INVARIANT PSEUDODIFFERENTIAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS, II

Kenneth G. Miller

In [7] a method was given for constructing parametrices and inverses for invariant hypoelliptic pseudodifferential operators which are homogeneous with respect to the natural dilations on a step two nilpotent Lie group. The construction made use of a calculus for invariant pseudodifferential operators described in [6]. It will be shown here that a similar calculus is also valid in the case of arbitrary dilations on a step two group. The parametrix construction of [7] can then be easily extended to include operators homogeneous with respect to arbitrary dilations. As noted in [8], this construction can be "microlocalized".

In [4] Melin gave a somewhat different parametrix construction on the Heisenberg group and extended this procedure to arbitrary graded Lie groups with the natural dilations in [5]. Glowacki's construction of a commutative approximate identity, given in [2] for arbitrary dilations on the Heisenberg group, makes use of the parametrix construction in [4]. A pseudodifferential operator calculus such as that given below is a prerequisite for extending the results of [2] and [4] to all step two groups with arbitrary dilations.

The classes of pseudodifferential operators considered here differ from those considered in [6] in that here we require estimates for derivatives in all directions, not just the orbit directions. The asymptotic formula (17) for a composition product p#q is also valid for the classes considered in [6], since the estimates for derivatives of p#q in the orbit directions will be seen to depend only on estimates for derivatives of p and q in the orbit directions.

The point to be made in this paper is that the calculus in the orbit directions follows naturally from the Weyl calculus of Hörmander [3], while the estimates in non-orbit directions can then be obtained by making use of identities derived from the Lie algebra structure. We note that the development here is somewhat more natural than that in [6], since we have not needed to polarize the orbits.

DEFINITION. A family of dilations on a finite-dimensional Lie algebra \mathcal{G} is a one-parameter family $\delta = \{\delta_r : r > 0\}$ of automorphisms of \mathcal{G} such that

$$\delta_r e_j = r^{\mu_j} e_j, \quad \mu_j > 0,$$

for some basis $\{e_1, ..., e_n\}$ for G. A connected, simply connected nilpotent Lie group is said to be a homogeneous group if its Lie algebra is endowed with a family of dilations ([1]).

Without loss of generality we may assume that $\min \mu_j = 1$. It can be easily shown that there is a linearly independent set $S = \{e_1, ..., e_N\}$ which generates \mathcal{G} , satisfies (1), and such that $\mathcal{G}_1 = \operatorname{span} S$ intersects $\mathcal{G}_2 = [\mathcal{G}, \mathcal{G}]$ trivially. Assuming for the

Received June 3, 1985. Michigan Math. J. 33 (1986). rest of the paper that G is step two, let $\{e_{N+1}, ..., e_n\}$ be a basis for G_2 chosen so that each e_k , k > N, is a multiple of $[e_i, e_j]$ for some $i < j \le N$. Since δ is a family of automorphisms, if the numbers γ_{ij}^k are defined by

$$[e_i, e_j] = \sum \gamma_{ij}^k e_k,$$

then

(3)
$$\gamma_{ij}^k \neq 0 \quad \text{implies } \mu_i + \mu_j = \mu_k.$$

For $x \in \mathcal{G}$ let $|x| = (x_1^2 + \dots + x_n^2)^{1/2}$, where (x_1, \dots, x_n) are the coordinates of x with respect to the basis $\{e_1, \dots, e_n\}$. By replacing each e_k , $N < k \le n$, by ce_k for sufficiently large c we may assume that

(4)
$$|[x, y]| \le |x| |y|$$
, for all x and y in \mathcal{G} .

We fix a basis $\mathfrak{B} = \{e_1, ..., e_n\}$ for \mathfrak{G} having the properties just described. Coordinates and norms on \mathfrak{G} and \mathfrak{G}^* will always be with respect to this basis or its dual $\{e_1^*, ..., e_n^*\}$.

For $\xi \in \mathcal{G}^* - \{0\}$, define $[\xi]$ by $[\xi] = r$ if $|\delta_r^{-1}\xi| = 1$. Note that, in terms of the chosen coordinate system,

$$[\xi] \approx \sum_{j=1}^{n} |\xi_j|^{1/\mu_j}.$$

Let $\chi: \mathcal{G}^* \to \mathbf{R}$ be a smooth function such that $\chi(\xi) \approx [\xi] + 1$. For ξ and η in \mathcal{G}^* define

$$g_{\xi}(\eta) = |\delta_{\chi(\xi)}^{-1}\eta|^2$$
.

We consider g as determining a Riemannian metric on each of the orbits of the coadjoint action of G in G^* . Since G is step two nilpotent, if \mathcal{O}_{ξ} is that orbit containing ξ then \mathcal{O}_{ξ} is an affine space, $\mathcal{O}_{\xi} = \xi + T\mathcal{O}_{\xi}$, where $T\mathcal{O}_{\xi} = \{\operatorname{ad} x^*\xi : x \in G\}$. \mathcal{O}_{ξ} has a natural symplectic structure defined as follows: If η and ζ are in $T\mathcal{O}_{\xi}$, define $\sigma_{\xi}(\eta, \zeta) = \langle \eta, z \rangle$ for any z such that $(\operatorname{ad} z)^*\xi = \zeta$. As in Hörmander [3], for $\eta \in T\mathcal{O}_{\xi}$ define

$$g_{\varepsilon}^{\sigma}(\eta) = \sup\{|\sigma_{\varepsilon}(\eta,\zeta)|^2/g_{\varepsilon}(\zeta): \zeta \in T\mathfrak{O}_{\varepsilon}\}.$$

PROPOSITION. There exist N, C, and c > 0 such that

(5)
$$[\xi - \eta] \le c\chi(\xi) \quad implies \quad c\chi(\eta) \le \chi(\xi) \le C\chi(\eta);$$

(6)
$$g_{\xi}(\eta) \leq c \quad implies \quad g_{\xi}(\zeta) \approx g_{\xi+\eta}(\zeta) \quad for \quad \zeta \in \mathcal{G}^*;$$

(7)
$$g_{\xi}(\eta) \leq g_{\xi}^{\sigma}(\eta) \quad \text{for all } \xi \in \mathcal{G}^*, \ \eta \in T\mathcal{O}_{\xi};$$

(8)
$$\chi(\eta) \le C\chi(\xi) (1 + g_{\xi}(\eta - \xi))^{1/2} \quad \text{for all } \xi \in \mathcal{G}^*, \ \eta \in \mathcal{G}^*; \quad \text{and}$$

(9)
$$\chi(\xi) \le C\chi(\eta) (1 + g_{\xi}^{\sigma}(\eta - \xi))^{N} \quad \text{for all } \xi \in \mathcal{G}^{*}, \ \eta \in \mathcal{O}_{\xi}.$$

Proof. Since $[\xi] \le C([\eta] + [\xi - \eta])$, there exist $c_1 > 0$ and $C_1 \ge 1$ such that $[\xi - \eta] \le c_1 \chi(\xi)$ implies $\chi(\xi) \le C_1 \chi(\eta)$. (5) follows by letting $c = c_1 C_1^{-1}$, and (6) follows immediately from (5).

Let $\delta = \delta_{\chi(\xi)}$. Then

$$g_{\xi}^{\sigma}(\eta)^{1/2} = \sup\{|\langle \eta, z \rangle| / |\delta^{-1} \operatorname{ad} z^* \xi| : z \in \mathcal{G}\}$$
$$= \sup\{|\langle \delta^{-1} \eta, z \rangle| / |\operatorname{ad} z^* \delta^{-1} \xi| : |z| = 1\},$$

since δ^{-1} ad $z^*\xi = (ad \delta z)^*\delta^{-1}\xi$. Note that

$$|\operatorname{ad} z^* \delta^{-1} \xi| = \sup\{|\langle \delta^{-1} \xi, [z, y] \rangle| : |y| = 1\} \le |\delta^{-1} \xi'| |z|$$

by (4), where $\xi' = \xi \mid_{\mathcal{G}_2}$. Thus $g_{\xi}^{\sigma}(\eta)^{1/2} \ge |\delta^{-1}\xi'|^{-1} \sup\{|\langle \delta^{-1}\eta, z \rangle| : |z| = 1\}$. Consequently,

(10)
$$g_{\xi}(\eta)^{1/2}g_{\xi}^{\sigma}(\eta)^{-1/2} \leq |\delta_{\chi(\xi)}^{-1}\xi'|,$$

which proves (7), since $|\delta_{\chi(\xi)}^{-1}\xi'| \le |\delta_{[\xi]}^{-1}\xi| = 1$.

It follows from (5) that (8) holds if $[\xi - \eta] \le c\chi(\eta)$. Thus to prove (8) it suffices to show that $[\xi - \eta] \le C\chi(\xi) (1 + g_{\xi}(\eta - \xi))^{1/2}$, which follows from $\chi(\xi)^{-1}[\zeta] = [\delta_{\chi(\xi)}^{-1}\zeta] \le C(1 + |\delta_{\chi(\xi)}^{-1}\zeta|)$ for all $\zeta \in \mathcal{G}^*$. (8) implies that

(11)
$$g_{\xi}(\zeta) \le Cg_{\eta}(\zeta) (1 + g_{\xi}(\eta - \xi))^{\bar{\mu}/2}$$

for all $\zeta \in \mathcal{G}^*$, where $\overline{\mu} = \max \mu_j$. Hence $g_{\eta}^{\sigma}(\zeta) \leq C g_{\xi}^{\sigma}(\zeta) (1 + g_{\xi}^{\sigma}(\eta - \xi))^{\overline{\mu}/2}$ for $\zeta \in T\mathcal{O}_{\xi}$ and $\eta \in \mathcal{O}_{\xi}$. Taking $\zeta = \eta - \xi$, this implies that

$$1+g_{\eta}^{\sigma}(\eta-\xi) \leq C(1+g_{\xi}^{\sigma}(\eta-\xi))^{1+\bar{\mu}/2},$$

which proves (9) since $\chi(\xi) \le C\chi(\eta)(1+g_{\eta}^{\sigma}(\eta-\xi))$ by (8).

In the terminology of Hörmander [3], (6) and (11) imply that g is slowly varying and σ -temperate on each of the orbits, with constants c and C independent of the orbit. Inequalities (6), (8), and (9) imply that for any real m, χ^m is g continuous and σ , g temperate on each orbit with constants independent of the orbit.

DEFINITION. Let $\delta = \{\delta_r : r > 0\}$ be a family of dilations on \mathcal{G} and let $m \in \mathbb{R}$. $S^m(\mathcal{G}^*, \delta)$ is the set of $p \in C^{\infty}(\mathcal{G}^*)$ such that for every integer $j \ge 0$, $||p||^j$ is finite, where

(12)
$$||p||^j = \sup |d^{(j)}p(\xi;\eta_1,\ldots,\eta_i)|\chi(\xi)^{-m}\prod g_{\xi}(\eta_i)^{-1/2},$$

with the supremum taken over all $\xi \in \mathcal{G}^*$, $(\eta_1, ..., \eta_j) \in \mathcal{G}^* \times \cdots \times \mathcal{G}^*$. Here $d^{(j)}p$ denotes the *j*th total derivative of p.

Let $\mathfrak{B}^* = \{e_1^*, ..., e_n^*\}$ be the basis for \mathfrak{G}^* chosen earlier and let μ_j be defined by (1). If α is a multi-index, let $\mu \alpha = \sum \mu_j \alpha_j$ and let D^{α} denote the α th partial derivative with respect to the coordinate system determined by \mathfrak{B}^* . Noting that $g_{\xi}(e_j^*)^{1/2} = \chi(\xi)^{-\mu_j}$ we obtain the following characterization of $S^m(\mathfrak{G}^*, \delta)$: $p \in S^m(\mathfrak{G}^*, \delta)$ if and only if, for every multi-index α ,

(13)
$$|D^{\alpha}p(\xi)| \le C_{\alpha}\chi(\xi)^{m-\mu\alpha} \text{ for all } \xi \in \mathcal{G}^*.$$

Note that if $p \in C^{\infty}(\mathcal{G}^*)$ is homogeneous of degree m with respect to δ for large ξ , then $p \in S^m(\mathcal{G}^*, \delta)$.

For $\xi \in \mathcal{G}^*$, let $\xi' = \xi \mid_{\mathcal{G}_2}$. Define $h(\xi) = |\delta_{\chi(\xi)}^{-1} \xi'|$. It follows from (5) and (8) that h is g-continuous and σ , g temperate on each orbit, with constants independent of the orbit. By (10), $\sup g_{\xi}(\eta) g_{\xi}^{\sigma}(\eta)^{-1} \leq h(\xi)^2$, the supremum taken over $\eta \in T\theta_{\xi}$.

DEFINITION. If $\alpha = (\alpha_1, ..., \alpha_n)$ is a multi-index, let $\alpha' = (\alpha_{N+1}, ..., \alpha_n)$, $N = \dim \mathcal{G}_1$, and $n = \dim \mathcal{G}$. Given $m \in \mathbb{R}$ and $k \ge 0$, define $S^{m,k}(\mathcal{G}^*, \delta)$ to be the set of those functions $p \in S^m(\mathcal{G}^*, \delta)$ such that, for every α ,

$$|D^{\alpha}p(\xi)| \leq C_{\alpha}h(\xi)^{\max\{k-|\alpha'|,0\}}\chi(\xi)^{m-\mu\alpha}, \quad \xi \in \mathbb{G}^*.$$

Let $S_0^{m,k}(\mathcal{G}^*,\delta)$ be the set of symbols for which the corresponding estimates are required to hold only for derivatives parallel to the orbits (see [6]).

The symbol classes $S^{m,k}$ were introduced by Melin in [4] for the case of the natural dilations on the Heisenberg group.

Given $\zeta \in \mathcal{G}^*$, define B_{ζ} on $\mathcal{G} \times \mathcal{G}$ by $B_{\zeta}(x, y) = \langle \zeta, [x, y] \rangle$. B_{ζ} is the symbol of a second-order differential operator $B_{\zeta}(D)$ on $\mathcal{G}^* \times \mathcal{G}^*$ $(D = -i\partial)$. Given p and q in $C^{\infty}(\mathcal{G}^*)$ and an integer $j \geq 0$, define

$${p,q}_j(\xi) = B_{\xi}(D)^j(p \otimes q)(\xi,\xi).$$

LEMMA. If $p \in S^{m_1, k_1}(\mathcal{G}^*, \delta)$ and $q \in S^{m_2, k_2}(\mathcal{G}^*, \delta)$, then

$$\{p,q\}_j \in S^{m_1+m_2,k_1+k_2+j}(\mathcal{G}^*,\delta).$$

Proof. Suppose that g is a slowly varying Riemannian metric on an affine space with corresponding vector space V, m is g-continuous, and $u \in S(m, g)$ in the notation of Hörmander [3]. Let $||u||_k = \sum_{j \le k} ||u||^j$, where $||u||^j$ is the norm in S(m, g) analogous to (12). If B is a real bilinear form on $V^* \otimes V^*$ with corresponding linear map $B: V^* \to V$, $g_x^B(t) = \sup |\langle \xi, t \rangle|^2 / g_x(B\xi)$, and $h(x)^2 = \sup g_x(t) / g_x^B(t)$, then for each j there is a C such that

(14)
$$|B(D)^{j}u(x)| \leq Ch(x)^{j}m(x)||u||_{2j}.$$

The constant C depends only on j, not on g, m, or B.

If $\mathfrak O$ is any orbit of the coadjoint action of G on $\mathfrak G^*$, define \overline{g} on $\mathfrak O \times \mathfrak O$ by $\overline{g}_{\xi_1\xi_2}(\eta_1,\eta_2) = g_{\xi_1}(\eta_1) + g_{\xi_2}(\eta_2)$, where ξ_1 and ξ_2 are in $\mathfrak O$, η_1 and η_2 in $T\mathfrak O$. Applying (14) with $B = B_{\xi}$ on $\mathfrak O_{\xi} \times \mathfrak O_{\xi}$ and $m = h^{k_1} \chi^{m_1} \otimes h^{k_2} \chi^{m_2}$ as in [3] yields

$$|\{p,q\}_{i}(\xi)| \leq C_{i} h(\xi)^{k_{1}+k_{2}+j} \chi(\xi)^{m_{1}+m_{2}} ||p||_{2i} ||q||_{2i},$$

where $\| \|_{2i}$ now refers to a seminorm on $S_0^{m_i, k_i}(\mathfrak{S}^*, \delta), i = 1, 2$.

We need similar estimates for the derivatives of $\{p, q\}_j$. To that end, note that if p and q are in $S(G^*)$, then

$$\{p,q\}_s(\xi) = \iint e^{i\langle\xi,x+y\rangle} \langle\xi,[x,y]\rangle^s \hat{p}(x)\hat{q}(y) dx dy.$$

Define γ_{ij}^k by (2). It follows that

(16)
$$D_k\{p,q\}_s = \{D_k p, q\}_s + \{p, D_k q\}_s - s\sqrt{-1} \sum_{i} \gamma_{ij}^k \{D_i p, D_j q\}_{s-1}$$

for all p and q in $C^{\infty}(\mathfrak{S}^*)$. Since $p \in S^{m,k}(\mathfrak{S}^*, \delta)$ implies $D_j p \in S^{m-\mu_j,k}(\mathfrak{S}^*, \delta)$ if $j \leq N$, or $D_j p \in S^{m-\mu_j,k-1}(\mathfrak{S}^*, \delta)$ if j > N, and since $\gamma_{ij}^k = 0$ unless $\mu_i + \mu_j = \mu_k$, applying (16) and estimate (15) inductively yields $\{p, q\}_j \in S^{m_1+m_2, k_1+k_2+j}(\mathfrak{S}^*, \delta)$.

DEFINITION. If $p \in S^*(G^*)$, define $F_1 p \in S^*(G)$ by $F_1 p = Fp \circ \log$, where F is the Euclidean Fourier transform and $\log : G \to G$ is the inverse of the exponential map. If p and q are in $S(G^*)$, define

$$p#q = F_1^{-1}(\dot{F_1}p * F_1q),$$

where * is convolution on G.

Note that if the right invariant operator $Pu = F_1 p * u$ is associated to the symbol p (or if the left invariant operator $\tilde{P}u = u * F_1^{-1}p$ is associated to p), then p#q is the symbol of PQ (resp., of $\tilde{P}\tilde{Q}$).

Define the weak topology on symbol spaces as in [3].

THEOREM. The map $(p,q) \mapsto p \# q$ from $S(G^*) \times S(G^*)$ to $S(G^*)$ extends to a weakly continuous map from $S^{m_1,k_1}(G^*,\delta) \times S^{m_2,k_2}(G^*,\delta)$ to $S^{m_1+m_2,k_1+k_2}(G^*,\delta)$. For any integer $J \ge 0$ define

(17)
$$r_J = p \# q - \sum_{j < J} (i/2)^j \{p, q\}_j / j!.$$

Then the map $(p,q) \mapsto r_J$ is weakly continuous from $S^{m_1,k_1}(\mathcal{G}^*,\delta) \times S^{m_2,k_2}(\mathcal{G}^*,\delta)$ to $S^{m_1+m_2,k_1+k_2+J}(\mathcal{G}^*,\delta)$.

Proof. Let p and q be in $S(G^*)$. Then

(18)
$$p \# q(\xi) = \int_{\mathcal{G}} \int_{\mathcal{G}} e^{i\langle \xi, x+y+(1/2)[x,y] \rangle} \hat{p}(x) \hat{q}(y) \, dy \, dx$$
$$= \int_{\mathcal{G}^*} \int_{\mathcal{G}} e^{i\langle \xi-\eta, x \rangle} p(\eta) \, q(\xi + \operatorname{ad} \frac{1}{2} x^* \xi) \, dx \, d\eta.$$

Let R_{ξ} be the radical of the bilinear form B_{ξ} ,

$$R_{\xi} = \{x : \langle \xi, [x, y] \rangle = 0 \text{ for all } y \in \mathcal{G} \}.$$

By applying the Fourier inversion theorem on R_{ξ} and noting that $TO_{\xi} = R_{\xi}^{\perp}$, we obtain

(19)
$$p\#q(\xi) = \int_{\mathfrak{S}_{\xi}} \int_{\mathfrak{S}/R_{\xi}} e^{i\langle \xi - \eta, x \rangle} p(\eta) q(\xi + \operatorname{ad} \frac{1}{2} x^{*} \xi) dx d\eta.$$

In particular, $p#q(\xi)$ is determined by the values of p and q on \mathcal{O}_{ξ} . Likewise the Fourier inversion theorem implies that if $\zeta \in \mathcal{O}_{\xi}$, then

$$(i/2)B_{\xi}(D)(p\otimes q)(\xi,\zeta) = \int_{\mathcal{G}} \int_{\mathcal{G}} e^{i(\langle \xi,x\rangle + \langle \xi,y\rangle)} i\langle \xi', [x/2,y]\rangle \hat{p}(x)\hat{q}(y) \, dy \, dx$$
$$= \int_{\mathcal{O}_{\xi}} \int_{\mathcal{G}/R_{\xi}} e^{i\langle \xi - \eta, x\rangle} p(\eta) \, dq(\zeta; \operatorname{ad} \frac{1}{2}x^{*}\xi) \, dx \, d\eta.$$

Since the exponential of the directional derivative $q \mapsto dq(\cdot; \operatorname{ad} \frac{1}{2}x^*\xi)$ is the operator of translation by $\operatorname{ad} \frac{1}{2}x^*\xi$, we find that

$$p\#q(\xi) = \exp(\frac{1}{2}iB_{\xi}(D))(p\otimes q)(\xi,\xi).$$

By Theorem 3.6 of [3] and the Proposition above, $(p,q) \mapsto r_j$ is weakly continuous from $S_0^{m_1,k_1}(\mathcal{G}^*,\delta) \times S_0^{m_2,k_2}(\mathcal{G}^*,\delta)$ to $S_0^{m_1+m_2,k_1+k_2+J}(\mathcal{G}^*,\delta)$. In particular,

$$|r_j(\xi)| \le C\chi(\xi)^{m_1 + m_2} h(\xi)^{k_1 + k_2 + J} ||p|| ||q||$$

for some seminorm $\| \|$ on $S_0^{m_i, k_i}(\mathcal{G}^*\delta)$, i = 1, 2.

We still need to prove the appropriate estimates for derivatives of r_j . If p and q are in $S(G^*)$, consider the derivatives dp and dq as elements of $S(G^*) \otimes G$. Given $\zeta \in G_2^*$, $B_{\zeta}: G \times G \to G$ and $\#: S(G^*) \times S(G^*) \to S(G^*)$ are bilinear. We define $B_{\zeta}^{\#}(p,q) = (\# \otimes B_{\zeta})(dp,dq)$. If $\zeta = \sum \zeta_k e_k^*$ and γ_{ij}^k are defined by (2), then

(21)
$$B_{\zeta}^{\#}(p,q) = \sum \gamma_{ij}^{k} \zeta_{k} \partial_{i} p \# \partial_{j} q.$$

Let $B_j^{\#} = B_{e_j}^{\#}$ if j > N, $B_j = 0$ if $j \le N$. It follows from (18) that

(22)
$$D_{j}(p\#q) = D_{j}p\#q + p\#D_{j}q - \frac{1}{2}B_{j}^{\#}(p,q).$$

Applying (20) to $D_i p$ and $D_l q$ when $\gamma_{il}^j \neq 0$, (21) implies that

$$\left| -\frac{1}{2}B_{j}^{\#}(p,q)(\xi) - \frac{1}{2}\sum_{s < J}\sum_{i,l}(i/2)^{s-1}\gamma_{il}^{j}\{D_{i}p,D_{l}q\}_{s-1}(\xi)\right|$$

$$\leq C\chi(\xi)^{m_1+m_2-\mu_j}h(\xi)^{k_1+k_2+J-1}\|p\|\|q\|.$$

It follows from (22) and (16) that

$$|D_{j}r_{J}(\xi)| \leq \begin{cases} C\chi(\xi)^{m_{1}+m_{2}-\mu_{j}}h(\xi)^{k_{1}+k_{2}+J} & \text{if } j \leq N; \\ C\chi(\xi)^{m_{1}+m_{2}-\mu_{j}}h(\xi)^{k_{1}+k_{2}+J-1} & \text{if } j > N. \end{cases}$$

Estimates for higher derivatives follow by induction. The theorem now follows from the fact that every $p \in S^m(\mathcal{G}^*, \delta)$ is the weak limit of a sequence in $S(\mathcal{G}^*)$.

Concerning other matters that are usually part of a pseudodifferential operator calculus, we note that if $Pu = F_1 p * u$, then $P^*u = F_1 \bar{p} * u$. Also, by the same proof as in [6], if $p \in S^0(\mathcal{G}^*, \delta)$, then $P: L^2(G) \to L^2(G)$ is bounded.

REFERENCES

- 1. G. Folland and E. Stein, *Hardy spaces on homogeneous groups*, Princeton Univ. Press, Princeton, N.J., 1982.
- 2. P. Glowacki, On commutative approximate identities on non-graded homogeneous groups, Comm. Partial Differential Equations 9 (1984), 979-1016.
- 3. L. Hörmander, *The Weyl calculus of pseudo-differential operators*, Comm. Pure Appl. Math. 32 (1979), 359–443.
- 4. A. Melin, Parametrix constructions for some classes of right-invariant differential operators on the Heisenberg group, Comm. Partial Differential Equations 6 (1981), 1363–1405.
- 5. ——, Parametrix constructions for right-invariant differential operators on nilpotent groups, Ann. Global Analysis and Geometry 1 (1983), 79–130.
- 6. K. Miller, *Invariant pseudodifferential operators on two step nilpotent Lie groups*, Michigan Math. J. 29 (1982), 315-328.

- 7. ——, Inverses and parametrices for right-invariant pseudo-differential operators on two-step nilpotent Lie groups, Trans. Amer. Math. Soc. 280 (1983), 721–736.
- 8. ——, *Microhypoellipticity on step two nilpotent Lie groups*, Contemporary Math. 27 (1984), 231–235.

Department of Mathematics and Statistics Wichita State University Wichita, Kansas 67208