o

in the sense of distributions. (Here, 6x, denotes the unit pomt—mass at xg, a/an)
means the derivative in the direction of the inner normal ny to dX, and dS | 3x is
the area measure on 90X.)

Proof of Lemma 2. Take an arbitrary ¢ € Cg (R"). Then, applying the distri-
bution A, g(xy, ¥) to ¢, we obtain from (5)

(P, Ag)=(A¢, 8)=(Ad, k(x0, )+ hxy(¥))

= | AS(K(x0, )+ he(9)) dmip ()
©)
= | Dbk (X0, ) dmy () + | Adhey(¥) dma(y)
~J o e ABECx0, ) dimy(9).
As ¢ has a compact support, Green’s formula yields
(10) | 0 DK (X0, ) dn(9) = — (o).

According to the second Green’s formula, recalling that A(Ax,(»)) =0 in X, we
obtain

SX hy,Ad dm,(y) = SX~(”"0A¢ — ¢Ahyy) dm,(y)
(11)

=—S n, 22 dS+S

ax 0 3p ax = onm

Also, since k(xgp, y) is harmonic in R"\ X and ¢ has a compact support, using
Green’s formula again, we can rewrite the last integral in (9) as follows:

_ 9 9k (xo, ¥)
a2 [, AGkGo ) dm) = | Ko, ) g nds— | o= ds

Thus, combining formulas (5) and (9)-(12) and recalling that g(xg, ¥) =0o0n dxX,
we finally obtain

d x
(P, Ag)= —P(Xx0) — S hy, a¢ dS+§ x®
a¢ ak(XOsy)
—San(xo,y)adS+SaX¢ an, s

= ~¢(Xo)+SaX¢M ds = < e ag(xo, ¥) d

S .
on on ax>
The lemma is proved. O
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Now, according to Lemma 1, the theorem follows immediately from the fol-
lowing assertion.

LEMMA 3. Let {X;} and c; be the same as in Lemma 1. Then foe H (X ) im-
plies that c; 10 as [ 1 .

Proof of Lemma 3. At first, we observe that since X; D X, D --- then, accord-
ing to the maximal principal, g,(x, y)<g,_1(x,») for all ye X;,_, as xe X, is
fixed. Then (g,;,(x, y) =0 for all /, x, y)

c:=maxg g:(x,y)dmn(y)smaxg gi—1(x,y)dm,(y)
xeX; X xeX; Xy

= max S 8i—1(x, y)dm,(y)=c/—y,
xeX;_ X1

that is, {¢;} is a decreasing sequence. Hence, to prove the lemma it suffices to

show that {c;} contains a subsequence converging to zero. Since fo e H(X), there

exists a sequence {#;} of functions harmonic in a neighborhood of X and such

that

| fo— Al cxy<1/21.

Taking a subsequence, if necessary, we can assume that #; e H (X)) for all /. More-
over, since for each /ly, fo— Ay, is uniformly continuous in X}, there exists a neigh-
borhood U, of X such that

|fo— h10||cu7,‘0) <1/2l.

Also, for I =1, =1;(lyp) = Iy all X; C U},. Therefore, for each /, we can choose /5>
lo, Xipe (X}, hiye H(Xy) such that

(13) | fo— gl cex,) = 1/240.

Let f; denote the harmonic extension of fj | ax, into X;. Then, by the maximum
principle, from (13) it follows that

(14) |fr—hrlcx,n = 1/21

for all /, where I’=1'(/) =1 is as above.

Recall that foe Cg (R"), and without loss of generality we can assume that
Afo=1on X,. Then for each / ({"=1’(/) > ) and each x € X, according to (8),
(13), and (14) we obtain

SX[, gr(x, ) dmu(y) =<A, fo, 8r(x, ¥)) = fo, Ay gr (X, ¥

ad
= —fol)+ [, fon) ELZL S, = —fo(x) + £ ()

on,

1 1

1
=< [ ()= o)+ fr () —hpr(X)| = — + o5 =< 7.
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Hence, ¢, <1/!. Since !’ T oo whereby / t oo, the subsequence ¢;-{ 0. The lemma is
proved and, therefore, the proof of the theorem is complete. ]

COROLLARY 1. Let us keep the same notation as above. Then the following
are equivalent:
(1) HX)=C(X);
(i) c¢; 10 for any sequence {X,;}: X, X; and
(iii) |x|*e H(X).

Proof. (1) = (iii) is obvious; (iii) = (ii) follows from Lemma 3; and (ii) = (i) fol-
lows from Lemma 1. I:I

REMARK. (i)&(i1) has been observed by Huber [6]. However, our proof of
(i) e (ii) is simpler than the one in [6], since it does not involve a direct construc-
tion of an annihilating measure, but rather points out a very simple function
which is not approximable by harmonic functions.

3. Further remarks. The following proposition can be viewed as the quanti-
tative version of the analog of the Hartogs-Rosenthal theorem for harmonic ap-
proximation (cf. [4, Ch. II, Cor. 8.4] and [11, Ch. V, Thm. 5.19]).

For a given compact set X C R” let Ry denote the radius of the ball By whose
volume is equal to the volume of X.

PROPOSITION 1. A(X)<R% if n=2 and A(X) < (n/(n—2))R% for n=3.

Proof. For the sake of brevity we will conduct the argument for » = 3. By the
standard Hahn-Banach duality argument,

pl H(X)
supppre X
el =1
Since we can regard |x|2 on X as the restriction of a function ¢g e Cq (R”), using
Fubini’s theorem we can rewrite (15) as follows (cf. (10)):

(15) A(X)= sup ]SX [x]zdu‘.

A(X) = Sup, —SX {SRH Adokn(x, y) dmn(y)} du(X)I

fuf=<t

= sup on{ UKy dm)
pLH(X) X

(16) lel=<1

=2n #EEI(DX) ‘SX {SX kn(x,y) dmn(y)} du(x)‘

lef =1

< 2n max UX(x).
xeX

(Here, U denotes the potential of the measure 71, | x.) In the second equality in
(16), we used the fact that since p L H(X), U*=0 on R"\ X. As a convolution
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of bounded and locally integrable functions, U® is continuous in R”. Therefore,
it attains its maximum at a certain point xo € X. Without loss of generality, we
can assume that xo=(0,...,0). Let Bx={x: |x| < Rx}. Since

Vol(Bx) = Vol(BxyN X )+ Vol(Bx\ X)=Vol(XNBy)+ Vol(X \ Bx) = Vol(X),

Vol(Bx\ X) = Vol(X\By). Also, for each y;e X\ Bx and each y,e Bx\ X,
k,(0, ¥1) < k,(0, ¥5). So, using polar coordinates we obtain

1 1 1
>'s _ _ 2
UXO =, ka0 dmn(0) = o | g dma () = 5 R
Thus, finally it follows from (16) that
17) AX)=<—2_R2
n—2
and the proof is complete. L]

REMARK. The estimate (17) is not sharp. In fact, all measures p L H(X') have
nontrivial positive and negative parts. Therefore, the inequality in (16) is actually
strict. Below, by employing a different method, we will obtain a sharp estimate
for A(X).

COROLLARY 2 (the “Hartogs-Rosenthal” Theorem). If Vol(X) =0, then
H(X)=C(X).

The following proposition relates the extremal problems (3) and (15) to the
best harmonic majorant of |x|? (cf. [16]).

PROPOSITION 2. Let 38X be smooth and, therefore, the Dirichlet problem
is solvable on X. Let uy be the best harmonic majorant of |x|2 in X, that is,
uoe H(X) and ug | sx = |x|*. Then, A(X) =1|uo— |x|*|c(x).- Moreover, the har-
monic function

u*=ug—tuo—|x*|cex)
is the extremal function in (3), that is, ||x|*>—u*| = A(X).
Proof. Since ug— |x|2 is continuous and superharmonic on X and =0 on X,

it is positive on X and therefore attains its maximum at a certain point xgoe X.
Consider measure
1 1 dgx(xo0,¥)
*=—f, —————="=dS
# "2 an, y

2
(We keep the same notation as in Section 2.) It is clear (cf. Lemma 2) that
p* 1L H(X) and |p*| =1. Therefore, from (15), we obtain that

ax

A(X)= sup
pLH(X)
lul=1

= L(uo(x0) —|x0|?) = L|uo—|x|?] -

[, (o= 1x12) du'z [ o= Ix1?y du*
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On the other hand, since u*e H(X) and

max ug— |x|*>—L|uo—|x]|?|, where X|={xeX:u*(x)=|x|?}
x e X

max 4 [ug— |x|*|— (uo—|x|*), where X,=X\X;

XEXZ

J* — |x|* o = max

= $luo—x|*|,

A(X) =4 uo—|x|*|w. Thus, A(X)=1|uo—|x|*]~ and u* is the best harmonic
approximation to |x|* in X.

Without loss of generality, we can assume that the point xg, where wo— lxl2
attains its maximum, is the origin. Then the above proposition can be stated as

A(X) = 3u0(0),

provided that |ug— |x|2||co =up(0). A beautiful result of Payne [14], obtained by
making use of deep properties of the Schwarz symmetrization, states that

(18) uop(0) < R?,

and equality occurs if and only if up to a set of capacity zero X is a ball (see
also [2, p. 70], [15], and [16]). Therefore, from Proposition 2 and (18), apply-
ing a standard approximation argument we obtain the following improvement
of Proposition 1.

COROLLARY 3. For any compact set X CR"
(19) A(X)<1R:

Moreover, if X is essential for H(X) (i.e., X is equal to the closure of the set of
all nonpeak points of H(X)), then equality in (19) holds if and only if X is a ball.

We finish with two more comments.

1. Itis an interesting and nontrivial problem to find an appropriate lower bound
for A(X) in terms of simple geometric quantities (cf. [14] and [2, Ch. II, Thm.
2.9]). However, a simple estimate similar to the one in (2), and depending only
on the volume and perimeter, does not hold for A(X) for the following reason.
Let us consider a nowhere dense set X C R?, so-called Swiss cheese, obtained by
deleting from the unit disk Ay a sequence of pairwise disjoint open disks A;
whose radii ; have a finite sum and whose union is dense in Ay. Then, as is well
known, X has a positive area and a finite perimeter 27 X¢g r; (see [S, Ch. II], [13],
and [8]). However, it is known that one can still choose r; in such a way that
numbers ¢; corresponding to X; = A\ U5-=1 converge to zero. So, by Lemma 1,
H(X)=C(X) and therefore A(X) =0 (see [6] and [12]).

II. After this paper had been submitted, the author showed that the analogues
of Theorem 1, Corollaries 1 and 2, and Proposition 2 also hold for general uni-
formly elliptic operators of the second order with sufficiently smooth coefficients.
The corresponding statements of those results with the proofs will appear else-
where.
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