ON THE MEAN VALUE THEOREM
FOR ANALYTIC FUNCTIONS

Julian Gevirtz

In all that follows D(r, a) will denote the disk |z —a| <r in the complex plane
C; we abbreviate D(r,0) by D(r) and D(1) by D. The plane including the point
at infinity will be denoted by C.. For any region RC C, B(R) will denote the
family of all analytic functions f on D for which f’(D) C R. The mean value theo-
rem of the differential calculus can be viewed as saying that if f is a differentiable
real valued function on an open interval I for which f’(/)CJ, then f[b,a]=
(f(b)—f(a))/(b—a)eJ for all pairs of distinct points a, b in 1. The direct ana-
logue of this is not true for analytic functions in D since, for example, f[b,a]
can be 0 even though f’(D) does not contain 0. As a way of quantifying the de-
gree to which the mean value theorem does hold for functions in B(R), one is led
to consider the supremum, denoted by m(R), of all » <1 for which fe B(R) im-
plies that f[b,a] € R for all a, be D(r). (Here and in what follows, f[b, a] is de-
fined to be f’(b) in the case that a=5.)

In the course of this discussion use is made of several theorems of classical
complex analysis such as Bloch’s theorem and the uniformization theorem; since
these facts are well known and fully treated in many texts, no explicit references
are given for them. The main facts established in what follows appear as indented
statements, labeled with the letters (A)-(G).

1. Conditions for m(R) <1 and m(R) > 0. The purpose of this section is to
characterize those R C C for which the study of m(R) is interesting, that is, to
determine when 0 < m(R) < 1. We begin by pointing out that

(A) m(R)=1if and only if R is convex.

The sufficiency of the convexity is well known and is easy to see since f[b,a]=
j}, Sf'(a+t(b—a))dt. Conversely, let RC C be nonconvex. Then ([2, Theorem
4.8]) there exists ¢ € dR such that for some r >0 and real 7, e’’(R — ¢) contains the
set S={z:0<|z| <r, Re{z}=0}. From this it follows that for some 6 € (0, r/2),
e’’(R—c) contains the set T=SUD($, ir/2)UD(8, —ir/2), which is symmetric
with respect to the real axis. Let g’ map D one-to-one onto 7 in such a way that
g’ is real on the real axis and g’(—e®) = —ir and g’(—e~?)=ir. Then for 6 >0
sufficiently small we have g[—e_m, —e?]1<0. But for s real, gl—se 0 _seis
real and tends to g’(0) > 0 as s tends to 0. Thus there exist distinct points a, b in D
such that g(a) = g(b). But then f= e"”g+cz e B(R) and f[b,al=c¢& R, so that
m(R) < 1. It is to be noted that for any given nonconvex R a construction along
these lines may be used to determine an upper bound (less than 1) for m(R).
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It is also not difficult to determine when m(R) > 0. For this purpose it is con-
venient to work with the radius of univalence u(R) of B(R), that is, with u(R)=
sup{r<1: fe B(R) implies that f is univalent in D(R)}. Clearly, m(R) is the su-
premum of all r <1 such that f[b,a] ¢ oR for all fe€ B(R) and all a, be D(r).
Since for a# b, f[b, a]l =c if and only if g(b) = g(a), where g = f— cz, we see that

e)) m(R)=inf{u(R—c): ce dR}.
For 0<r<s let A(r,s)={z:r<|z|<s} and define
p(R) = %sup{log(s/r):A(r,s) CR};

we take u(R) to be 0 if R contains no ring centered at 0; clearly, u(R) = oo if
0 € R. We show that

2 2 2y—1/2 _ -
2 4B(M (R)+77) —u(R)—M(R),
where (3 is the Bloch constant defined as inf{r > 0: all fanalytic in D with | f'(0)| =1
cover a disk of radius r}.

In order to prove (2), we may assume that 0 ¢ R, since otherwise #(R)=0
and pu(R) = co. Next we define W(S) =sup{r>0: D(r,c) CS for some ce C} and
d(D, z) =supf{|f'(z)|: f(D)CS]}.

We have

€)) W(S)=d(S,0)=W(S)/B,

where the first inequality follows since if D(r,c) C S then rz+c¢ maps D into S,
and the second from the fact that if f(D)C S, then S contains a disk of radius
B|f’(0)|, so that W(S)=Bd(S,0). If g(D) C S then f(D) C S also, where f(w)=
g((w+z)/(1+2zw)) for any z € D. Since f'(0)=g’(z)(1— |zl2), we conclude that

d(s,0)
4 d(S,2)=————-
) a—1zP
If log(R) denotes the set of all values if log z for z € R, then
(5) #(R) < W(log(R)) = (p*(R)+ =)'/,

The first of these inequalities follows since if R contains the ring A(r,s) then
log(R) contains a strip of width log(s/r) and therefore also a disk of radius
%log(s/r). To see the second inequality of (5) note that if log(R) contains the
disk D(r,c), then log(R) contains the rectangle

{z:|Imf{z—c}| =, |Re{z—c}| < (r’—=x%)?,

so that R contains the ring A(eRelci—(2—72)V2 oRefcl+(r2=x2)1/2y ap( this means
that u(R) = (r2—x2)"2. If fe B(R) one has by (3), (4), and (5) that
@R +rH2 4, 20172
"(2)/f () =d(log(R),z)=< =— (@ (R)+n
| f7(2)/f"(z)] (log(R), z) (-8 36(# )
for |z| =1/2. The first inequality of (2) now follows since |z(f”(z)/f’'(z))| <1in
D(r) and f’(0) # 0 imply that f is convex, and hence univalent, in D(r). For the
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upper bound, let ¢ > 0 and r, s be such that A(r? s?)C Rand log(s/r) > u(R) —e.
Then the function g(z) = (rs/log(s/r))e?!°e/) belongs to B(A(r? s2)) C B(R)
and g(in/log(s/r)) =g(—iw/log(s/r)). Upon letting e tend to 0 we conclude that
u(R)==w/u(R).

It follows from (1) and (2) that

(B) m(R) >0 if and only if sup{u(R—c):c€dR} < oo.

We close this section with an observation about the case of simply connected R
which is relevant to what is to be done in the next section. Let us define m,. to be
inf{m(R): R is simply connected}. If R is simply connected and O is not in R, then
p(R) =0, so that by (2) u(R) = 383/4« and therefore by (1) m;, is bounded below
by the same number. It is easy, however, to derive a better lower bound for m;,.
If R # C is simply connected and f € B(R), then f’(z) = g(h(z)), where g maps D
conformally onto R and A(D) C D with A(0) = 0. It is well known that g(D(p)) =
R’CR is convex, where p=2—V3. Let f1(z) = f(pz)/p. Then f{(D)=f"(D(p))C
R’, so that if a,be D(p), fIb,al=fi[b/p,a/p]le R’'CR by (A). Thus we have
that m,.=2—V3. The determination of the exact value of m,. is an interesting
problem and it would seem reasonable to conjecture that it is m(C\[1, «)).

2. Extremal functions. In the next section we shall show how a simple varia-
tional argument can be used to obtain some information about m(R) for a wide
range of domains R. In order to do this one must work with a function in B(R)
which displays extremal behavior with regard to m(R). We define an extremal
Sfunction for R to be a function fye€ B(R) such that f[b, a] € R for some pair
a, bon dD(m(R)). Before discussing conditions on R that guarantee the existence
of an extremal function, we point out that

6) if fe B(R) and a, b are two points of D(m(R)) for which f[b, al ¢ R, then
f is an extremal function for R, |@a—b|=m(1—m), and a, b e dD(mn),
where m = m(R).

To see this note that application of the definition of m to the function f;(z) =
S((1—m)z+a)/(1—m) which also belongs to B(R) shows that f[c,a]le R for
ce D(m(1—m), a). This implies that |¢—b|=m(1—m). That f[b, a] e dR fol-
lows since the continuity of f[z, w] in both arguments implies that f[b, a] cannot
lie in the interior of the complement of R. The hypotheses imply that f” is not
constant, so that f[z,a’] is a nonconstant analytic function of z in D for each
a’e D. If b e D(m) then, for a’ sufficiently near a, f[D(mn), a’] contains f|[b,a].
This means that there are two points a’, b’ € D(m) for which f[b’,a’] € 3R, which
contradicts the definition of m. Thus b € dD(in), and by symmetry a € dD(m).
For the remainder of this section we shall assume that

(7 Q = C,\R has n components Qy, ..., Q.

Since we are interested in R for which m(R) > 0, in light of (B) no additional re-
striction is imposed by also assuming that

8 each Q; contains more than one point and one of the Q; contains oo.
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It is slightly more convenient to work with the chordal metric

|z—w]
(A+]z]2) A+ |w|?))/?

on C, than with the Euclidean metric on C. We use diam(X) to denote the diam-
eter of X C C, with respect to x, 6(Q) to denote min{diam(Q;):1<1=<n}, and
N(r, p) to denote the r-neighborhood of p with respect to x. The following gives
a condition which guarantees the existence of an extremal function.

x(z,w)=

(®)) Let (7) and (8) hold for R. If m1=m(R) < m,., then there exists an extremal
function fj for R. Furthermore, for any such extremal function
63
16(1—m/mg.) 24262

x(f6(0), Q)=

where 6 =6(Q).

The fact that one can get an explicit lower bound for x(f§(0), Q) has some bear-
ing on the discussion in the following section. It is also significant that this lower
bound tends to 0 as m/m;. tends to 1. The proof of (C) is not difficult and is based
on the following elementary lemma:

9 Let S C C, be a simply connected domain. If diam(C.,\S)=6>0,
g(D)C S, and d =x(g(0), C\S)<8/2, then

16d
6(8—2d)(1—|z[)*’

To see that this is so, let ce C,\S satisfy x(g(0), c) =d. Since we are dealing
with the chordal metric we may assume that oo ¢ S and that x(c, ) =6/2. This
means that x(g(0), ) =6/2 —d, so that from the formula for the chordal metric
we have |g(0)—c|=4d/(6(6—2d)). Let h map D one-to-one conformally onto
S with A(0) =g(0). The Y4i-theorem implies that S contains a circle of radius
|A’(0)|/4 about A(0), so that |A'(0)| =16d/(6(6—2d)). An application of the
distortion theorem for normalized univalent functions then gives |h(z) — h(0)| <
16d/(6(6—2d)(1 —|z|)2). The desired bound now follows since g —g(0) is sub-
ordinate to 2— h(0) and x(g(z), g(0)) < |g(z)—g(0)|.
The next step in the proof of (C) is to deduce the following from (9).

(10) Let (7) and (8) hold for R and let 6 =6(Q). If fe B(R) and f[b,a] ¢ R for
some pair a, b of points in D(rmg.), then

x(f'(0), Q)= 8%/(16(1—r)~2+253).

To see this, let fe B(R) and d = x(f'(0), Q)=x(f'(0), Q;). If d< /2, we can
apply (9) with S= C\ Q; to conclude that f’(D(r)) is contained in a component
of N(p, f’(0))\Q, where p= 16d/(6(6—2d)(1—r)2). Such a set will be simply
connected provided that p < 6. Thus for a given r < 1 there can exist a, b € D(rm,;)
for which f[b,a]l ¢ Ronly if p =6 or d = 6/2, which yields the desired conclusion.

x(g(z),g(0)) =
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It is now an easy matter to prove (C). By definition of m there exists a sequence
{f»] of functions in B(R) with f,(0)=0 and two sequences {a,} and {b,} of
points such that a,, b, e D(m+1/n) and f,[b,,a,] ¢ R. As in the proof of (6),
|a,—b,| = m(1—m—1/n) and, by (10),

53
16(1— (m+1/n)/myp)—2+262°

Since f;(D) C R, {f,,} contains a subsequence which converges locally uniformly
in D either to a function mapping D into R or to a constant (possibly ) on dR.
This latter possibility is, however, ruled out by the preceding lower bound for
x(f4(0), Q). Thus { f,} has a subsequence which converges locally uniformly in D
to foe B(R), and by choosing a subsequence of this subsequence we may assume
that @, » @ and b,, — b. Since |a—b|=m(1—m) >0, it follows that fo[b,a]l& R,
so that by (6) fois an extremal function. The validity of the second sentence of
(C) follows from (10).

Without further assumptions about the nature of dR, it would appear that the
hypothesis that m < mg. made in the statement of (C) is necessary; we shall dis-
cuss an example to this effect at the end of the next section. However, there neces-
sarily exists an extremal function for any nonconvex region whose boundary con-
sists of a finite number of continuously differentiable Jordan curves. To see this,
let R be such a region and let {f,}, {a,}, and {b,} be as in the preceding para-
graph. Since R is bounded, there exists a constant L such that |p—¢g| = Lx(p, q)
for all p, ¢ in the closure of R. Let 6 =6(Q) and let r = (m+1)/2. Let p,, € dR be
such that the absolute value of g, = f;;(0) — p, is equal to the (Euclidean) distance
from f;;(0) to dR. If |g,| has a positive lower bound, then the existence of an ex-
tremal function follows as in the preceding paragraph. Thus, in order to prove the
existence of an extremal function it suffices to obtain a contradiction from the
assumption that x(f;(0), Q) < é/4 for all n and that |g,| — 0. If z€ D(r), then
by (9) and the fact that x(z;, z2) <|z1—22| we have

| f7(2) = Pl = | f2(2) = 2 (0)| + | f7(0) — pu| < Lx(f(2), fu(0)) + |gn| < L’| g4,

where L’'=1+32L(6(1—r)) 2. Thus f;(D(r)) CD(p., L’'|g.,])NR=R,. By our
asumption that the components of dR are smooth Jordan curves, (R,—p.)/qn
tends to Dt ={ze D(L’): Refz} > 0} with respect to the Blaschke metric on sets.
By replacing {f,} by one of its subsequences we have that w,,=(f,—p,z2)/qn
tends locally uniformly on D(r) to a function w for which w’(D(r)) is contained
in the closure of D*. But (f;(0)— p.)/q, =1, so that w/(D(r)) C D*. Since D" is
convex, we have by (A) that w[b, a]l e D* for a, b € D(r), so that for n sufficiently
large w,[b,, a,] € (R, — pn)/q., or equivalently f,,[b,, a,] € R,, C R. Since this con-
tradicts the defining properties of {f,}, {a,}, and {b,}, we have the existence of
an extremal function.

For a given R with a finite number of continuously differentiable boundary
components it is possible to give an a priori lower bound for the distance from
f7(0) to dR. We shall not, however, go into the details of how this can be done.

x(fx(0), Q)=
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3. Variation of extremal functions. We now assume that an extremal function
J1 for R exists and apply a simple variational argument to draw some conclu-
sions about the nature of such functions. Let m=m(R), a, bedD(m) satisfy
J1lb,al=ce€dR, and let fo=f1—cz. Then fy is an extremal function for R —c
and fo(b) = fo(a). Let go=f§, b=me'® and go(b) =Ae’", A>0.1f —w/2<6<
w/2 and 0< p<2mcos 0, then b—6 e D(m), where 6 = pe'®*+¥) Assume that

(11)  g.(z) =g0(z)+€q(z)+ O(e?) uniformly on compact subsets of D and
g.(D)CR—c for 0 =e=<e¢.

Since fo(b) = fo(a), for any such ¢, p, and 0, we have

b—06 é b
Sa 2.(z) dz = Sb 20(z) dz+e g q(2) dz + O(ep+€2)

_ b 2, 2
—-—go(b)6+ega q(z) dz+O(e% + p?)
. b
=—Ape'('9+7+¢)+e§ q(z) dz+ O(e*+ p?)
a

. . . b
= e’(¢+r)(—Ape“9+ ee i@+ Sa q(z)dz+ O(e* + pz)).

It is clear from the form of this last expression that if e ~/**7 {® g(z) dz lies in
the right half-plane, then for each sufficiently small e there will exist 8, p (satis-
fying the stipulated conditions) for which ]2_5 g.(z)dz=0. Since b—bée D(m)
and 0 ¢ R —c, this would imply that there exist a’, b’e D(im) for which g, (a’) =
g.(b"), which contradicts the definition of m. Thus

(12) Re {e“'(‘””’ Sb q(z) dz} <0.

Let U be the strip {z: —1 <z <1} and let K be any fixed conformal mapping of
U onto the universal covering surface of R. We will not explicitly distinguish be-
tween K and its projection onto R; this should cause no confusion. Let A(z) =
K ~Y(go(z) +c). Then h(D) C U, so that vy = Re[h]} satisfies |vo(z)| =1in D. This
implies that the radial limit vo($) =1lim, _,; vo(r¢) exists for almost all ¢ e dD.
Using the variational condition (12) we show that

(D) dD can be expressed as the union of an even number k& of closed arcs with
nonempty disjoint interiors, such that in the interior of each arc vg is con-
stantly either 1 or —1 and the signs alternate as dD is traversed.

To see this we define, for each fixed £ =0,
N_(§)={€dD:vo({)>E—1} and Ny (§)={{e€dD:vo(S)<1—E].

If £ >0 and u is any nonnegative bounded function on dD whose support lies in
N, (&), then for 0 <e=¢p we have that —1 =vo($)+eu($) <1 for almost all ¢ e
aD, where ¢g is some small positive number. By the Poisson representation of an
analytic function in D in terms of the values of its real part on dD, we have that
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a9 g@=k(]) P D wo(6) +eu(t)) 60+i Im{(O)} ) —e

satisfies (11) with

2T
9(x)=K"(h@) | " P(s, Dyu(s) do,

where ¢ =e'® and P(¢,z) =(¢+2)/27(¢ —2z). We therefore conclude from (12)
that

Re {S;W (e_i(¢+” Sb K'(h(2))P(, z) dz)u(g‘) de} <o.

Since £ >0 is arbitrary and since #({) is any nonnegative bounded function on
dD with support in N, (&), we have that

(15) V() =e 0 (" Ki(h (@) P(5, 2) dz

satisfies Re{V'({)} =0 for almost all { € N, (0). In the same manner one sees that
Re{V({)} =0 for almost all { € N_(0). Now, V is analytic in C,\[a, #] and can
easily be seen to have logarithmic singularities at @ and b. Since V is therefore not
a constant, its real part can vanish at only a finite number of points on dD. This
means that to within sets of measure zero N, . (0)C{{: Re{V({)}<0}and N_(0)C
{¢:Re{V({)} >0]}. But then, except for a set of measure zero, Re{V({)} >0 im-
plies that ¢ is not in NV, (0), which means that vy({)=1. Similarly, vo(¢)=—1a.e.
on {{: RefV({)} <0}. Since a bounded harmonic function with constant radial
limit a.e. on an open arc is actually harmonic on that arc, it follows that aD can
be expressed as a union of arcs on the interior of each of which v is constantly 1
or —1. It is also to be noted that if vg is constantly 1 (or —1) on the interiors of
two contiguous arcs, then it follows that vy is harmonic in a neighborhood of the
point separating these two arcs. After joining together all groups of consecutive
arcs on which vy has the same value, vy will have the stated properties.
It is clear from the foregoing proof that

(E) the integer k& appearing in (D) is bounded above the number of zeros of
Ref{V} on aD.

It is also worth pointing out that (D) simply says that A(D) covers U k/2 times,
so that as an immediate consequence of (D) we have that

(F) if f; is an extremal function for R, then f{(z) =p(o(z)), where p is the
projection onto R of a one-to-one conformal maping of D onto the uni-
versal covering surface of R and ¢ is a Blaschke product with &/2 factors.

In many instances it is possible, in theory at least, to obtain an a priori estimate
for the number k& of (D) based entirely on simple geometric properties of R, and
we indicate briefly how this can be done. Let f; be an extremal function for R
and let a, b be as above. Using (1) and (2) one can get a lower bound v, >0 for
m=m(R), and, as indicated at the end of the first paragraph of §1, a construction
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along the lines of that described there may be used to obtain an upper bound
v2<1 for m(R). By (6) we then have that |b—a|=min{y;(1—v;):i=1,2}=1;3.
By replacing K by the composition of K with an appropriate one-to-one confor-
mal mapping of U onto itself we may assume that #(0) = 0. Assume, for simplic-
ity, that R is contained in a disk of radius d;. Assume further that we have a lower
bound dy > 0 for the distance from f{(0) = K(0) to 3R, such as the one given in
(O). Since (4/«) arctan z maps D one-to-one onto U, dgz+ K(0) is subordinate
to K((4/w) arctan z), so that |K’(0)| = wdy /4. It is not difficult to find explicit
functions y4(r) =y4(dg, d1,r) >0 and ys(r) =vys(do, d,, r) such that

v4(r) = |w’((4/w) arctan z2)| < ys(r) for ze D(r)
for all functions w on U which satisfy
w(U)C D(dy,p), |w(0)|==do/4, and 0¢ w'(U),

for some p. Since w =K satisfies these conditions, and 4(z) is subordinate to
(4/7) arctan z, we have that v4(|z|) <|K’'(h(z))| =vs(|z]). Now, the function
X(§)= V() +V(1/£))/2is analytic for m< || <1/m and X (¢) =Re{V({)]} for
¢ € dD. From the bounds for |K’(#(z))|, the bound |b—a|=v3;, and the defini-
tion (15) of V, one can derive bounds of the form

Y6 —v7 log|¢—a| = | X($) = vs—vo log((| | ~m)(1/m—|{])) for m<|{|<1/m,

where ¢, v7, 78, Y9 depend only on dy, d;, v, v2, and where 7 > 0. From this
it follows that one can find p > m and v, which depend only on dy, d;, v1, 72
such that | X($0)| =1 and | X({)] < 10, for some o in dD(p) and all ¢ for which
(p+m)/2=<|{| <2/(p+ m). Finally, using this one can derive an upper bound
N(dy, d1, 71, v2) for the number of zeros of X on 4D, which, by (E), is an upper
bound for k.

Although it is significant that in many cases one could find an a priori upper
bound for k, to carry out the program described above would be tedious and
would yield a very large bound. I believe that in a large number of cases k=2,
and in the following section it will be shown that this is the case when m(R) is
small. It should be pointed out that the considerations outlined in the preceding
paragraph are of an analytical nature and do not take into account the geometri-
cal significance of f;.

Before closing this section we show that for a simply connected region there
does not necessarily exist an extremal function, even if the region is bounded by a
piecewise smooth Jordan curve. Specifically we will show that R = (re®:0<r<1,
|6]| <A}, where n/2 <X < w, does not have an extremal function. Assume to the
contrary that f; is in an extremal function for R and let m, a, b, c, g9, and f, be
as at the beginning of this section. Since ¢ cannot belong to the boundary of the
convex hull of R, |arg ¢|=\or c=0. Let K map U onto R (which is its own uni-
versal covering surface) in such as way that the right boundary line of U corre-
sponds to the circular portion of 3R, and K (1) =1. Since g is not constant, in
this case the number k appearing in (D) is at least 2. Let « denote one of the k/2
arcs on which vg is 1. Since vg= Re{k}, A({) traverses the right boundary line
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of U as ¢ traverses «. Thus there is a point (g€ o such that A({y) =1. By the re-
flection principle, X is analytic on the right boundary line of U, so that there
exists r > 0 such that K(D(r,1)) C D(1,1). Let ¢ > 0 be such that |{— o] <t im-
plies that |A($) —h($o)| <r/2 (£ €dD). Let u be a nonnegative smooth real val-
ued function on 9D which is not identically zero and whose support lies in
D(t, o) NaoD. Then the harmonic conjugate of u is bounded, so that for ¢ suf-
ficiently small the function g, defined in (14) satisfies g (D) C(RUD(1,1))—c.
(Note that g.({) € dR for all ¢ not in the support of «.) It follows from the proof
of (D) that Re{V ()} > 0 for all but at most a finite number of points on «, and
therefore the variational argument given in that proof tells us that for any suf-
ficiently small e > O there exist a’,b’ € D(m) for which jf,’f g.(2) dz =0. However,
for e sufficiently close to 0, g.(D)+cC RUD(1,1) C 2R. If fis any antiderivative
of (g.+c¢)/2, then fe B(R) and f[b’,a’]l=c/2¢ R, since |argc|=\ or ¢=0.
Since this contradicts the definition of m = m(R) we are done.

4. The case of small m(R). This section is devoted to showing that

(G) there exists an ¢p > 0 such that if 0 < m(R) < ¢ and R has an extremal
function f;, then f{ maps D one-to-one onto the universal covering
surface of R.

In what follows we let f; be an extremal function for R, f;[b, a]l =c e 3R where
a,bedD(m), and we freely use the notation introduced in §3. We shall prove
that f{ has the desired mapping property by showing that the integer k£ of (D) is 2.
This will be done by showing that if /2 is sufficiently small the function W () =
V(1/¢) maps D one-to-one onto a convex domain which by (E) means that k is at
most 2. The desired conclusion will then follow immediately from (F).

Let d =d(log(R—c),0). Since u(R —c)=m, from (2), (3), and (5) we havethat

() =3 )

so that there exist positive constants C;, C, 1ndependent of R such that C,/m <
d = C,/m whenever m is sufficiently small. For notational convenience we de-
note by A any function of d which tends to 1 as d tends to oo (or equivalently, as
m tends to 0). In addition, we write « = O(8) to mean that there exists a univer-
sal constant M such that |«| < M|B| whenever d is sufficiently large. An analo-
gous meaning is ascribed to the statement o = 0(8). We will show the following.

(16) Lety=f§(0)/f6(0). Then |y|=dA and {a, b} = {iwA/vy, —iwA/v}. In ad-
dition, we can choose the mapping K of U onto the universal covering sur-
face of R so that K’(h(z))=L(e"*+0O(1/d)) in D(m), where L#0is a
constant (which depends on R).

Application of this and the definition of ¥ in (15) shows that

—i(p+7) 1+§-z
27 —$z

e

W)= dz.

S" (e +0(1/d)
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We then have that

e ie+T) b .
Wi(§)=—" (S ez dz + 0(1/d3)) = +2ie 'CFILAN/y2+0(1/d?)),

and W”(¢)= O(L/d?), from which it follows that W’(0) =0 for m sufficiently
small and W”($)/W'($) =0(1/d) for ¢ in D. From this it follows that W indeed
maps D one-to-one onto a convex domain for sufficiently small .

We now prove (16). Let X, Ye D(2«n/d), Z=(Y+X)/2and ¢E=(Y—-X)/2, so
that Y=Z4+ ¢ and X=Z2—-£. Let fe B(R—c). Then

(17) log f'(z)=a+n(z—Z)+0(d(z—Z)*) for ze D(1/2),
where = O(d) by (4). We have

a8  SM—fx=e{°

: e"™(140(dz?)) dz =e“(g(n£) + O(£))E,

where g(z) = (e*—e ~%)/z. Here we have taken into account that O(d£3) = O(£?)
since |£| < w/d. There holds

(19) |lg(z)| =M min{|z—in|, |z+inx|} for |z|=3n/2,

where M is a positive constant. Let ¢ be any positive number. We now apply the
above with Z=0 to any function fe B(R—c) for which |n|=d—e. Let |&]=
(w+¢€)/|n]. Then min{|né—ix|, |né+inw|}=g¢, so that by (19) |g(n£)|> O(¥) for
sufficiently large d. Since g(*iw) =0, we conclude from Rouché’s theorem and
(18) that m =< (w+¢)/(d —¢€) for d sufficiently large. This shows that m < wA/d.

Now assume that @ and b are as indicated just after the statement of (G) and
apply the foregoing with f= fy, X =a, and Y= b. Since fo(b)— fo(a) =0, (18)
and (19) imply that min{|né —in|, |9é+in|} = O(&) = O(m)=0(1/d). Thus n¢ =
+iw+ O(1/d), and therefore |n|=(xw+ O1/d))/|é| = (7 + O(1/d))/m = dA, where
we have used the fact that m < wA/d established at the end of the preceding para-
graph. Since it follows from (4) that |n| =dA, we have that |y|=dA and |&|=
wA/d. Thus |b—a|=2wA/d, and since a, b € D(m) we conclude that Z = o(1/d).
Since v = f§(0)/f§(0), we have vy =0+ O(dZ)=n+0(1), so that |y|=dA. Also
fa,b}={ZxEt}={x¢t+0(1/d)}={xEA}=({xinA/n}={xinA/v}, as desired.

Finally, we must establish the expression for K’(A(z)) in (16). Since K can be
any mapping of the strip U onto the universal covering surface of R, we may as-
sume that 2(0) =0. For any mapping j of D into U, log(K(j(z))—c) maps D
into log(R—c). Thus if M; =sup{|j’(0)|: j(D)CU, j(0)=0} (M, =4/=, but the
exact value is not important), then

M, |K'(0)/(K(0)—c)|A=dA=]|y|=|/§(0)/f5(0)]
= |K’(0) h’(0)/(K(0)—c)| = M, |K"(0)/(K(0)—c)|,
so that ~2’(0) = M, A. From this and the fact that
A'(z)=h(0)+O0O(m)=h'(0)+0(1/d) in D(mn),
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we see that A’(z) = h’(0)(1+ O(1/d)) in that disk. Since from (17) it follows that
f6(2)/f6(z) =v+O(Q) in D(in), we see that

K'(h(z))/(K(h(z))—c)=f6(z)/(fi(z)h(z)) =v(1+0OQ1/d))/h’(0) in D(m).
Thus, in D(m),

, oy N .
K'(h(z)) = 7(0) (1+O0(1/d) (K (h(z))—c) = 7'(0) (1+0(1/d)) f6(z)
_ Y a,vz,0(1/d)
=70 (14+0(1/d))e“e e

by the expansion (17). From this the desired expression for KX’(4(z)) follows with

L =~e®/h’(0)=f§(0)/h’(0) (since e“= f((0)).
The interested reader might care to compare the contents of this section with
those of §1 of [1].

ACKNOWLEDGMENT. The author wishes to thank the referee for pointing out
an error (in the original version of this paper) in the example of a nonconvex sim-
ply connected domain bounded by a piecewise smooth Jordan curve for which
there does not exist an extremal function.

REFERENCES

1. J. Gevirtz, On some radii of univalence and related univalence criteria, Complex vari-
ables 4 (1984), 21-33.
2. F. A. Valentine, Convex sets, Krieger, New York, 1976.

Department of Mathematical

and Computer Sciences
Michigan Technological University
Houghton, Michigan 49931






