PRIME IDEALS IN CLOSED SUBALGEBRAS OF L*

Pamela Gorkin

Let D denote the open disc and let A/ denote the algebra of bounded analytic
functions on D. A prime ideal in a commutative algebra A is an ideal Q such that
whenever f, g€ A and fg € Q, either fe Q or ge Q. In [11, p. 396} the following
question is asked: Let Q be a nonzero prime ideal in A such that Q= H*, and
suppose Q is finitely generated; do we then have Q={fe H™: f({) =0}, where
¢ e D? In the first section of this paper, we shall answer this question affirma-
tively. After this work was completed, I learned that R. Mortini also obtained
this result ([14], [15]).

Let C denote the algebra of continuous functions on the unit circle, ¢D. In
§2, we shall show that H “+ C has no nontrivial finitely generated prime ideals.
However, there do exist proper closed subalgebras of L™ which have nontrivial
finitely generated prime ideals.

I thank J. Dudziak for many helpful discussions.

1. Finitely generated prime ideals in H ™. Let B be a closed subalgebra of L™.
The maximal ideal space of B is denoted M(B). By maximal ideal we mean a
proper ideal of B contained in no other proper ideal of B. Because each such ideal
is the kernel of a nonzero complex homomorphism on B, we think of M (B) as
the space of nonzero complex homomorphisms on B. With the weak- *topolaogy,
M (B) is a compact Hausdorff space. In the usual way, we think of D as a subset
of M(H*). By the Corona theorem, D is a dense subset of M(H <). If B con-
tains H *°, then the space M (B) can be identified with a closed subset of M (H).
If B properly contains H %, then B contains H*+ C. Thus M(B) S M(H*)—-D
(=M(H®+ C)). We shall identify a function in B with its Gelfand transform.

In this section, our main tool is the analytic structure of the Gleason parts of
H®. For x e M(H %), the Gleason part containing x is denoted P(x). If f denotes
a function in H* and x e M (H *) is such that f(x) =0, then the order of the zero
of f at x is the supremum of the positive integers n such that f can be factored as
Sf=fifu, [jeH™ and f;(x) =0 for j=1,2,..., n. The order of the zero of f at
x will be denoted by Ord Z(f; x). The zero set f in M(B) is denoted Zg(f). We
shall also use the following lemma (usually referred to as Nakayama’s lemma).

LEMMA 1.1 [12, p. 11]. Let A be a commutative ring with identity, M a finitely
generated A module and J an ideal of A. Suppose that JM = M. Then there exists
an element a € A of the form a=1+0b, be J, such that aM = 0.

We shall apply Lemma 1.1 to the case in which A = H* and M is a finitely gen-
erated ideal of A. Since H * has no zero divisors, if we produce a proper ideal J
such that JM = M, our conclusion is that M =0.
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The proof of the main result will requiré two lemmas.

LEMMA 1.2. Let I be a finitely generated nontrivial prime ideal in H™. Let
f1, ---» fn denote a set of generators for I. Then

P(x)¢ F\ Zy=(f;) forany xe M(H*+C).
j=1

Proof. Suppose there exists x e M(H “+ C) such that P(x) S(\]=1 Zu=(/f)).
Let hel. Then P(x) € Zy~(h). By [9], & has a zero of infinite order at x. There-
fore, there exist A#; and A, in H® such that A;(x) = h2(x) =0 and 2 = h, h,. Since
I is prime, either A€l or hyel. In either case, heI-(Ker x). Therefore I<
I-(Kerx)<I. Thus I(Kerx)=1. Taking A=H>, M=1I and J=XKer x in Lem-
ma 1.1, we see that 7 must be zero, a contradiction. 3

An interpolating sequence is a Blaschke sequence {z,} such that for each
bounded sequence of complex numbers {w,}, there exists a bounded analytic
function fe H® with f(z,) = w,.

LEMMA 1.3. Let I be a finitely generated nontrivial prime ideal in H*™. Let
S15 ---» fn denote a set of generators for I. Then

n
xé& (Y Zu=(f;) forany xe M(H*+C).
Jj=1

Proof. Suppose there exists xe M(H*+ C) with xeNj=1 Zy~(f;). By the
Corona theorem, there exists a sequence {z,} <D such that (i) z,, —» x(z) and
(ii) fi(zm)—>0as m—oo (j=1,2,...,n). Let {z},} denote an interpolating sub-
sequence of {z,,} and let z,, ..., 2,4+ denote distinct points of {z),JNM(H =+ C).
By Lemma 1.2, there must exist a generator f such that f does not vanish on Glea-
son parts corresponding to at least two points, say P(x;) and P(x,). Thus f has
a zero of finite order n; at x4 for k=1, 2. Factor fas f=g;---g,, with g;(x;)=0
for j=1,..., n. Since I is a prime ideal, there exists jo with g; € I. The function
g, has the following properties:

(iii)) Ord Z(gj;,; x1) =1,

(iv) gj,(x2)=0, and

(v) Ord Z(gj,; x2) =Ord Z(f; x2) = n,.

Property (iv) holds because x5 € {z}}, gj, € I, and the generators of 7 satisfy (ii)
above. By factoring g;, as above, we may assume that Ord Z(g; ;x2)=1. Let
gj,=b-q, where b is a Blaschke product and g € H™ has no zeroes on D. By
[9], if g(x) =0 then g =0 on P(x). Since g;, does not vanish on P(x;) or P(x;),
neither g(x;) =0 nor g(x,;) =0. Therefore g ¢ I. Since I is prime, we must have
b e I. Furthermore, Ord Z(b; x;) =Ord Z(b; x,) = 1. By [9], x; lies in the closure
of an interpolating subsequence {z,,j} of the zero sequence of b for j =1, 2. Let Oy,
and Oy, be disjoint neighborhoods of x; and x;, respectively, in M((H®). Let bxj
be the Blaschke product with zero sequence Oxjﬂ Zp(b) for j=1,2. There ex-
ists a Blaschke product ¢ such that & = by, - by,-c. Since I is prime and b e I, either
by,s bx,, Or c is in I. Since each generator vanishes on x,, neither by, nor ¢ can be
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in 7. Since I CKer xj, by, cannot be in 1. Thus the proof of Lemma 1.3 is com-
plete. I

THEOREM 1.1. Let I be a finitely generated prime ideal of H™. Then there exists
ceDsuch that I={fe H”: f({)=0].

Proof. Let J be a maximal ideal containing 7 [17, p. 18]. There exists { e M(H ™)
such that J=Ker ¢. By Lemma 1.3, {eD. Let fe 1. Since f({) =0, there exists
a positive integer N and a function g € H* such that

g(H)#0 and f(z)=(z—¢)Vg(z) forall zeD.

Since 7 is prime, the function 4 defined by A(z) =(z—¢) for ze D is in the ideal
I. Let keKer¢. Then k=h-g for some ge H”. Thus ke I. Hence I =Ker ¢, as
desired. O

G. Tomassini [19] showed that if J is a maximal finitely generated ideal in H >,
then there exists { e D such that J=Ker ¢.

The nontrivial finitely generated prime ideals in other subalgebras of L™ de-
pend very much upon the particular algebra. This will become evident in the next
section.

2. Finitely generated prime ideals in subalgebras of L™ containing H*+ C.
In this section we study prime ideals in H*+ C. Let QC denote the algebra of
functions in H “+ C such that f is also in H*+ C. Let QA= QCNH™. It is well
known that M(QA) =M(QC)UD. We shall show that H*+ C has no finitely
generated prime ideals, but that there exist Douglas algebras that do have such
ideals.

LEMMA 2.1. Let fi, ..., fe H®+C. Let xe M(H*+ C) be such that f;eKer x
Jor j=1,2,...,n. Then there exist x\,x, € M(H *+ C) such that x\(f;) =x2(f;)=0
Jor j=1,2,...,n and x,(q) # x,(q) for some q € QC.

Proof. Let {z,,} be a sequence of points in D such that |z,,] -1 and
n - 1
Im€ .ﬂ] {yeM(H ): ]x(L)—y(L)' < ;}
j:

Note that f;(z,,) > 0as m — oo for j=1,2,...,n. Choose a subsequence, also de-
noted {z,,}, which is an interpolating sequence and

lim J]J

n—o0 mMmERN

By [18], there exists g € QA such that

0 m even,
Q(Zm) = {

Zm—2n

=1.
1-Z,n2,

1 modd.

Choose x; and x; in {z,,}JMH YN M(H 4+ C) such that x,(g) =0 and x»(g) =1.
Then x;(fj) =x2(fj) =0 for j=1,2,...,n, as desired. 1
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THEOREM 2.1. There exist no nontrivial finitely generated prime ideals in
H®+C.

Proof. Suppose that { fi, ..., f,} is a set of generators for I. Let xe M(H “+ C)
be such that 7 < Ker x. Using Lemma 2.1 above, choose x; and x; in M(H “°+ C)
such that 7 < Ker x;NKer x, and x;(q) # x,(q) for some qge QC. Let Ox; be a
neighborhood in M(QC) of xj=x;| QC, j=1, 2, such that O,; 1N Oy, =D. Choose
g€ QC (=C(WM(QC))) such that g;(x;)=1 and gJ(M(QC)—O )—O for j=
1,2. Then g, g, =0. Therefore either g7 or g, €1, contradlctmg the fact that
I <=Ker x;NKer x,. O

The proof above shows that if J is a prime ideal in H 4+ C, then there exists ex-
actly one point # € M(QC) such that whenever J S Ker x we have x(q) = #(g) for
all g € QC. Furthermore, as shown in [14], if J contains an interpolating Blaschke
product then there exists a unique x € M(H *+ C) such that J < Ker x.

In spite of the close connection of prime ideals in H “+ C to division problems
in H*+ C ([4], [6]), it seems that very little is known about nonmaximal prime
ideals in H*+C.

Theorem 2.1 cannot be extended to an arbitrary closed subalgebra B of L™
containing H *. An example of such an algebra depends on results in [18]. A se-
quence {z,} €D is said to be thin if it is an interpolating sequence and

lim JJ

n—o m#n

—zn

— | =1.
1 —ZmZn

Let b be a Blaschke product such that the zero sequence of b is thin. Let xe
{2, JMH>+C) and let m, denote the unique representing measure of x. The closed
support of m, is denoted supp m,. Let B={fe L*: f|supp m, € H” |supp m,}.
Then H*= B< L™ and B is a closed subalgebra of L. Furthermore, M(B)=
ML®)YU{ye M(H+ C): supp m, Ssupp m,} [3, p. 39]. We shall show that 4B
is a prime ideal in B. We first show that Zz(b) = {x}. Let ye M(B)NZz(b). If
Y #x, choose 6, and 6,, disjoint neighborhoods in M(H *°) of x and y (respec-
tively), and let W, =0, NZy«(b) and W, =0,NZy~(b). By [18], there exists ge
QC such that g(W,) =0 and g(W,) =1. Since supp m, is an antisymmetric set for
H*+C, we must have g |supp m,=0. But supp m, S supp m,, so y(q)=0, a
contradiction. Thus Zz(b)={x}. Let feKerx. Then Zz(b)< Zz(f). By [1],
Jf/b e B. Thus Ker x € bB. Therefore, Ker x = bB and bB is prime.

3. Finitely generated prime ideals in Q4. We now consider the algebra QA=
H”NQC. In many ways the relationship of QA4 to QC is similar to the role the
disc algebra plays in C [20]. We shall use Nakayama’s lemma to prove the fol-
lowing theorem.

THEOREM 3.1. Let I be a finitely generated prime ideal in QA. Then there
exists € D such that I={fe QA: f({)=0}.

Proof. Let toe M(QA) be such that I < Ker f,. We shall show that #o¢
M(QA)—D. Suppose toe M(QA)—D. Let feI and factor f= gb, where b is an
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inner function and ¢ = fb is an outer function in QA. Then f=g"*(¢"?b). By
[6], ¢'/?>e QA. To see that g"/?b e QA, for each t e M(QC) let E, = {s € M(L™):
s(q)=t(q) for all ge QC}. If b| E, is constant, then g'/2b| E, is constant. If | E,
is nonconstant, then g | E; must be identically zero. Thus q 2b| E, is constant. By
Shilov’s theorem [16], g 12p e QC. Thus f is the product of two QA functions.
We know that feI<Ker to. If to(g"/?b)=0 then ¢"*|E, =0, so to(q"?)=0.
It is easy to see from this that zo(qV/2b) =t¢(q"*)=0. Furthermore since 7 is
prime either ql/ 2eI or q?bel. Thus I=1I-Ker t,, contradicting Lemma 1.1.
Therefore, we may assume that there exists ¢ € D such that f(¢) =0 for all feI.
Let feI and let N be a positive integer such that f(z) = (z— ¢)Vg(z), where ge
QA and g(¢)#0. Then (z—¢)e I and hence I={f: f({) =0}. {1

4. Examples of prime ideals in subalgebras of H*. In [2] Dietrich has shown,
using the continuum hypothesis, that any point x e M(H ) — D such that P(x) is
nontrivial has the property that Ker x contains a chain of prime ideals of infinite
length. In this section we construct an infinite chain of prime ideals in Ker x with-
out the use of the continuum hypothesis. Using this example it is possible to ex-
tend Dietrich’s result to all points of M(H “+ C)— M(L™). We begin this section
with a theorem about closed prime ideals in H *. This theorem seems to be known
but has not yet appeared in the literature. In what follows, Z(f)=Zp(f) and
Z(f) is the closure of Z(f) in M(H™).

THEOREM 4.1. Let I be a closed prime ideal in H™ containing an interpolating
Blaschke product. Then I is maximal.

Recall that a prime ideal containing an interpolating Blaschke product is con-
tained in a unique maximal ideal (see the remarks immediately following the proof
of Theorem 2.1). The proof of Theorem 4.1 requires this fact and the following
theorem.

THEOREM 4.2 [8, p. 208]. Let {z,} be a sequence of points in D. If {z,} is
an interpolating sequence, then disjoint subsets of {z,} have disjoint closures in
M(HT).

LEMMA 4.3. Let I be a prime ideal containing an interpolating Blaschke prod-
uct b. Let x denote the unique element of M(H *+ C) containing I in its kernel.
If 0 is an open subset of M(H ™) containing {x}, then x e 6N\ Z(b). Furthermore,
if by denotes the Blaschke product with zero set 6N\ Z(b), then b, e I.

Proof. Let x, 60, and b; be as above. Write b = b;b,. We claim that x(b,) # 0,
and hence b, ¢ 1. Let U be an open subset of M(H *°) containing x. Then UN# is
an open subset of M (H %) containing x. Since x(b) =0, by [9] x € Z(b). There-
fore UNONZ(b) # D. Hence x e 0N Z(b). From this we see that x(b;) = 0. Since
Z(b))NZ(by) =D, by Theorem 4.2 x ¢ Z(b,). Again by [9], x(b;)#0. Since /
is prime and b, ¢ I, we must have b, e [. J

The techniques used to prove Theorem 4.1 are the same as those used to prove
Theorem 1 of [1].
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Proof of Theorem 4.1. Let b denote an interpolating Blaschke product contained
in /. Let x denote the unique point of M(H *+ C) with I = Ker x. Let g € Ker x.
We shall show that ge 7. Let {z,,} = Z(b) and 8, = {ze M(H~): |g(z)|<1/n}. Let
wW,=0,NZ(b). Let b, denote the factor of » with zero set W,,. Since {z,} is inter-
polating, the map 7: H*/bH * — { ® defined by T(f+ bh*) = (f(21), f(22),...) is
a one-to-one map of H*/bH  onto ¢ . By a corollary to the open mapping theo-
rem, there exists a constant K such that dist(f, bH ™) < K sup,,| f(z,,)|- Choose

Jn€ H such that
) &zy) ifz,eW,,
fn(Zm)'—{O if 2 & W,.

Then g— f,e b, H*. By Lemma 4.3, b, e I. Therefore g— f,, € I. Hence

dist(g, ) =dist(f,, 1)
< dist(f,, bH")

< K sup|fn(zm)|
=K/n.

Hence g € 7, as desired. O]

We shall see that the conclusion of Theorem 4.1 may not hold if 7 is not closed.

In what follows, B denotes a closed subalgebra of L™ containing H . As usu-
al, QAp denotes the algebra of bounded analytic functions whose complex con-
jugates lie in B; that is, QA= H N B. In §3 we considered the case B= H “+ C.
In what follows, we shall construct an example of a nonmaximal prime ideal in
QA . In particular, when B = L™ we construct a chain of prime ideals in H . Let
xe M(H™)—D be such that x(b4¢) =0 for some interpolating Blaschke product
bo. Let Io={fe€ QAp: f=bg, where g€ QAg, bo/be H™, and x(b) =0}. It is
shown in [20] that for any Blaschke product b such a g can be found.

THEOREM 4.4. The set Iy is a nonmaximal prime ideal in QAg.

Proof. Let f; and f, be elements of I,. We need to show that f, + fre ).
For j=1,2 let f;=b;g;, where bo/b;e H®, g;e QAp, and x(b;)=0. Let A=
Z(b))NZ(b,). By our assumptions on &; we have xe Z(b,)N Z(b;). By Theorem
4.2, theset A= Z(b)NZ(b3) is nonempty. Since (Z(b)—A)YN(Z(b)—A)= O,
by Theorem 4.2, x ¢ (Z(b;) —A)YN(Z(b,) — A). It is now easy to show that x € A.
Let b be the interpolating Blaschke product with zero set A. Then b, /b e H™ for
Jj=1,2.Thus f;+ f>=bh for some he H*. Since h=b-(f, +.f>), we see that =
b-(fi+f)eH®-B=B. Thus he H®NB=QAz. We must now show that I is
prime.

Let f,ge QAp be such that fgel,. Then fg=bh for some he QAg. Since
xe Z(b), we see that xe (Z(f)NZ(L))U(Z(g)NZ(b)). We may assume that
xeZ(f)NZ(b). Let b; denote the Blaschke product with zero set Z(f)NZ(b).
Then b/bye H* and x € Z(b,), so x(b;) =0 and f= b, h for some he QApg. Thus

S el,y. Since I does not contain the outer function x(z) —z, Iy is not maximal.
0
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To construct a chain of prime ideals in A~ contained in Ker x, we use a well-
known construction [13]. Let by be as above. Let b, be the Blaschke product with
zero set equal to Z(bg). The order of the zeros will be chosen as follows.

Choose {a,, 1} so that X,, a,, 1(1—|z,;»|) <o and a,,,; - c© as m — c. Suppose
that {a,, ,—1} has been chosen. Let {a,, ,} be a sequence such that a,,, , — o and
Y X1 =1 @m, k) (1 —|zm|) < o. The Blaschke product b, is defined by

N
co Z—Zyn m,n
bal(z) = (—_) ,
" n}_:Il l_zmz
Where Mn,n = HZ:I aﬂ’l, k-
Let b, x denote a factor of b,. Let by, denote the factor of by with the same
zero set as b, . Define the ideals I,,, n=1, as follows:
In={feH%: f=b, xh, he H®, x€ Z(bo,k), bn/bn,xr€ H, and
Ord Z(bn,k;zm,k) =d,y, Ord Z(bn—l;zm,k), where d,,, —» o as
m— oo and {z,, k}m=1=Z(bo,x)}-

THEOREM 4.5. Each ideal I, is a prime ideal in H™.

Proof. Let f1, f€1l,. Let by, and b, i, be such that f;= b,,,kjh for j=1,2.
Since x € Z(bo,x,)NZ(bo,k,), by Theorem 4.2 the set A= Z(bo,,)NZ(bo,x,) is

nonempty. As before, x € A. Let b, k, be the Blaschke product with zero set A and
Ord Z(bn, ks Zm,k) = minj—g, > Ord(b,,,kj;zm,k). Then fi+ f2 = by ks for some

heH®, b, /b, r,€ H”, and x € Z(by «,). Finally,

Ord Z(bn,ko; Zm,k) = min Ord Z(bn,kj; zm,k) = min dm,j Ord Z(b,—1; Zm, k)
Jj=12 Jj=12

Letting f,,, = min; -3 d,,,j, we have Ord Z(b,, ky; Zm, k) = S Ord Z(by 15 Zm, &)
and f,,, » oo, as desired. Thus 7, is an ideal.

To see that I, is prime, choose fi, f> € H® such that f; f>el,. Write f o=
bp,x h with b, , and h satisfying the required conditions. Write b, x = b, x,* by ,>
where f; /b, k; € H*. By our assumptions, for each m with b, x(z,) =0,

Ord Z(bn,k;zm,k) = dm Ord Z(bn——l; Zm,k) with dm — ©co.

Therefore, for each m with b, «(z,,) =0 we must have

d
(*) Ord Z(bn,kj; 2, k) = 2m Ord Z(b,—1; Zm, k)

for j=1or j=2. Let {z},, kj} denote the distinct zeroes of b, k; satisfying (%). Then

X € Z(bo, k) ={Zm, k,}Y{Zm k,}.- Thus, we may assume that x € {2/, «,}. If b, «,
denotes the Blaschke product

ﬁ (z—z,’n,kl )Nm
- —_, [
m=1 I—Zr’n,klz

where N,,, =O0rd Z(b,, «; Zm,k,)» then
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dm
2

Thus, the conditions on b, 4, are satisfied and therefore fi=b, x,he H™. O

Ord Z(bn,ko;zm,kl)-2 Ord Z(bn-—];zm,kl)-

In order to conclude that Ker x contains an infinite chain of prime ideals, we
must still show that 7, S I,,_;. If feI, then f=b, h for some he H”. Let by
denote the Blaschke product with the same zero set as b, 4 and Ord Z(bg, 3 2m) =
1. Then x € Z(by ) and by /bo € H™ and hence fe I,. Now for each n, b, s
I,. Let b,_, ; denote the Blaschke product with the same zero set as b,, , and
Ord Z(bn—l,k; zm,k) = Ord Z(bn—l; zm,k)- Thus bn— 1,k satisfies bn,k/bn— 1,k€E Hao’
by,_1/b,—1, x€ H”, and (by construction)

Ord Z(bn—l,k;zm,k) = Ord Z(bn—l; zm.k) = dm Ord Z(bn——Z; zm,k):

where d,,, » o0 as m — oc. Therefore b,,_; €1, and hence b, € l,_;. Thus
I,<1,_, for all n.

Note that for any fe I,,, we have Ord Z(f; z,,) > Ord Z(b,,_;; 2,,;) fOor some m.
Therefore b,,_1 ¢ I,. Thus I, S I, ;.

COROLLARY 4.6. Let ye M(H”+ C)—M(L™). Then Ker y contains a chain
of prime ideals of infinite length.

Proof. Choose an interpolating Blaschke product b such that |y(b)| <1 ([8,
p. 177], [21]). Thus b |supp m, is nonconstant. Since supp m, is an antisym-
metric set for H*+ C and (1/b) | supp m, = b | supp m,, b is not invertible in
M(H % |supp m,). Therefore there exists x e M(H * |supp m,) such that x(b) =0.
Let Iy be the ideal of Theorem 4.4. Choose b, € I,. For every positive integer N,
there exists a finite Blaschke product ¢ such that cb, /b(’)\,' x € H®, where by ; de-
notes the Blaschke product with the same zeros as b, 4 all of order 1. Thus cb x=
b{,\fkd for some Blaschke product d. Since x € Z(by, ) and supp m, S supp m, we
must have |y(bg )| <1. Thus

|y (b1, )| = |¥(chbr )| = |y(bE ed)| = | y(bo )|V

Therefore y(by, ) =0. Hence I; C Ker y. Thus Ker y contains a chain of prime
ideals of infinite length. O]
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