PRIME IDEALS IN CLOSED SUBALGEBRAS OF L^{∞}

Pamela Gorkin

Let **D** denote the open disc and let H^{∞} denote the algebra of bounded analytic functions on **D**. A prime ideal in a commutative algebra A is an ideal Q such that whenever $f, g \in A$ and $fg \in Q$, either $f \in Q$ or $g \in Q$. In [11, p. 396] the following question is asked: Let Q be a nonzero prime ideal in H^{∞} such that $Q \neq H^{\infty}$, and suppose Q is finitely generated; do we then have $Q = \{f \in H^{\infty} : f(\zeta) = 0\}$, where $\zeta \in \mathbf{D}$? In the first section of this paper, we shall answer this question affirmatively. After this work was completed, I learned that R. Mortini also obtained this result ([14], [15]).

Let C denote the algebra of continuous functions on the unit circle, $\partial \mathbf{D}$. In §2, we shall show that $H^{\infty} + C$ has no nontrivial finitely generated prime ideals. However, there do exist proper closed subalgebras of L^{∞} which have nontrivial finitely generated prime ideals.

I thank J. Dudziak for many helpful discussions.

1. Finitely generated prime ideals in H^{∞} . Let B be a closed subalgebra of L^{∞} . The maximal ideal space of B is denoted M(B). By maximal ideal we mean a proper ideal of B contained in no other proper ideal of B. Because each such ideal is the kernel of a nonzero complex homomorphism on B, we think of M(B) as the space of nonzero complex homomorphisms on B. With the weak-*topology, M(B) is a compact Hausdorff space. In the usual way, we think of D as a subset of $M(H^{\infty})$. By the Corona theorem, D is a dense subset of $M(H^{\infty})$. If B contains H^{∞} , then the space M(B) can be identified with a closed subset of $M(H^{\infty})$. If B properly contains H^{∞} , then B contains $H^{\infty} + C$. Thus $M(B) \subseteq M(H^{\infty}) - D$ (= $M(H^{\infty} + C)$). We shall identify a function in B with its Gelfand transform.

In this section, our main tool is the analytic structure of the Gleason parts of H^{∞} . For $x \in M(H^{\infty})$, the Gleason part containing x is denoted P(x). If f denotes a function in H^{∞} and $x \in M(H^{\infty})$ is such that f(x) = 0, then the order of the zero of f at x is the supremum of the positive integers n such that f can be factored as $f = f_1 \cdots f_n$, $f_j \in H^{\infty}$ and $f_j(x) = 0$ for j = 1, 2, ..., n. The order of the zero of f at x will be denoted by Ord Z(f;x). The zero set f in M(B) is denoted $Z_B(f)$. We shall also use the following lemma (usually referred to as Nakayama's lemma).

LEMMA 1.1 [12, p. 11]. Let A be a commutative ring with identity, M a finitely generated A module and J an ideal of A. Suppose that JM = M. Then there exists an element $a \in A$ of the form a = 1 + b, $b \in J$, such that aM = 0.

We shall apply Lemma 1.1 to the case in which $A = H^{\infty}$ and M is a finitely generated ideal of A. Since H^{∞} has no zero divisors, if we produce a proper ideal J such that JM = M, our conclusion is that M = 0.

Received January 24, 1985. Revision received October 20, 1985.

This research was partially supported by a grant from the National Science Foundation. Michigan Math. J. 33 (1986).

The proof of the main result will require two lemmas.

LEMMA 1.2. Let I be a finitely generated nontrivial prime ideal in H^{∞} . Let $f_1, ..., f_n$ denote a set of generators for I. Then

$$P(x) \not\subset \bigcap_{j=1}^n Z_{H^{\infty}}(f_j)$$
 for any $x \in M(H^{\infty} + C)$.

Proof. Suppose there exists $x \in M(H^{\infty} + C)$ such that $P(x) \subseteq \bigcap_{j=1}^{n} Z_{H^{\infty}}(f_j)$. Let $h \in I$. Then $P(x) \subseteq Z_{H^{\infty}}(h)$. By [9], h has a zero of infinite order at x. Therefore, there exist h_1 and h_2 in H^{∞} such that $h_1(x) = h_2(x) = 0$ and $h = h_1 h_2$. Since I is prime, either $h_1 \in I$ or $h_2 \in I$. In either case, $h \in I \cdot (\text{Ker } x)$. Therefore $I \subseteq I \cdot (\text{Ker } x) \subseteq I$. Thus I(Ker x) = I. Taking $A = H^{\infty}$, M = I and J = Ker x in Lemma 1.1, we see that I must be zero, a contradiction.

An interpolating sequence is a Blaschke sequence $\{z_n\}$ such that for each bounded sequence of complex numbers $\{w_n\}$, there exists a bounded analytic function $f \in H^{\infty}$ with $f(z_n) = w_n$.

LEMMA 1.3. Let I be a finitely generated nontrivial prime ideal in H^{∞} . Let $f_1, ..., f_n$ denote a set of generators for I. Then

$$x \in \bigcap_{j=1}^{n} Z_{H^{\infty}}(f_j)$$
 for any $x \in M(H^{\infty} + C)$.

Proof. Suppose there exists $x \in M(H^{\infty} + C)$ with $x \in \bigcap_{j=1}^{n} Z_{H^{\infty}}(f_j)$. By the Corona theorem, there exists a sequence $\{z_n\} \subseteq \mathbf{D}$ such that (i) $z_m \to x(z)$ and (ii) $f_j(z_m) \to 0$ as $m \to \infty$ (j = 1, 2, ..., n). Let $\{z_m^1\}$ denote an interpolating subsequence of $\{z_m\}$ and let $z_1, ..., z_{n+1}$ denote distinct points of $\{z_m^1\} \cap M(H^{\infty} + C)$. By Lemma 1.2, there must exist a generator f such that f does not vanish on Gleason parts corresponding to at least two points, say $P(x_1)$ and $P(x_2)$. Thus f has a zero of finite order n_k at x_k for k = 1, 2. Factor f as $f = g_1 \cdots g_{n_1}$ with $g_j(x_1) = 0$ for $j = 1, ..., n_1$. Since I is a prime ideal, there exists j_0 with $g_{j_0} \in I$. The function g_{j_0} has the following properties:

- (iii) Ord $Z(g_{j_0}; x_1) = 1$,
- (iv) $g_{j_0}(x_2) = 0$, and
- (v) Ord $Z(g_{j_0}; x_2) \le \text{Ord } Z(f; x_2) = n_2$.

Property (iv) holds because $x_2 \in \overline{\{z_n^1\}}$, $g_{j_0} \in I$, and the generators of I satisfy (ii) above. By factoring g_{j_0} as above, we may assume that $\operatorname{Ord} Z(g_{j_0}; x_2) = 1$. Let $g_{j_0} = b \cdot q$, where b is a Blaschke product and $q \in H^{\infty}$ has no zeroes on \mathbf{D} . By [9], if q(x) = 0 then q = 0 on P(x). Since g_{j_0} does not vanish on $P(x_1)$ or $P(x_2)$, neither $q(x_1) = 0$ nor $q(x_2) = 0$. Therefore $q \notin I$. Since I is prime, we must have $b \in I$. Furthermore, $\operatorname{Ord} Z(b; x_1) = \operatorname{Ord} Z(b; x_2) = 1$. By [9], x_j lies in the closure of an interpolating subsequence $\{z_{n_j}\}$ of the zero sequence of b for j = 1, 2. Let O_{x_1} and O_{x_2} be disjoint neighborhoods of x_1 and x_2 , respectively, in $M(H^{\infty})$. Let b_{x_j} be the Blaschke product with zero sequence $O_{x_j} \cap Z_{\mathbf{D}}(b)$ for j = 1, 2. There exists a Blaschke product c such that $b = b_{x_1} \cdot b_{x_2} \cdot c$. Since I is prime and $b \in I$, either b_{x_1}, b_{x_2} , or c is in I. Since each generator vanishes on x_2 , neither b_{x_1} nor c can be

in *I*. Since $I \subset \text{Ker } x_1$, b_{x_2} cannot be in *I*. Thus the proof of Lemma 1.3 is complete.

THEOREM 1.1. Let I be a finitely generated prime ideal of H^{∞} . Then there exists $\zeta \in \mathbf{D}$ such that $I = \{ f \in H^{\infty} : f(\zeta) = 0 \}$.

Proof. Let J be a maximal ideal containing I [17, p. 18]. There exists $\zeta \in M(H^{\infty})$ such that $J = \text{Ker } \zeta$. By Lemma 1.3, $\zeta \in \mathbf{D}$. Let $f \in I$. Since $f(\zeta) = 0$, there exists a positive integer N and a function $g \in H^{\infty}$ such that

$$g(\zeta) \neq 0$$
 and $f(z) = (z - \zeta)^N g(z)$ for all $z \in \mathbf{D}$.

Since I is prime, the function h defined by $h(z) = (z - \zeta)$ for $z \in \mathbf{D}$ is in the ideal I. Let $k \in \text{Ker } \zeta$. Then $k = h \cdot g$ for some $g \in H^{\infty}$. Thus $k \in I$. Hence $I = \text{Ker } \zeta$, as desired.

G. Tomassini [19] showed that if J is a maximal finitely generated ideal in H^{∞} , then there exists $\zeta \in \mathbf{D}$ such that $J = \text{Ker } \zeta$.

The nontrivial finitely generated prime ideals in other subalgebras of L^{∞} depend very much upon the particular algebra. This will become evident in the next section.

2. Finitely generated prime ideals in subalgebras of L^{∞} containing $H^{\infty}+C$. In this section we study prime ideals in $H^{\infty}+C$. Let QC denote the algebra of functions in $H^{\infty}+C$ such that \overline{f} is also in $H^{\infty}+C$. Let $QA=QC\cap H^{\infty}$. It is well known that $M(QA)=M(QC)\cup \mathbf{D}$. We shall show that $H^{\infty}+C$ has no finitely generated prime ideals, but that there exist Douglas algebras that do have such ideals.

LEMMA 2.1. Let $f_1, ..., f_n \in H^{\infty} + C$. Let $x \in M(H^{\infty} + C)$ be such that $f_j \in \text{Ker } x$ for j = 1, 2, ..., n. Then there exist $x_1, x_2 \in M(H^{\infty} + C)$ such that $x_1(f_j) = x_2(f_j) = 0$ for j = 1, 2, ..., n and $x_1(q) \neq x_2(q)$ for some $q \in QC$.

Proof. Let $\{z_m\}$ be a sequence of points in **D** such that $|z_m| \to 1$ and

$$z_m \in \bigcap_{j=1}^n \left\{ y \in M(H^\infty) \colon |x(f_j) - y(f_j)| < \frac{1}{m} \right\}.$$

Note that $f_j(z_m) \to 0$ as $m \to \infty$ for j = 1, 2, ..., n. Choose a subsequence, also denoted $\{z_m\}$, which is an interpolating sequence and

$$\lim_{n\to\infty} \prod_{m\neq n} \left| \frac{z_m - z_n}{1 - \overline{z}_m z_n} \right| = 1.$$

By [18], there exists $q \in QA$ such that

$$q(z_m) = \begin{cases} 0 & m \text{ even,} \\ 1 & m \text{ odd.} \end{cases}$$

Choose x_1 and x_2 in $\overline{\{z_m\}}^{M(H^\infty)} \cap M(H^\infty + C)$ such that $x_1(q) = 0$ and $x_2(q) = 1$. Then $x_1(f_j) = x_2(f_j) = 0$ for j = 1, 2, ..., n, as desired. THEOREM 2.1. There exist no nontrivial finitely generated prime ideals in $H^{\infty}+C$.

Proof. Suppose that $\{f_1, ..., f_n\}$ is a set of generators for I. Let $x \in M(H^{\infty} + C)$ be such that $I \subseteq \operatorname{Ker} x$. Using Lemma 2.1 above, choose x_1 and x_2 in $M(H^{\infty} + C)$ such that $I \subseteq \operatorname{Ker} x_1 \cap \operatorname{Ker} x_2$ and $x_1(q) \neq x_2(q)$ for some $q \in QC$. Let $O_{x_j'}$ be a neighborhood in M(QC) of $x_j' = x_j | QC$, j = 1, 2, such that $O_{x_1'} \cap O_{x_2'} = \emptyset$. Choose $g_j \in QC$ (= C(M(QC))) such that $g_j(x_j') = 1$ and $g_j(M(QC) - O_{x_j'}) = 0$ for j = 1, 2. Then $g_1g_2 = 0$. Therefore either $g_1 \in I$ or $g_2 \in I$, contradicting the fact that $I \subseteq \operatorname{Ker} x_1 \cap \operatorname{Ker} x_2$.

The proof above shows that if J is a prime ideal in $H^{\infty}+C$, then there exists exactly one point $t \in M(QC)$ such that whenever $J \subseteq \operatorname{Ker} x$ we have x(q) = t(q) for all $q \in QC$. Furthermore, as shown in [14], if J contains an interpolating Blaschke product then there exists a unique $x \in M(H^{\infty}+C)$ such that $J \subseteq \operatorname{Ker} x$.

In spite of the close connection of prime ideals in $H^{\infty}+C$ to division problems in $H^{\infty}+C$ ([4], [6]), it seems that very little is known about nonmaximal prime ideals in $H^{\infty}+C$.

Theorem 2.1 cannot be extended to an arbitrary closed subalgebra B of L^{∞} containing H^{∞} . An example of such an algebra depends on results in [18]. A sequence $\{z_n\} \subseteq \mathbf{D}$ is said to be *thin* if it is an interpolating sequence and

$$\lim_{n\to\infty} \prod_{m\neq n} \left| \frac{z_m - z_n}{1 - \overline{z}_m z_n} \right| = 1.$$

Let b be a Blaschke product such that the zero sequence of b is thin. Let $x \in \overline{\{z_n\}}^{M(H^{\infty}+C)}$ and let m_x denote the unique representing measure of x. The closed support of m_x is denoted supp m_x . Let $B = \{f \in L^{\infty} : f \mid \text{supp } m_x \in H^{\infty} \mid \text{supp } m_x \}$. Then $H^{\infty} \subseteq B \subseteq L^{\infty}$ and B is a closed subalgebra of L^{∞} . Furthermore, $M(B) = M(L^{\infty}) \cup \{y \in M(H^{\infty}+C) : \text{supp } m_y \subseteq \text{supp } m_x \}$ [3, p. 39]. We shall show that bB is a prime ideal in B. We first show that $Z_B(b) = \{x\}$. Let $y \in M(B) \cap Z_B(b)$. If $y \neq x$, choose θ_x and θ_y , disjoint neighborhoods in $M(H^{\infty})$ of x and y (respectively), and let $W_x = \theta_x \cap Z_{H^{\infty}}(b)$ and $W_y = \theta_y \cap Z_{H^{\infty}}(b)$. By [18], there exists $q \in QC$ such that $q(W_x) = 0$ and $q(W_y) = 1$. Since supp m_x is an antisymmetric set for $H^{\infty} + C$, we must have $q \mid \text{supp } m_x = 0$. But supp $m_y \subseteq \text{supp } m_x$, so y(q) = 0, a contradiction. Thus $Z_B(b) = \{x\}$. Let $f \in \text{Ker } x$. Then $Z_B(b) \subseteq Z_B(f)$. By [1], $f/b \in B$. Thus $\text{Ker } x \subseteq bB$. Therefore, Ker x = bB and bB is prime.

3. Finitely generated prime ideals in QA. We now consider the algebra $QA = H^{\infty} \cap QC$. In many ways the relationship of QA to QC is similar to the role the disc algebra plays in C [20]. We shall use Nakayama's lemma to prove the following theorem.

THEOREM 3.1. Let I be a finitely generated prime ideal in QA. Then there exists $\zeta \in \mathbf{D}$ such that $I = \{ f \in QA : f(\zeta) = 0 \}$.

Proof. Let $t_0 \in M(QA)$ be such that $I \subseteq \text{Ker } t_0$. We shall show that $t_0 \notin M(QA) - \mathbf{D}$. Suppose $t_0 \in M(QA) - \mathbf{D}$. Let $f \in I$ and factor f = qb, where b is an

inner function and $q = f\bar{b}$ is an outer function in QA. Then $f = q^{1/2}(q^{1/2}b)$. By [6], $q^{1/2} \in QA$. To see that $q^{1/2}b \in QA$, for each $t \in M(QC)$ let $E_t = \{s \in M(L^{\infty}): s(q) = t(q) \text{ for all } q \in QC\}$. If $b \mid E_t$ is constant, then $q^{1/2}b \mid E_t$ is constant. If $b \mid E_t$ is nonconstant, then $q \mid E_t$ must be identically zero. Thus $q^{1/2}b \mid E_t$ is constant. By Shilov's theorem [16], $q^{1/2}b \in QC$. Thus f is the product of two QA functions. We know that $f \in I \subseteq \text{Ker } t_0$. If $t_0(q^{1/2}b) = 0$ then $q^{1/2} \mid E_{t_0} = 0$, so $t_0(q^{1/2}) = 0$. It is easy to see from this that $t_0(q^{1/2}b) = t_0(q^{1/2}) = 0$. Furthermore, since I is prime either $q^{1/2} \in I$ or $q^{1/2}b \in I$. Thus $I = I \cdot \text{Ker } t_0$, contradicting Lemma 1.1. Therefore, we may assume that there exists $\zeta \in \mathbf{D}$ such that $f(\zeta) = 0$ for all $f \in I$. Let $f \in I$ and let N be a positive integer such that $f(z) = (z - \zeta)^N g(z)$, where $g \in QA$ and $g(\zeta) \neq 0$. Then $(z - \zeta) \in I$ and hence $I = \{f : f(\zeta) = 0\}$.

4. Examples of prime ideals in subalgebras of H^{∞} . In [2] Dietrich has shown, using the continuum hypothesis, that any point $x \in M(H^{\infty}) - \mathbf{D}$ such that P(x) is nontrivial has the property that Ker x contains a chain of prime ideals of infinite length. In this section we construct an infinite chain of prime ideals in Ker x without the use of the continuum hypothesis. Using this example it is possible to extend Dietrich's result to all points of $M(H^{\infty}+C)-M(L^{\infty})$. We begin this section with a theorem about closed prime ideals in H^{∞} . This theorem seems to be known but has not yet appeared in the literature. In what follows, $Z(f) = Z_{\mathbf{D}}(f)$ and $\overline{Z(f)}$ is the closure of Z(f) in $M(H^{\infty})$.

THEOREM 4.1. Let I be a closed prime ideal in H^{∞} containing an interpolating Blaschke product. Then I is maximal.

Recall that a prime ideal containing an interpolating Blaschke product is contained in a unique maximal ideal (see the remarks immediately following the proof of Theorem 2.1). The proof of Theorem 4.1 requires this fact and the following theorem.

THEOREM 4.2 [8, p. 208]. Let $\{z_n\}$ be a sequence of points in **D**. If $\{z_n\}$ is an interpolating sequence, then disjoint subsets of $\{z_n\}$ have disjoint closures in $M(H^{\infty})$.

LEMMA 4.3. Let I be a prime ideal containing an interpolating Blaschke product b. Let x denote the unique element of $M(H^{\infty}+C)$ containing I in its kernel. If θ is an open subset of $M(H^{\infty})$ containing $\{x\}$, then $x \in \overline{\theta \cap Z(b)}$. Furthermore, if b_1 denotes the Blaschke product with zero set $\theta \cap Z(b)$, then $b_1 \in I$.

Proof. Let x, θ , and b_1 be as above. Write $b = b_1b_2$. We claim that $x(b_2) \neq 0$, and hence $b_2 \notin I$. Let U be an open subset of $M(H^{\infty})$ containing x. Then $U \cap \theta$ is an open subset of $M(H^{\infty})$ containing x. Since x(b) = 0, by [9] $x \in \overline{Z(b)}$. Therefore $U \cap \theta \cap Z(b) \neq \emptyset$. Hence $x \in \overline{\theta \cap Z(b)}$. From this we see that $x(b_1) = 0$. Since $Z(b_1) \cap Z(b_2) = \emptyset$, by Theorem 4.2 $x \notin \overline{Z(b_2)}$. Again by [9], $x(b_2) \neq 0$. Since I is prime and $b_2 \notin I$, we must have $b_1 \in I$.

The techniques used to prove Theorem 4.1 are the same as those used to prove Theorem 1 of [1].

Proof of Theorem 4.1. Let b denote an interpolating Blaschke product contained in I. Let x denote the unique point of $M(H^{\infty}+C)$ with $I \subseteq \operatorname{Ker} x$. Let $g \in \operatorname{Ker} x$. We shall show that $g \in I$. Let $\{z_m\} = Z(b)$ and $\theta_n = \{z \in M(H^{\infty}) : |g(z)| < 1/n\}$. Let $W_n = \theta_n \cap Z(b)$. Let b_n denote the factor of b with zero set W_n . Since $\{z_n\}$ is interpolating, the map $T: H^{\infty}/bH^{\infty} \to \ell^{\infty}$ defined by $T(f+bh^{\infty}) = (f(z_1), f(z_2), \ldots)$ is a one-to-one map of H^{∞}/bH^{∞} onto ℓ^{∞} . By a corollary to the open mapping theorem, there exists a constant K such that $\operatorname{dist}(f, bH^{\infty}) \leq K \sup_m |f(z_m)|$. Choose $f_n \in H^{\infty}$ such that

 $f_n(z_m) = \begin{cases} g(z_m) & \text{if } z_m \in W_n, \\ 0 & \text{if } z_m \notin W_n. \end{cases}$

Then $g - f_n \in b_n H^{\infty}$. By Lemma 4.3, $b_n \in I$. Therefore $g - f_n \in I$. Hence

$$dist(g, I) = dist(f_n, I)$$

$$\leq dist(f_n, bH^{\infty})$$

$$\leq K \sup |f_n(z_m)|$$

$$\leq K/n.$$

Hence $g \in I$, as desired.

We shall see that the conclusion of Theorem 4.1 may not hold if I is not closed. In what follows, B denotes a closed subalgebra of L^{∞} containing H^{∞} . As usual, QA_B denotes the algebra of bounded analytic functions whose complex conjugates lie in B; that is, $QA_B = H^{\infty} \cap \overline{B}$. In §3 we considered the case $B = H^{\infty} + C$. In what follows, we shall construct an example of a nonmaximal prime ideal in QA_B . In particular, when $B = L^{\infty}$ we construct a chain of prime ideals in H^{∞} . Let $X \in M(H^{\infty}) - \mathbf{D}$ be such that $X(b_0) = 0$ for some interpolating Blaschke product B_0 . Let $B_0 = \{f \in QA_B: f = bg\}$, where $B_0 \in QA_B$, $B_0 = B$, and $B_0 \in B$. It is shown in [20] that for any Blaschke product $B_0 \in B$ such a $B_0 \in B$ such

THEOREM 4.4. The set I_0 is a nonmaximal prime ideal in QA_B .

Proof. Let f_1 and f_2 be elements of I_0 . We need to show that $f_1 + f_2 \in I_0$. For j = 1, 2 let $f_j = b_j g_j$, where $b_0/b_j \in H^\infty$, $g_j \in QA_B$, and $x(b_j) = 0$. Let $A = Z(b_1) \cap Z(b_2)$. By our assumptions on b_j we have $x \in \overline{Z(b_1)} \cap \overline{Z(b_2)}$. By Theorem 4.2, the set $A = Z(b_1) \cap Z(b_2)$ is nonempty. Since $(Z(b_1) - A) \cap (Z(b_2) - A) = \emptyset$, by Theorem 4.2, $x \notin \overline{(Z(b_1) - A)} \cap \overline{(Z(b_2) - A)}$. It is now easy to show that $x \in \overline{A}$. Let b be the interpolating Blaschke product with zero set A. Then $b_j/b \in H^\infty$ for j = 1, 2. Thus $f_1 + f_2 = bh$ for some $h \in H^\infty$. Since $h = \overline{b} \cdot (f_1 + f_2)$, we see that $\overline{h} = b \cdot (\overline{f_1} + \overline{f_2}) \in H^\infty \cdot B \subseteq B$. Thus $h \in H^\infty \cap \overline{B} = QA_B$. We must now show that I_0 is prime.

Let $f, g \in QA_B$ be such that $fg \in I_0$. Then fg = bh for some $h \in QA_B$. Since $x \in \overline{Z(b)}$, we see that $x \in \overline{(Z(f) \cap Z(b))} \cup \overline{(Z(g) \cap Z(b))}$. We may assume that $x \in \overline{Z(f) \cap Z(b)}$. Let b_1 denote the Blaschke product with zero set $Z(f) \cap Z(b)$. Then $b/b_1 \in H^{\infty}$ and $x \in \overline{Z(b_1)}$, so $x(b_1) = 0$ and $f = b_1h$ for some $h \in QA_B$. Thus $f \in I_0$. Since I_0 does not contain the outer function x(z) - z, I_0 is not maximal.

To construct a chain of prime ideals in H^{∞} contained in Ker x, we use a well-known construction [13]. Let b_0 be as above. Let b_n be the Blaschke product with zero set equal to $Z(b_0)$. The order of the zeros will be chosen as follows.

Choose $\{a_{m,1}\}$ so that $\sum_{m} a_{m,1}(1-|z_m|) < \infty$ and $a_{m,1} \to \infty$ as $m \to \infty$. Suppose that $\{a_{m,n-1}\}$ has been chosen. Let $\{a_{m,n}\}$ be a sequence such that $a_{m,n} \to \infty$ and $\sum_{m} (\prod_{k=1}^{n} a_{m,k})(1-|z_m|) < \infty$. The Blaschke product b_n is defined by

$$b_n(z) = \prod_{m=1}^{\infty} \left(\frac{z - z_m}{1 - \overline{z}_m z} \right)^{N_{m,n}},$$

where $N_{m,n} = \prod_{k=1}^{n} a_{m,k}$.

Let $b_{n,k}$ denote a factor of b_n . Let $b_{0,k}$ denote the factor of b_0 with the same zero set as $b_{n,k}$. Define the ideals I_n , $n \ge 1$, as follows:

$$I_n = \{ f \in H^{\infty} : f = b_{n,k} h, h \in H^{\infty}, x \in \overline{Z(b_{0,k})}, b_n/b_{n,k} \in H^{\infty}, \text{ and }$$

Ord $Z(b_{n,k}; z_{m,k}) = d_m \text{ Ord } Z(b_{n-1}; z_{m,k}), \text{ where } d_m \to \infty \text{ as }$
 $m \to \infty \text{ and } \{ z_{m,k} \}_{m=1}^{\infty} = Z(b_{0,k}) \}.$

THEOREM 4.5. Each ideal I_n is a prime ideal in H^{∞} .

Proof. Let $f_1, f_2 \in I_n$. Let b_{n, k_1} and b_{n, k_2} be such that $f_j = b_{n, k_j} h$ for j = 1, 2. Since $x \in \overline{Z(b_{0, k_1})} \cap \overline{Z(b_{0, k_2})}$, by Theorem 4.2 the set $A = Z(b_{0, k_1}) \cap Z(b_{0, k_2})$ is nonempty. As before, $x \in \overline{A}$. Let b_{n, k_0} be the Blaschke product with zero set A and Ord $Z(b_{n, k_0}; z_{m, k}) = \min_{j=1, 2} \operatorname{Ord}(b_{n, k_j}; z_{m, k})$. Then $f_1 + f_2 = b_{n, k_0} h$ for some $h \in H^{\infty}$, $b_n/b_{n, k_0} \in H^{\infty}$, and $x \in \overline{Z(b_{0, k_0})}$. Finally,

Ord
$$Z(b_{n,k_0}; z_{m,k}) = \min_{j=1,2} \text{Ord } Z(b_{n,k_j}; z_{m,k}) = \min_{j=1,2} d_{m,j} \text{ Ord } Z(b_{n-1}; z_{m,k}).$$

Letting $f_m = \min_{j=1,2} d_{m,j}$, we have Ord $Z(b_{n,k_0}; z_{m,k}) = f_m$ Ord $Z(b_{n-1}; z_{m,k})$ and $f_m \to \infty$, as desired. Thus I_n is an ideal.

To see that I_n is prime, choose $f_1, f_2 \in H^{\infty}$ such that $f_1 f_2 \in I_n$. Write $f_1 f_2 = b_{n,k} h$ with $b_{n,k}$ and h satisfying the required conditions. Write $b_{n,k} = b_{n,k_1} \cdot b_{n,k_2}$, where $f_j / b_{n,k_j} \in H^{\infty}$. By our assumptions, for each m with $b_{n,k}(z_m) = 0$,

Ord
$$Z(b_{n,k}; z_{m,k}) = d_m$$
 Ord $Z(b_{n-1}; z_{m,k})$ with $d_m \to \infty$.

Therefore, for each m with $b_{n,k}(z_m) = 0$ we must have

(*) Ord
$$Z(b_{n,k_j};z_{m,k}) \ge \frac{d_m}{2}$$
 Ord $Z(b_{n-1};z_{m,k})$

for j=1 or j=2. Let $\{z'_{m,k_j}\}$ denote the distinct zeroes of b_{n,k_j} satisfying (*). Then $x \in \overline{Z(b_{0,k})} = \overline{\{z'_{m,k_1}\}} \cup \overline{\{z'_{m,k_2}\}}$. Thus, we may assume that $x \in \overline{\{z'_{m,k_1}\}}$. If b_{n,k_0} denotes the Blaschke product

$$\prod_{m=1}^{\infty} \left(\frac{z - z'_{m,k_1}}{1 - \overline{z}'_{m,k_1} z} \right)^{N_m},$$

where $N_m = \text{Ord } Z(b_{n, k_1}; z_{m, k_1})$, then

Ord
$$Z(b_{n,k_0}; z_{m,k_1}) \ge \frac{d_m}{2}$$
 Ord $Z(b_{n-1}; z_{m,k_1})$.

Thus, the conditions on b_{n,k_0} are satisfied and therefore $f_1 = b_{n,k_0} h \in H^{\infty}$.

In order to conclude that Ker x contains an infinite chain of prime ideals, we must still show that $I_n \subsetneq I_{n-1}$. If $f \in I_1$ then $f = b_{1,k}h$ for some $h \in H^{\infty}$. Let $b_{0,k}$ denote the Blaschke product with the same zero set as $b_{1,k}$ and Ord $Z(b_{0,k}; z_m) = 1$. Then $x \in \overline{Z(b_{0,k})}$ and $b_0/b_{0,k} \in H^{\infty}$ and hence $f \in I_0$. Now for each $n, b_{n,k} \in I_n$. Let $b_{n-1,k}$ denote the Blaschke product with the same zero set as $b_{n,k}$ and Ord $Z(b_{n-1,k}; z_{m,k}) = \operatorname{Ord} Z(b_{n-1}; z_{m,k})$. Thus $b_{n-1,k}$ satisfies $b_{n,k}/b_{n-1,k} \in H^{\infty}$, $b_{n-1}/b_{n-1,k} \in H^{\infty}$, and (by construction)

Ord
$$Z(b_{n-1,k};z_{m,k}) = \text{Ord } Z(b_{n-1};z_{m,k}) = d_m \text{ Ord } Z(b_{n-2};z_{m,k}),$$

where $d_m \to \infty$ as $m \to \infty$. Therefore $b_{n-1,k} \in I_{n-1}$ and hence $b_{n,k} \in I_{n-1}$. Thus $I_n \subseteq I_{n-1}$ for all n.

Note that for any $f \in I_n$, we have Ord $Z(f; z_m) > \text{Ord } Z(b_{n-1}; z_m)$ for some m. Therefore $b_{n-1} \notin I_n$. Thus $I_n \subsetneq I_{n-1}$.

COROLLARY 4.6. Let $y \in M(H^{\infty} + C) - M(L^{\infty})$. Then Ker y contains a chain of prime ideals of infinite length.

Proof. Choose an interpolating Blaschke product b such that |y(b)| < 1 ([8, p. 177], [21]). Thus $b | \operatorname{supp} m_y$ is nonconstant. Since $\operatorname{supp} m_y$ is an antisymmetric set for $H^{\infty} + C$ and $(1/b) | \operatorname{supp} m_y = \overline{b} | \operatorname{supp} m_y$, b is not invertible in $M(H^{\infty} | \operatorname{supp} m_y)$. Therefore there exists $x \in M(H^{\infty} | \operatorname{supp} m_y)$ such that x(b) = 0. Let I_0 be the ideal of Theorem 4.4. Choose $b_{1,k} \in I_1$. For every positive integer N, there exists a finite Blaschke product c such that $cb_{1,k}/b_{0,k}^N \in H^{\infty}$, where $b_{0,k}$ denotes the Blaschke product with the same zeros as $b_{1,k}$ all of order 1. Thus $cb_{1,k} = b_{0,k}^N d$ for some Blaschke product d. Since $x \in \overline{Z(b_{0,k})}$ and $\operatorname{supp} m_x \subseteq \operatorname{supp} m_y$ we must have $|y(b_{0,k})| < 1$. Thus

$$|y(b_{1,k})| = |y(cb_{1,k})| = |y(b_{0,k}^N d)| \le |y(b_{0,k})|^N.$$

Therefore $y(b_{1,k}) = 0$. Hence $I_1 \subset \text{Ker } y$. Thus Ker y contains a chain of prime ideals of infinite length.

REFERENCES

- 1. S. Axler and P. Corkin, *Divisibility in Douglas algebras*, Michigan Math. J. 31 (1984), 89–94.
- 2. W. Dietrich, *On the ideal structure of Banach algebras*, Trans. Amer. Math. Soc. 169 (1972), 54-74.
- 3. T. W. Gamelin, Uniform algebras, Prentice Hall, Englewood Cliffs, N.J., 1969.
- 4. L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Princeton, N.J., 1960.
- 5. P. Gorkin, Decompositions of the maximal ideal space of L^{∞} , Trans. Amer. Math. Soc. 282 (1984), 33-44.

- 6. C. Guillory and D. Sarason, *The algebra of quasicontinuous functions*, Proc. Roy. Irish Acad. Sect. A 84A (1984), 57-67.
- 7. C. Guillory, K. Izuchi, and D. Sarason, *Interpolating Blaschke products and division in Douglas algebras*, Proc. Roy. Irish Acad. Sect. A 84A (1984), 1–7.
- 8. K. Hoffman, *Banach spaces of analytic functions*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 9. ——, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74–111.
- 10. K. Izuchi, Zero sets of interpolating Blaschke products, preprint.
- 11. F. Forelli, *Linear and complex analysis problem book*, Lecture Notes in Math., 1043, Springer, Berlin, 1984.
- 12. H. Matsumura, Commutative algebra, Benjamin/Cummings, Reading, Mass., 1980.
- 13. D. J. Newman, Some remarks on the maximal ideal structure of H^{∞} , Ann. of Math. (2) 70 (1959), 438-445.
- 14. R. Mortini, Finitely generated prime ideals in H^{∞} and A(D), preprint.
- 15. —, Zur Idealstruktur der Disk Algebra A(D) und der Algebra H^{∞} , Dissertation, Universität Karlsruhe, 1984.
- 16. G. E. Shilov, *On rings of functions with uniform convergence*, Ukrain. Mat. Zh. 3 (1951), 404–411.
- 17. E. Stout, *The theory of uniform algebras*, Bogden & Quigley, Tarrytown on Hudson, N.J., 1971.
- 18. C. Sundberg and T. Wolff, *Interpolating sequences for QA_B*, Trans. Amer. Math. Soc. 276 (1983), 551–581.
- 19. Tomassini, G., A remark on the Banach algebra $LH^{\infty}(D^n)$, Boll. Un. Mat. Ital. (4) 2 (1969), 202–204.
- 20. T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328.
- 21. S. Ziskind, Interpolating sequences and the Shilov boundary of $H^{\infty}(\Delta)$, J. Funct. Anal. 21 (1976), 380–388.

Department of Mathematics Bucknell University Lewisburg, Pennsylvania 17837