INVARIANT PSEUDODIFFERENTIAL OPERATORS ON
TWO STEP NILPOTENT LIE GROUPS, II

Kenneth G. Miller

In [7] a method was given for constructing parametrices and inverses for in-
variant hypoelliptic pseudodifferential operators which are homogeneous with
respect to the natural dilations on a step two nilpotent Lie group. The construc-
tion made use of a calculus for invariant pseudodifferential operators described
in [6]. It will be shown here that a similar calculus is also valid in the case of arbi-
trary dilations on a step two group. The parametrix construction of [7] can then
be easily extended to include operators homogeneous with respect to arbitrary
dilations. As noted in [8], this construction can be “microlocalized”.

In [4] Melin gave a somewhat different parametrix construction on the Heis-
enberg group and extended this procedure to arbitrary graded Lie groups with
the natural dilations in [5]. Glowacki’s construction of a commutative approxi-
mate identity, given in [2] for arbitrary dilations on the Heisenberg group, makes
use of the parametrix construction in [4]. A pseudodifferential operator calculus
such as that given below is a prerequisite for extending the results of [2] and [4]
to all step two groups with arbitrary dilations.

The classes of pseudodifferential operators considered here differ from thaose
considered in [6] in that here we require estimates for derivatives in all directions,
not just the orbit directions. The asymptotic formula (17) for a composition prod-
uct p#q is also valid for the classes considered in [6], since the estimates for de-
rivatives of p#q in the orbit directions will be seen to depend only on estimates
for derivatives of p and ¢ in the orbit directions.

The point to be made in this paper is that the calculus in the orbit directions
follows naturally from the Weyl calculus of Hormander [3], while the estimates
in non-orbit directions can then be obtained by making use of identities derived
from the Lie algebra structure. We note that the development here is somewhat
more natural than that in [6], since we have not needed to polarize the orbits.

DEFINITION. A family of dilations on a finite-dimensional Lie algebra G is a
one-parameter family 6 = {§,: r > 0} of automorphisms of G such that

1) érej=rte;, p;>0,

for some basis {ej, ..., e,} for G. A connected, simply connected nilpotent Lie
group is said to be a homogeneous group if its Lie algebra is endowed with a fam-
ily of dilations ([1]).

Without loss of generality we may assume that min p; = 1. It can be easily shown
that there is a linearly independent set S = {ey, ..., ey} which generates G, satisfies
(1), and such that G, =span S intersects G, =[G, G] trivially. Assuming for the
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rest of the paper that G is step two, let {ey.1,-.., e,} be a basis for G, chosen so
that each e, k> N, is a multiple of [e;, e;] for some i < j < N. Since 8 is a family
of automorphisms, if the numbers 7,-’5- are defined by

) lei,ejl= 2 vEex,
then
3) vE#0 implies p;+p;= ps.

For xe G let |x|=(x{+ --- +x2)Y?, where (x,...,x,) are the coordinates of x
with respect to the basis {ey, ..., e,}. By replacing each ex, N<k <n, by ce; for
sufficiently large ¢ we may assume that

4) |[x, y1|<|x||y|, forall x and y in G.

We fix a basis @ = {ey, ..., e,] for G having the properties just described. Coor-
dinates and norms on G and G* will always be with respect to this basis or its dual
fef,...,ex}.

For £ e G*— {0}, define [£] by [£]=r if IB,“‘EI = 1. Note that, in terms of the
chosen coordinate system,

n
[£1=~ 3 |&]".
i=1 .

Let x: G*— R be a smooth function such that x(£)=[£]+1. For £ and 5 in G*
define

g:0n) = |8ym|*.
We consider g as determining a Riemannian metric on each of the orbits of the
coadjoint action of G in G*. Since G is step two nilpotent, if O; is that orbit con-
taining £ then O is an affine space, Oy = £+ 70O, where TO; =fadx*¢: x € G}.
O: has a natural symplectic structure defined as follows: If y and { are in 70, de-

fine o:(n, §) =(n, z) for any z such that (adz)*{=¢. As in Hormander [3], for
ne TO; define

gZ(n) =supf|oc(n, $)|/g:($): £ € TO:).
PROPOSITION. There exist N, C, and ¢ > 0 such that

(5) [§—nl=cx(&) implies cx(n) =x(§)=Cx(n);

(6) ge(m)=c implies g:($) = g¢1,($) for {eG*;

@) g:(n)=gi(n) Jorall £€G* neTO;

®) x(n) = Cx(§)(A+g:(n—§NY? forall (€ G* neG*; and
) X(§) = Cx(n)(1+g{(n—£)"  for all £€G*, ne 0.

Proof. Since [£]=C([9]+[£—7n]), there exist ¢,>0 and C;=1 such that
[£—n]=cx(£) implies x(£) < C;x(n). (5) follows by letting ¢ =¢,C; !, and (6)
follows immediately from (5).
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Let 6 =0d,(). Then
g8 (m"? =sup{|<n, z>|/|6 'ad z*£|: z€ G}
=sup{[<d "', 2)|/|adz*6 '¢|: 2] =1},
since 6 ~'ad z*£ = (ad 62)*6 ~'£. Note that
ladz*6 ~'&| =sup{[<6 7'&, [z, yD|: || =13 =< |6 '¢'| 2|

by (4), where £’=£|g,. Thus gg’(n)'/zz |6 7'¢’| " sup(|<6 ~'n, z)|: |z| =1}. Con-
sequently,

(10) g:(m gl () V< |65 E |,

which proves (7), since |65 &’| < |87z &| =1.

It follows from (5) that (8) holds if [£ — ] = cx(%). Thus to prove (8) it suffices
to show that [§E—9] =< Cx(’;’)(l+g5(n—£))'/2, which follows from x (&) ~'[¢]=
[65H 1= C+ |84 ¢]) for all ¢ e G* (8) implies that

(11 2:(8) = Cg, (5 1+ g (n—£)™?

for all { e G*, where g=maxpy;. Hence g, ({) < Cg,:f’(g‘)(l+g;§’(17—£))’”2 for ¢ e
T0O; and ne O;. Taking { =n—§&, this implies that

1+g7(n—§) = C(1+gf(n—£)N' 72,
which proves (9) since x(£) = Cx(n)(1+ g, (n—§)) by (8). ]

In the terminology of Héormander [3], (6) and (11) imply that g is slowly vary-
ing and o-temperate on each of the orbits, with constants ¢ and C independent of
m

the orbit. Inequalities (6), (8), and (9) imply that for any real m, x" is g con-
tinuous and o, g temperate on each orbit with constants independent of the orbit.

DEFINITION. Let 6 ={6,: 7 >0} be a family of dilations on G and let m eR.
S™(G*, 8) is the set of p e C™*(G*) such that for every integer j =0, |p|’ is finite,
where

(12) ol =sup|dVp(Esm, e n) | x(E) " T g2 (i) V3,

with the supremum taken over all £ e G*, (ny,...,7;)€ G*X --- X G*. Here dVp
denotes the jth total derivative of p.

Let &*={ef,..., e;} be the basis for G* chosen earlier and let u; be defined
by (1). If « is a multi-index, let poe =3 p;; and let D* denote the «th partial
derivative with respect to the coordinate system determined by ®&*. Noting that
gg(e}")'/2=x(£)—"f we obtain the following characterization of S”'(G* 8): pe
S(G*, &) if and only if, for every multi-index «,

(13) IDp(&)| < Coax(£)"+* for all £eG*.

Note that if p e C*(G*) is homogeneous of degree m with respect to é for large
£, then p e S™(G*, 8).

For e G* let £’=¢|g,. Define h(&) = |6X_("E)£’|. It follows from (5) and (8) that
h is g-continuous and o, g temperate on each orbit, with constants independent
of the orbit. By (10), sup g:(n) g£ (n) < n(£)?, the supremum taken over 5 € T06;.
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DEFINITION. If o = (g, ..., ;) is a multi-index, let o’ = (an 41y ..., ¥n), N=
dim G;, and n =dim G. Given m € R and k = 0, define S™*(G*, §) to be the set of
those functions p € S”(G*, 6) such that, for every «,

|D*p(£)] = Coh(£)™ ¥ k=110 (gym=pe e g*,

Let S&*(G*, 6) be the set of symbols for which the corresponding estimates are
required to hold only for derivatives parallel to the orbits (see [6]).

The symbol classes S % were introduced by Melin in [4] for the case of the
natural dilations on the Heisenberg group.

Given { € G*, define B on G X G by B¢(x, y) =({, [x, y]D. B; is the symbol of
a second-order differential operator B;(D) on G*x G* (D= —id). Given p and g
in C*(G*) and an integer j =0, define

(P, q}j(¥) =B:(D) (p®q) (&, §).
LEMMA. If p e S"X(G*, 8) and g e S™»*2(G*, 8), then
(p,q)je STtm2litkati(gx 5y,

Proof. Suppose that g is a slowly varying Riemannian metric on an affine space
with corresponding vector space ¥, m is g-continuous, and u € S(m, g) in the no-
tation of Hormander [3]. Let |u|x =3, <« |#|/, where |u]/ is the norm in S(im, g)
analogous to (12). If B is a real bilinear form on V*® V* with corresponding
linear map B: V*— V, gl(t) =sup|K&, ¢)|*/g.(BE), and h(x)> =sup g.(¢)/g2(1),
then for each j there is a C such that

(14) |B(D) u(x)| = Ch(x) m(x)|ul>;.

The constant C depends only on j, not on g, m, or B.
If O is any orbit of the coadjoint action of G on G*, define g on O X O by

8t £,(m> m2) = g¢,(m) + 8&,(n2), where £y and &; are in O, n; and 5, in TO. Apply-
ing (14) with B=B; on O; X O; and m = h*1x"™ & h*24™2 as in [3] yields

(15) [{p, ) (§)| = C; h(EY T2 5 (£)™* 2| p|lajl )

where | |,; now refers to a seminorm on S§'%i(G*,8), i=1,2.
We need similar estimates for the derivatives of {p, g},. To that end, note that
if p and g are in 8(G*), then

(2, @)s (&) = [ |, [x, Y1y B(¥) G(») dx dy.

Define 'y,-’f,- by (2). It follows that
(16) Di{p,q}s=(Dip, q)s+ (P, Drq}s—svN—1 3 v5{Dip, D;q}s—:

for all p and ¢ in C®(G*). Since p € S™*(G*, &) implies D; p e " #*(G*, 8) if

J=N,orDjpe S”’"‘J’k"l(g*, 6) if j > N, and since 'y,-'j- =0 unless pi+phj = g, ap-

plying (16) and estimate (15) inductively yields {p, g}; € S™*™2-kitkati(G* §).
O



INVARIANT PSEUDODIFFERENTIAL OPERATORS, 11 399

DEFINITION. If p e 8*(G*), define F; p e 8*(G) by F,p = Fpelog, where F is
the Euclidean Fourier transform and log: G — G is the inverse of the exponential
map. If p and g are in $(G*), define

phq=F~"(FipxFq),

where * is convolution on G.

Note that if the right invariant operator Pu = F| p * u is associated to the sym-
bol p (or if the left invariant operator Pu=u* F, 'p is associated to p), then
p#q is the symbol of PQ (resp., of PO). ‘

Define the weak topology on symbol spaces as in [3].

THEOREM. The map (p, q)~ p#q from $(G*) X 8(G*) to $(G*) extends to a
weakly continuous map from S™v*1(G*, §) x S"2*2(G*, §) to S"F " kitky(Ggx 5).
For any integer J = 0 define

(17) ry=phq— _EJ(i/Z)j{p,q}j/j!-
i<

Then the map (p, q)~ ry is weakly continuous from S™v*1(G*, §) x §"2k2(G*, §)
to Sm]+mz,kl+k2+J(g*’5)_

Proof. Let p and g be in 8§(G*). Then

phgey={_| e &x WDt p)g(y) dydx
(18)
= Sg* Sg e’ ST p(n)g(E+ad 3x*E) dx dy.
Let R; be the radical of the bilinear form B,
R:={x:<(, [x,y1>=0 forall yeG].

By applying the Fourier inversion theorem on R; and noting that 70; = R;", we
obtain

(19) pha@®=| . T Vpma(E+ad bxe) drdn.

In particular, p#q(£) is determined by the values of p and g on O;.
Likewise the Fourier inversion theorem implies that if { e O, then

(i/2)B:(D)(p®q) (£, §) = Sg Sg e CEOTEIN e [x/2, y1YP(x)G(y) dy dx

= iE—n, x> . 1 s
SOE SQ,REQ p(n) dq(s;ad yx*g) dxdy.

Since the exponential of the directional derivative g— dg(-; ad %x*&) is the oper-
ator of translation by ad 1x*£, we find that

pHq(£) =exp(3iB:(D)) (p®q) (&, £).
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By Theorem 3.6 of [3] and the Proposition above, (p, g)~r; is weakly contin-
uous from SFr¥1(G*, 6) x S§'2*2(G*, ) to S§ TRtk (G* 5y In particular,

(20) |7 (&) = Cx(&)™* "2n(g) 1+ 2| p| | q
for some seminorm | | on S§+%i(G*6), i=1, 2.

We still need to prove the appropriate estimates for derivatives of r;. If p and
g are in 8(G*), consider the derivatives dp and dg as elements of S(G*)®G.
Given ¢ €G3, B;: GXG—Gand #: 8(G*) X $(G*) — 8(G*) are bilinear. We de-
fine Bf(p, q)=#QQB:)(dp,dq). If $ =3 {ref and 'y,-'j- are defined by (2), then

1) Bi(p,q)=3 vk sk 0:p#9;q.
Let Bf =BZ if j >N, B;=0if j <N. It follows from (18) that
(22) D;(p#q)=D; ptq+p#D;q— 3B} (p, q).

Applying (20) tciD,- p and D;q when 'y;’} # 0, (21) implies that
=3Bl (D, ) (§)—3 = X (i/2) " 'viD;ip, Dig)s—1(£)]

s<J il
< Cx(s)ml+mz—ﬂjh($)kl+k2+.l—1 "p" "q“
It follows from (22) and (16) that

CX(E)lnl-i-mz—[tjh(E)kl+k2+J if jsN;
lerJ(‘E)l = { Cx(g)ml+n12—#jh(zc—)k1+k2+J—1 if j>N.

Estimates for higher derivatives follow by induction. The theorem now follows

from the fact that every p e S"”7(G*, 6) is the weak limit of a sequence in $(G*).
]

Concerning other matters that are usually part of a pseudodifferential operator
calculus, we note that if Pu=F,p*u, then P*u=F,p*u. Also, by the same
proof as in [6], if p e S°(Q*, 8), then P: L?>(G) — L*(G) is bounded.
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