THE REFLEXIVITY OF CONTRACTIONS
WITH NONREDUCTIVE *-RESIDUAL PARTS

Katsutoshi Takahashi

Let 7 be a contraction on a separable Hilbert space, and suppose that there
exist an isometry V (# 0) and a (bounded linear) operator Y with dense range
such that Y7 = VY, which means that the contraction 7 is not of class C,., that
is, lim, _, |7 "x| £ O for some x (cf. [6, Proposition 11.3.5]). If V is non-unitary,
then it is easily seen that every point in the open unit disc D ={\: |\| <1} is an
eigenvalue of 7*, and so 7" has many invariant subspaces. It was proved in {2]
that 7 is even reflexive in this case. But, in the case in which V is unitary, it is not °
yet known whether such a 7" always has a nontrivial invariant subspace (cf. [8]).
In a recent paper [5], Kérchy has proved that if V is a bilateral shift then 7 has a
nontrivial invariant subspace, and under the additional assumption that 7" is of
class Cy (i.e., lim, _, |7 "x| # 0 and lim,, _, . |T*"x| # O for every nonzero x), T is
reflexive. The purpose of the present note is to prove a reflexivity theorem which
extends these results.

For an operator 7, let Alg T denote the weakly closed algebra generated by 7
and the identity /. Let Lat 7 and Alg Lat 7 denote the lattice of all invariant sub-
spaces for 7 and the algebra of all operators A such that Lat 7 < Lat A4, respec-
tively. Recall that 7 is reflexive if Alg7T = AlgLat7.

THEOREM. If T is a contraction on a separable Hilbert space and there exists
an operator Y with dense range such that YT = WY for some bilateral shift W
(#0), then T is reflexive.

The proof of [1, Theorem 5] shows that in the proof of our Theorem it suffices
to consider the case where T is completely non-unitary, that is, where 7" has no
nonzero invariant subspace on which it acts as a unitary operator.

Let T be a completely non-unitary contraction. We use the functional model of
Sz.-Nagy and Foias [6] for 7. Let © be the characteristic function of 77; thus ©
is an operator-valued H *-function on the unit circle 3D whose values are con-
tractions from D to D,, where D =(ran(/—-7*T))” and D, =@an(/—-TT*))".
We set

A)=I—-O(H*0(NY? and AL =T—6(H)O(H*?
for { € aD and consider T being defined on the space
H(0)=[H*(D.)D(ALX(D)) 1O(OhDAh: he H* (D))
by
¢)) T(f®E)=P(xS®DxEg),
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where for a separable Hilbert space &, L?(&) and H?(&) denote (respectively) the
spaces of &-valued L2- and H 2-functions on 8D, P denotes the orthogonal pro-
jection onto H(©), and x({) =¢, ¢ e€aD. If T is not of class Cy. or, equivalently,
if the function A, is nonzero (cf. [6, Proposition VI.3.5]), then the unitary oper-
ator R, of multiplication by the function x({)= ¢ on (A, L%*(D.))  is called the
*_residual part of T, and it follows from the relation A, © = O A that the operator
X:H(O)— (A, L*(D.))” defined by

2 X(fDg)=—A.f+0Og
is nonzero and intertwines 7" with R,, that is,
3) XT=R. X

(cf. [4]). The assumption of the Theorem implies that the *-residual part R, of
T has a bilateral shift summand, that is, R, is nonreductive (cf. [3, Proposition
VII.5.2]). Indeed, if T satisfies the assumption of the Theorem, then for the oper-
ators Y and W we have (by [4, Proposition 4]) an operator Z such that Y =2ZX
and ZR, = WZ (see also the proof of [2, Proposition 16]). Since Y = ZX has dense
range; Z has dense range too, so it follows from the relation ZR, = WZ that the
unitary operator R, has a bilateral shift summand (unitarily equivalent to W) (cf.
[3, Proposition I1.5.7]). It is also well known that R, has a bilateral shift sum-
mand exactly when A,($) 0 a.e. on dD (cf. [3, Proposition VII.5.2]).

The following lemma was proved in [5] for the case in which A({)=0 and
rank A.($) =1 a.e.

LEMMA. Let © be an operator-valued H*-function on dD whose values are
contractions from D to ., and let

A()=T—O()*O(NY? and AL(5)=UT—O(5)O(H)*)Y? for fedD.

If A({) #0 a.e., then there exist functions u € H*(D,) and v e (AL*(D))™ such
that

4 |—A(Hu()+O(Hv()]|>6 a.e
Jor some positive number 4.
Proof. Let us consider first the case in which © is *-outer. We set
a={¢:]|Ad$)]>1/2)
and choose a dense sequence {xi} in the unit sphere of D,. For k=1,2,..., let
{0 = (¢ ea:|A()xk]>1/2),

and we define the sequence {ay} by
k—1
o, =c” and ak=a,£0)\< U «; ) for k=2.
j=1

Obviously {ay]} consists of pairwise disjoint measurable sets, and since
|AL($)]| =sup]A«($)xk| a.e. on D,
k
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we have o = Uy . Take a sequence {por} of positive numbers such that X px =
p<1/2.For k=1,2,..., let i € H* be a function such that
(5) |8k| = X oy + Pk XoD\a; 8-€-5

where xs denotes the characteristic function of a measurable set 8 (cf. [3, Corol-
lary 1V.6.4]), and set u; =ty xx € H*(D.,). Then, as in the proof of [5, Lemma],
we have

kE}Iluk(§)||=k21pk=p a.e. on 4D\«

and
Y Jur(D) =14+ X px<1+p a.e. on o
k=1 k#j
for j=1,2,.... Thus, for almost every ¢{ € dD, the series X, u; () converges in

D, and we can define the function u € H?(D,) by u(¢) =k ux($).
Next let us take ke (AL*(D))~ such that |R($)) = xap\s($) a.e., where 8=
{¢:A($) =0}, and define

v=Xap\ah € (AL*(D))".

For almost every ¢ € 3, O({) is isometric, and since A, ({) # 0 by assumption, we
have |A.($)] =1. Therefore it follows that 8 € «, and so

©) ()] =xap\a($) a.e.

We shall show that the functions # and v satisfy (4) with 6 =1/2 — p. For almost
every {eay (k=1,2,...), using the relations (5), (6),

|A(S)xk]|>1/2 and [AL($)] =1,
we have

|—=A(Hu(S)+O (v = A u()]
= [2O|1AOxd = 3 [8,()185)x]
J

1 1

3 j;kpj> > p =20.

On the other hand, for almost every {e€ dD\«, since |A.({)]| <1/2, we have
I—O(5)O($)*=(1/4)1, and so O($)O($)*=(3/4)1, which shows that ©({)* is
left-invertible. But, since © is *-outer by our assumption, ©({)* has dense range
for almost every { € dD (cf. [6, Proposition V.2.4]). It follows that ©(¢) is in-
vertible and ©({)*©($) =(3/4)1 a.e. on D\ «. Therefore, for almost every ¢ €
oD\ «,

>

=2 u()+ O ()| = |0 () v(O] — A u()]

V3
V3 V3
=y T a = me>0
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because, by (5) and (6), |v($)| =1and |4, ()| = pr (K=1,2,...) for almost every
€ oD\ «a. This completes the proof of the case where O is *-outer.

Let us next prove a general case. Let © = 6,0, be the *-canonical factoriza-
tion of O (cf. [6, Chapter V]), that is, ©, is a *-inner function whose values are
contractions from O to some Hilbert space § and O, is a *-outer function whose
values are contractions from & to D,. Let A;({) = — 6,-(5‘)*6,-(5‘))'/2 (i=1,2)
and A, ($) =T —0,($)0,2(5)*)Y? for ¢ € dD. Since O is *-inner (i.e., O;({)* is
isometric a.e.), A,({) = A.2($) a.e. Thus we can apply the already proved case to
the *-outer function ©,, so we obtain u e H?*(D,) and v’e (A, L*(8))” such that

) [—A(O)u($)+ 02V ($)][>6 a.e.

for some 6 > 0. Since the factorization © = ©, 0, is regular (cf. [6, Chapter VII]),

we have the unitary operator Z from (AL?*(D))~ onto (A, L2(8))"(-B(A1L2(5D))_

such that Z(Ag) =A,0,g@A, g for ge L*(D). Let v=Z ' (v’'®D0) e (AL} (D))~

and let us take a sequence {g,} in L>(D) such that Ag, — v in L*(D). Then
vV@A0=Zv=1lim ZAg,= lim (A,0,2,P A &,),

so that v’ =1lim,,_, - A, O, g,. But by the relations ©,A,=A,>,0,, OA=A,0 and

A,=A.,, we have O, A,0;=0A and hence

O,v'=1lim ©,A,0,g,= lim OAg, =0Ov.
n— oo n— co

Therefore it follows from (7) that # and v satisfy (4), and the proof is completed.
O

This lemma is used to show that the contraction 7 in the Theorem has many
invariant subspaces 9 for which there are nonzero operators X such that

X(T|9M)=SX

for a unilateral shift S, so we can apply the reflexivity result in [2] stated above to
the contraction 7°| OI.

For a completely non-unitary contraction 7, we also use the H “-functional
calculus of Sz.-Nagy and Foias (cf. [6, Chapter III]), which defines a weak*-weak
continuous algebra homomorphism ¢ — ¢(7") from H* to AlgT. If ¢(T) =0 for
some nonzero ¢ € H™ then T is said to be of class Cy.

Proof of Theorem. We consider that T is defined by (1) on H(©) and use the
operator X: H(0) — (A, L*(D,))” defined by (2) and the *-residual part R, of
T. Since

{(6(T):pe H}S AlgT < Alg Lat T,

it suffices to show that, for each 4 € Alg Lat T, there exists ¢ € H* such that 4=
o(T).

As noted above, the characteristic function © of T satisfies the assumption of the
Lemma, so by the Lemma there exist functions u e H%(D,) and v e (AL*(D))”
satisfying (4). We set
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x=P(u®v)e H(O).

Then it follows from the relation A, © = O A that Xx=—A, u+ Ov, and since (4)
implies log|—A,u+0Ov| e L' we have Xx = gE, where g is a scalar outer function
in H? and E is a function in L?>(D,) such that IE($)]| =1 a.e. (cf. [3, Corollary
IV.6.4 and Theorem I1V.6.5]). Therefore,

(XM,)" =V RIXx=(fE: fe H?},

n=0

where M, =V,-0 7"y for ye H(O), so that the isometry R, | (X9,)~ is a unilater-
al shift and by (3) the operator X | 9, (# 0) intertwines 7" | 9, with R, | (X9IN,)":

(lezx)(Tlmlx) = (R. I(XSTZX)_)(XIE)‘IZX).
By [2, Theorem 4] it follows that
) Alg Lat(7' | M) = {o(T) | My : pe H™).

Now let us take Ae Alg Lat 7. Then N eLat A and A |9, e Alg Lat(7 | 9M,);
hence by (8) there exists ¢ € H” such that A|9M,=¢(T) | M,. Let us show 4=
¢ (7). Consider the set

C={yeH(O): ess glll)pll(Xy)(s“)ll <é}.

(Here 6 is a positive number such that |(Xx)({)| > 6 a.e.) Since € clearly con-
tains the set

(P(f®g): fe HX(D.), ge (AL*(D))” and €ss %gpllf(s“)@g(s“)ll <6/V2},

whose closed linear span is the whole space H(O), in order to show A =¢(7T) it
suffices to prove that Ay =¢(7T)y for every ye C. Let ye C and z=x+y. Then,
for almost every { € 3D, we have

1(X2) ()] = [(XX) ()| — [(XP) (£)]| > 6 —ess sup | (Xy) ($)] > 0;

hence, by the argument given for x above, R, [(X91;)™ is a unilateral shift and
(X | MI(T|IM;) = (R [ (XM,))(X|IM,), so there is Y € H™ such that A|M, =
Y(T) | M,. Similarly for w:=x+z =2x+y, we obtain ne€ H > such that A |9, =
2W(T)|M,,. Then we have

NT)x+9(T)z=n(T)(x+2)=A(x+Z2)

=Ax+Az=¢(T)x+yY(T)z,
so that
(n—¢)(T)x7—- W—)(T)zeM,NIM,.

Since ¢(T)=A=y¢(T) on M, NN, it follows that
C)) (=¥ (1= (T)x = —¥)(¥—m)(T)z=0.

Now, note that it follows from the relation X7'=R, X (Xx #0) that T| I, is
not of class Cy (cf. [6, Proposition I11.4.1]). Similarly, 7| 9, is not of class Cy.
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Thus (9) implies (¢ —y¢)(n—¢) =(¢—¥)(y—1n) =0, so that ¢ =y. This shows
A=¢(T) on M,V N,; in particular, Ay = ¢(7T)y. This completes the proof.
O

It was proved in [7] that a contraction whose restriction to some invariant sub-
space is a unilateral shift is reflexive. The following proposition shows that our
Theorem also extends this result of [7] as well as the one of [2] used above.

PROPOSITION. Let T be a completely non-unitary contraction and let © be iis
characteristic function. Then the following conditions are equivalent.
(i) O($)* is non-isometric for almost every ¢ € aD.

(ii) There is an operator Y with dense range such that YT = WY for some bi-
lateral shift W.

(iii) There are M e LatT (M = {0}) and an operator Y with dense range such
that Y(T | M) = WY for some bilateral shift W.

(iv) There are M € Lat T and a nonzero operator Y such that Y(T |I9MN)=SY
Jor some unilateral shift S.

Proof. (i)=(ii): Let X be the operator used above which intertwines 7" with
its *-residual part R,. If (i) holds, then (by the proof of the Theorem) ran X
contains the function of the form gE, where g is a scalar outer function and E
is a function in L?(®,) such that IE($)| =1 a.e. We define the operator Y;:
(A, L*(D.))” - L? by (Y1) () =k()S (), E(5)), § €dD, where k is a func-
tion in L™ such that k(¢)#0 a.e. and log|k| ¢ L' (and (-,-) denotes the inner
product on D,). Clearly the operator Y= Y; X intertwines 7 with the bilateral
shift Won L?; YT = WY, which implies (ran Y)~™ € Lat W. Since kg eran Y and g
is outer, it follows that kH? < (ran Y)~. But, by Szeg6’s Theorem (cf. [3, Thec-
rem IV.5.13]), the conditions on k imply (kH?2)™ = L?; hence it follows that Y
has dense range. This shows (ii).

The implication (ii)= (i) was remarked above (and used in the proof of the
Theorem). (i)= (iv) was shown in the proof of the Theorem and (iv)= (iii) fol-
lows from the facts that S|(ran Y)™ is a unilateral shift and the unilateral shift
S|(ranY)™ is a quasiaffine transform of a bilateral shift W of the same multiplic-
ity; that is, there is an injection Z with dense range such that Z(S|(ranY )7 )=
WZ.

(iii)= (i): Let © = 6,0, be the regular factorization of © which induces the
invariant subspace 9. Since the purely contractive part of ©, coincides with the
characteristic function of 7|9 (cf. [6, Proposition VII.2.1]), applying the im-
plication (ii)= (i) to T| M we see that ©({)* is nonisometric a.e. on dD. Then,
since the factorization © = 6,6, is regular (where for an operator-valued analyt-
ic function 4 on D, A(\) =A(N)*, A€ D), it follows that ©(¢{)* is nonisometric
a.e. (cf. [6, Proposition VII.3.3]). The proof is completed. O

Finally, we show that our Theorem can be extended from the case where the
space on which 7 acts is separable to the nonseparable case. Thus, suppose that
7 is a contraction acting on a nonseparable Hilbert space JC for which there is an
operator Y with dense range such that Y7"= WY for some bilateral shift W, and
let us show that T is reflexive.
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By the proof of [1, Theorem 5], we may assume that 7" is completely non-uni-
tary. We may also assume that the multiplicity of the bilateral shift W is one, so
that W acts on a separable space. (Indeed, consider W, and PyY instead of W
and Y, respectively, where W) is a bilateral shift summand of W of multiplicity
one and Py is the projection onto the subspace on which W, acts.) Thus the space
JCOker Y= (ran Y*) is separable. Let JC; be the T-reducing subspace generated
by JCOker Y, which is separable. We have T=7T;@® 7T, on JC = 3C;® JC, and note
that 77 satisfies the conditions of the Theorem. Take A € Alg Lat 7. Clearly A =
A @A, on =3P 3IC, and A; e Alg LatT; (i =1, 2). Since 7 satisfies the con-
ditions of the Theorem, the proof of the Theorem shows that

(10) A= ¢(T7)
for some ¢ € H*, and there is a vector x € JC; and an operator X # 0 such that
(11) X(T | M) =S8X,

where S is a unilateral shift on X and M, =V,=0 7T"x=Vn=0 71 x. Let us show
A>=¢(T,), so that A =¢(T) e Alg T, which proves the reflexivity of 7. The re-
lation (11) implies that the (nonzero) operator X = (X, 0): O, @ IC, — K satisfies
X(T | (M, @ 3C»)) = SX, and since A | (M, D IC;) € Alg Lat(T | (M, D 3C,)), it
follows from [2, Theorem 4] that

A[(M,DIC2) =¢Y(T) | (M D 3C>)
for some ¥ € H*, which means A4, | M, = ¢(T1) | M, and A, = ¢ (73). Then by (10)
we have ¢ (77) | M, = ¢ (T7) | M,, and since the relation (11) implies that 7 | M,
is not of class Cp, we have ¢ =y and so A, = ¢(73).
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