ON CONTACT BETWEEN SUBMANIFOLDS

James A. Montaldi

The principal aim of this article is to clarify the relationship between the con-
tact of submanifolds and the singularity type (more precisely, the J-class) of
maps. In [3], Golubitsky and Guillemin consider the equidimensional case, but
the general case has not been treated previously.

We define the local notion of contact type in the obvious way: Given two pairs
of submanifold-germs at the origin in R”, then the pairs have the same contact
type if there is a diffeomorphism-germ of (R”, 0) taking one pair to the other.
(Clearly, the dimensions of one pair must be the same as the dimensions of the
other.) We denote the contact type of X and Y by K(X, Y).

The main result is the following.

THEOREM. For i=1,2, let g;: (X;,x;)= (R",0) be immersion-germs and
fi: (R",0)— (R?,0) be submersion-germs, with Y;=f;"(0). Then the pairs
(X1, Y1) and (X,, Y3) have the same contact type if and only if fiog, and f°2>
are X-equivalent.

This relationship also serves to elucidate the work of Porteous and others [6, 7]
on the distance-squared function and the geometry of submanifolds of Euclidean
space. The singularities of the distance-squared functions that occur for a given
submanifold can be viewed as types of contact of the submanifolds with hyper-
spheres in the Euclidean space. In subsequent articles we will take this idea fur-
ther and consider the contact with spheres of higher codimension.

This article formed part of my Ph.D. thesis [5] at the University of Liverpool.
I would like to thank I. R. Porteous —my supervisor — for his advice and encour-
agement, and also C. T. C. Wall and C. G. Gibson for helpful discussions.

Since completing this work I have learned that J. W. Bruce has thought about
similar questions. In particular, the Symmetry Lemma is proved in an article of
his entitled “Wavefronts and Parallels in Euclidean Space,” to appear in the
Mathematical Proceedings of the Cambridge Philosophical Society.

Preliminaries. Recall that two map-germs ¢, ¥ : (R*, 0) —» (R”, 0) are X-equiv-
alent if there are diffeomorphism-germs 4 of (R*,0) and H of (R*xR?, (0,0))
such that H(x,0) = (h(x), 0) and H(x, ¢(x)) =(h(x), Y°h(x)). Equivalently, we
require H to map the graph of the zero-map to itself and the graph of ¢ to the
graph of . Also useful is the fact that H can be written in the form H(x,y)=
(h(x), 0(x,»)), where 0: (R¥xR?, (0,0)) — (R”, 0) and the differential of § with
respect to its second argument d, 0 at O is surjective.

One other fact we use is the following: Let ¢, ¢: (R”,0) - (R?,0) be map-
germs, and @, ¥: (R"**,0) - (R?*¥,0) be suspensions of ¢ and y respectively.
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Then ¢ and ¢ are X-equivalent if and only if ¢ and ¢ are. It therefore makes
sense to extend the notion of X-equivalence to maps involving different dimen-
sions. Suppose now ¢: (R"1,0) — (R”1,0) and ¢¥: (R"2,0) - (R?2,0) (nj—n,=
DP1—DP>2); then we can say that ¢ and ¢ are X-equivalent if one is X-equivalent to
a suspension of the other (in the traditional sense). Note that with this extended
definition, it is still true that two map-germs are X-equivalent if and only if their
local algebras are induced isomorphic.

For further details on X-equivalence see [2] or [4].

Let g: (X,x)= (R",0) be an immersion-germ and f: (R”,0)— (R”,0) be a
submersion-germ, with ¥ = f ~1(0). We call fog a contact map (-germ) for X and
Y. Of course, there are many different contact map-germs for a given pair of sub-
manifold germs. That they are all X-equivalent follows as a corollary of the Sym-
metry Lemma below. The Symmetry Lemma itself ensures that the same infor-
mation is obtained from the X-class whether we consider X as immersed andY as
a zero-set of a map or vice versa.

SYMMETRY LEMMA. Let X and Y be submanifold-germs of R" at 0. Let
g: (X, x)=>R",0) and g:(Y,y)=R",0)
be immersion-germs, and let
F:(R",0)>(R”,0) and f:(R",0)-> (R 0)

be submersion-germs, with X =f710) and Y=f"Y0). Then fog and f-g are
X-equivalent (with the appropriate interpretation, described above, if dim X #
dimY).

Proof. [I am indebted to C. T. C. Wall for the idea behind this proof.] Con-
sider the commutative diagram:

(X, x) % > (R%,0)
N /
n > q p
(R",0) =07 (RYXR7, (0,0))
/ N
(Y’y) 1// > (RP’O)’

where x(x) = (f(x), f(x)), the maps from (R?xR?, (0, 0)) are the obvious pro-
jections, ¢ = fog and ¢ = fog. Now, if we express R” as X XR? so that g(x) =
(x,0) and f(x, z) =z (which is possible, since fog =0), then

x(x,z)=(f(x,2),z) and x(x,0)=(f-g(x),0),

and so x is seen to be an unfolding of ¢. It follows that x is X-equivalent to a sus-
pension of ¢. By a similar argument x is J-equivalent to a suspension of ¢, and
the result follows. O

COROLLARY. For any pair of submanifold-germs of R", the X-class of the
contact map is independent of the choice of contact map, and so depends only on
the submanifold-germs themselves.
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The following example shows that is is necessary to consider X-equivalence, and
that @- (left-right) equivalence is too restrictive: Let £, f’: R? - R? be given by
(¥, z) and (y, z —xy) respectively, both of which cut out the x-axis. Now consider
their contact with the curve ¢ — (¢, 2, ¢3); the contact maps become ¢ — (t%, %)
and ¢ — (¢2, 0), respectively. These two maps are certainly J-equivalent, but that
they are not @-equivalent follows from the fact that their images are not diffeo-
morphic.

From now on, X; and Y; will be submanifold-germs of R" at 0 (i =1, 2, with
dim X; =dim X, =k and dim Y; =dim Y, = n— p). Also, g; will be an immersion-
germ of X;, and f;: (R", 0) —» (R?, 0) will be a submersion-germ with f;~!(0) =Y;.

To prove the ‘if’ part of the theorem we need two lemmas, which we present
before proving the theorem.

LEMMA A (invariance of contact under suspension). Lef a be any positive
integer and let X{=X; xR, Y/=Y;x {0} (all in R" X R"); then

K(X,, Y1) =K(X32, Y7) & K(X]{, Y{') = K(X3, Y7).

Proof of Lemma A.

(i) “=": This part is immediate, as the suspension of the diffeomorphism tak-
ing X, and Y; to X, and Y, (respectively) itself takes X{ and Yy to X% and Y3 (re-
spectively).

(ii) “<«<=”: Let H’ be the diffeomorphism required by the second statement, so
H'(X])=X5and H'(Y{)=Ys. Write H' = (H,, H>,), where H;: (R"*7, 0) - (R",0)
and H, has image (R9 0). It follows that each of H; and H, are submersions.

Suppose that we can find a map-germ u: (R”,0) — (R, 0) satisfying both (a)
u | Y;=0and (b) the map H: x — H,(x, u(x)) is a diffeomorphism. Then the map
H will be the required map, for:

xeX;=(x,u(x))eXi= H(x,u(x))e X5 = H(x)=H(x, u(x)) e X,
yeY1=Q,u(y)=,0)eY = H(y,0)eY; = H(y)e Y.

There remains to show that the map « does indeed exist. For (b) it is enough
that the differential dH: X — (X, du(x)) be injective. Let dH,;= (A, B), with
Ae L(R",R"), Be L(R, R"), and U=du. Then (A, B) has rank n, and we re-
quire U so that A+ BU has rank n, and for condition (a) we require U to be zero
on TY;. It is straightforward to show that such a U exists (since A4 restricted to
TY, is injective). ]

LEMMA B (invariance of the X-class of contact maps under suspension). Let
X, Y, gi, fi beas above, i =1,2. Let a, b be non-negative integers. Consider the
submanifold-germs of R"xR?xR? at 0:

Xi=X; xRx{0]
Y/ =Y;x {0} xR
let g be an immersion-germ with image X} and let f{ be a submersion-germ with

zero-set Y;/. Then f{-g{ and f5°g5 are X-equivalent if and only if fiog, and f>°g,
are.
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Proof of Lemma B. By the corollary to the Symmetry Lemma we can chcose
gi and f{ without affecting the X-classes of the composite maps. We therefore
make the obvious choices:

gi(x,u)=(gi(x),u,0),
Ji(y, u, v)=(fi(p), u).

Thus f/eg/(x, u) = (fi°gi(x), u) and the assertion follows immediately. J

Proof of the Theorem. Recall the theorem:
K(X,;, 1) =K(X,,Y,) e ficg; and f,°g, are X-equivalent.

(i) “="": This part is elementary and does not require the above lemmas. Let A
be the diffeomorphism of R” taking X, and Y; to X, and Y, respectively. Now
H restricted to X is a diffeomorphism onto X,, and thus there exists a diffeo-
morphism 4: X; — X, such that Heg, = g,oh. We also have that (f>°H) '(0)=
fi"1(0), and so by Hadamard’s lemma we can write

p

JreH(y) = 'Elfli(y)'ai(y),
=
where f1=(f1, ..., f1p) and for each i, a;(y) € R”. Now f,H is a submersion,
and therefore so is the right-hand side, which implies (since f;(0) =0) that the
p X p matrix [a,(y), ..., a,(y)] is invertible.
Define 6: R" X R” - R” by

p
0(y,z)= 2 ziai(y),

i=1

and
0: XxXRPS>R?: (x,2)—>0(g1(x),2).

Then 0’(x, ficg1(x)) = f2°82°h(x), and it is easy to show that 6’ has the required
properties to ensure that fijeg; and f,°g, are X-equivalent.

(ii) “ «<: It is this part of the proof that requires Lemmas A and B, for it does
not lend itself to a direct proof unless dim X; =dim Y;. First we treat this equi-
dimensional case, and then use the lemmas to extend this to the general result.

Suppose dim X; =dim Y; = k. We wish to express each X; as the graph of some
map ¢;: R¥ > R”, and the Y; as the graph of the zero map from R¥ to R”. To do
this we first choose coordinates on R” so that f1(xy, ..., Xn) = (Xk+15---» Xn); thus
Y, = R¥x {0}. Secondly, choose a p-dimensional subspace V; transverse to both
X, and Y}, and write R"=Y; X V]. Let w: R” = Y] be the projection on to the first
factor; then « | X;: X; — Y, is a diffecomorphism which induces a coordinate sys-
tem on X;. With respect to these coordinates Y; is the graph of the zero map, while
X, is the graph of the map f;-g; (thinking of f) as the projection: Y; X V; — }}).
A similar construction can be done for X, and Y,. Then any diffeomorphism
H: R*xR?” - R*x R” preserving the graph of the zero map and taking the graph
of fieg; to the graph of f,-g, is then a diffeomorphism taking X; to X, and Y; to
Y>, so concluding the equidimensional case.
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In the case where dim X; # dim Y;, we can suspend whichever is of the lower
dimension with RY, d being the difference in the dimensions, to give X7 and Yy in
R” x R? and define the appropriate maps g/ and f7. We then have the following
correspondences:

K(X,Y) — X(f2)
@ T Lo
KX, Y') <= K(f'g"),

with (a) from part (i) of this proof, (b) from part (ii), (c) from Lemma A, and
(d) from Lemma B (a=d, b=0fordim Y >dim X, and b=d, a=0fordim Y<
dim X). J

Final remark. The isomorphism class of the local algebra Q(¢) of a map-germ
¢ is an invariant of the X-class. It follows that the isomorphism class of the local
algebra of the contact map-germ of a pair of submanifold-germs is an invariant
of the contact type. Moreover, this isomorphism class determines the contact type
(at least if the contact map is of finite J-codimension). It follows from a paper
of Damon and Galligo [1] that in many cases the multiplicity of contact of a pair
of submanifolds is equal to the dimension of the local algebra of the contact map.
In particular this is the case when the contact map has finite J-codimension, and
either has kernel rank at most 2 or is of discrete algebra type.
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