BRANCHED IMMERSIONS OF SURFACES

Carlos Curley and Donald Wolitzer

Introduction. Let M and N be surfaces and f: M — N an immersion. When
can f be extended to an immersion or polymersion F: M — N? (That is, locally
F(z)=2z", n>0.) In this paper, we consider the case where M is a compact con-
nected surface of genus & with #» boundary components and N = R2. In addition,
S will be required to be a normal immersion, that is, it has finitely many intersec-
tions and these are transverse double points. We also determine how many differ-
ent extensions there are.

DEFINITION. Let f: dM — N be an immersion and let Fi, F>: M — N be two
extensions of f. F) and F, are equivalent if there is a diffeomorphism A: M - M
such that A |3M= Id and F =F2°h.

C. Titus [8] solved the existence problem for F: D? > R2. S. Blank [3] gave a
different and elegant solution to both the existence and equivalence problems by
associating to an immersion a natural ‘word.” He showed that equivalence classes
of immersions which extend f are in one-to-one correspondence with ‘groupings’
of the word. (These groupings are combinatorial structures on the word.) Blank’s
method will be generalized in this paper.

Later, K. Bailey [1], M. Barall [2], C. Ezell [4], G. Francis [5], M. Marx [7],
and S. Troyer [9] modified some of Blank’s techniques to deal with various other
cases. The algorithms given in this paper require only the same concise conditions
that were present in the simplest case.

ROTATION NUMBER OF f. Let f:S' > R2. The rotation number (or tangent
winding number) of f, R(f), is the index of the map
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Given f: dM — R?, we have f= fiU---Uf,, where f;: S! -» R?is frestricted to
the ith boundary component. Define the fotal rotation number of ftobe 7(f)=
R(f1)+ --- +R(f,). By a result of A. Haefliger [6], if the compact surface M is
immersed in the plane then 7(f) = X(M) =2 —n—2k. However, this condition is
not sufficient for f to extend, as can be seen from the example of Figure 1. This
and subsequent figures represent images in R2.

S!St

THE BLANK WORD. Let Py,..., P, be the bounded connected components of
R?—Im(f). Choose p; € P;. For each p; construct a ray a;: [0, ) — R? which is
an embedding such that:
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Figure 1

() a;(0)=p;,

(i) @; is unbounded,

(i) a;Na; = for i #J,

(iv) a; does not intersect f in a double point, and

(v) 4; is transverse to f.

Note that we refer to Im(a;) as @;. The set {a;} is called the ray system for f.
Intersection points of 4; and Im(f) will be denoted a;*! or @;~!. The sign is pos-
itive if f crosses the ray from right to left and negative otherwise. The natural
ordering on @ will be denoted by <.

The Blank word of f;, w(fj), is the sequence of signed letters representing the
intersection points of {&;} and Im(f) obtained in one circuit of the curve in the
direction indicated by the orientation. This word is defined up to cyclic permuta-
tion and may be written uniquely upon the choice of a basepoint of S'. All cyclic
permutations of w(f;) will be considered equivalent. The word w(f;) may be
thought of as an element of the free group on m letters. It is often useful to con-
sider the intersection points /' to be on the domain of f;. Note that if f; had
been the sole boundary immersion, the word obtained from it would be a sub-
word of w(f;).

The word w( f;) is said to be reduced if it contains no subsequence of the form
a;a; ' or aj 'a;. Since w( /) is defined only up to cyclic permutation, reduced also
means that the word is not of the form a*!---a;7!. If there is a non-reduced or-
currence along &; the ray may be altered slightly so that w(f;) is reduced: Change
a; in a neighborhood of (a;*', 4;") to parallel and run close to f | 4#1471. It can be
easily verified [3] that this modified ray system has the effect of cancelling a*'a;™"
and perhaps other such consecutive pairs. Henceforth, w(f;) is assumed to be
reduced.

Given f= fijU..-Uf,, we define the Blank word of f, w(f), to be the set of
the n Blank words, {w(/f;)}.

DEFINITION. Two pairs, (a/*', a;*') and (aji', af'), of a component w of a
word are linked if
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OPERATIONS ON w(f).

(1) Join—Let w; be a component of a word that is of the form Aa;*!, where 4
is a subsequence of w;. Similarly, assume that w, can be written as ;"' B. Define
the join of w; and w; to be the replacement of these two words by the single com-
ponent AB.

This algebraic:operation corresponds to the following geometric construction
on M: Join the points @; and @;"! on 3M with an embedded interval in M trans-
verse to dM. Cutting along this arc segment yields a surface of genus £ with n—1
boundary components. If we follow this new boundary component we obtain the
word AB.

(2) Assemblage— Let w be a component of a word with linked pairs (¢!, a;*!)
and (aj*', a/""). That is, w = Aa/*'Ba;*'Ca;"'Da;"'. An assemblage operation con-
sists of replacing w with the word ADCB.

This corresponds to the following operation on M: If M has genus > 0, an arc
segment joining @; and ¢;" ! may be constructed on M so that M is not discon-
nected. Cut along this arc segment to obtain a surface of genus one less with one
additional boundary component. Because the pairs had been linked, a; and aj‘l
will now be on different boundary components. Join these two components using
a; and a; ' as above. We now have the original number of boundary components
again. The word obtained by following around the new boundary component
will be ADCB.

(3) Grouping — A component of a word is said to group if each negative letter
can be paired with a positive letter from the same ray so that the pairs are disjoint
and no two pairs are linked.

When M is D2, the property of grouping is equivalent to being able to construct
pairwise disjoint arc segments [@;"}, @;] on M for all negative letters.

DEFINITION. A word w(f) is said to have a k-grouping if the components
w(f1),..-, w(f,) can be successively joined into a single component so that the
resulting word admits a sequence of k£ assemblage operations after which the word
groups.

In the example of Figure 2, M has two boundary components and genus one.
Note that if M has a k-grouping, then the arcs on M connecting the pairs of the
k-grouping divide M into disks.

DEFINITION. Two k-groupings of w(f) are equivalent if each negative letter
of w(f) is paired to the same positive letter by both k-groupings.

The example in Figure 2 has two non-equivalent k-groupings, depending on
the choices along the ray a.

THEOREM 1. Let M be a compact connected orientable surface of genus k
with n boundary components. A normal immersion f: dM — R? can be extended
to an immersion F: M —R? if and only if 7(f)=2—n—2k and w(f) has a
k-grouping. The number of non-equivalent extensions will be equal to the numn-
ber of non-equivalent k-groupings.
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Figure 2

Proof of Theorem 1. First we show how a k-grouping yields an extension of f.
As mentioned previously, we want to consider a letter of w(f) to be on both the
intersection of Im(f) with a ray and the corresponding point of dM. For each
pair (a;, a;i"!) of the k-grouping, the points @; and a;"! on M are to be joined with
an embedded interval in M transverse to dM. The intervals are to be constructed
in the order indicated by the definition of a k-grouping, that is, joins first, then
assemblage operations, then the grouping. In addition, the intervals are to be
mutually disjoint. The set of embedded intervals will then divide M up into disks.
Label these disks D;.

We now extend f to dM U {added intervals} by mapping the interval from a; to
a7 1in M to the interval (a;, @;!) in the ray a;. Call this extension f*. We would
like to define f; as f* restricted to the boundary of D;, but we want the f; terms
to be immersions in general position.

Extend f* to embeddings of tubular neighborhoods of the intervals. Change the
boundary of each disk D; in the following way: For each interval on the boundary
of D;, round off the corners so that no new intersections are introduced. This will
make f; an immersion.

DEFINITION. A pair (¢!, a;/™!) is called positive if a;/! is farther out on the
ray than a; ! and is negative otherwise.

Now we change f; so that it is in general position. This is done by pulling dD;
away from the intervals one interval at a time. Those corresponding to positive
pairs are to be done first, so that for each ray there will be a tubular neighbor-
hood that contains all intervals from negative pairs and none from positive pairs.
See Figure 4.
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We will eventually show that there can be no negative pairs and that each f; is
an embedding. Therefore, by the Riemann mapping theorem, each f; extends to
D; and f* extends to M. Note that the extension class is independent of the em-
beddings of the intervals between the pairs, for any two embeddings could be
made to agree by a diffeomorphism of M fixing oM.

In the works of some of the other authors [1, 2, 4, 5, 7, 9], the letters of the
word are endowed with additional structure in order to detect positive pairs. The
lemmas that follow show that this structure and analysis is not required for the
generalization of Blank’s theorem.

DEFINITION. The parts of Im(f;) which correspond to these pulled away in-
tervals are called positive or negative incidences (depending on the type of pair
they came from). The parts of Im(f;) that are restrictions of f are called arcs.

CONSTRUCTION. Let g: S! —» R? be a normal immersion. Then Im(g) can be
broken up into embedded circles, {C;}, of which there are P with R(C)=1and N
with R(C) = —1such that X ; R(C;)=P—-N=R(g).

Proof. Consider a self-intersection of g. Perturb g near this point so that the
two arcs containing it are tangent. See Figure 3. This will have no effect on the
rotation number. Now reparameterize Im(g) as shown so that there are two tan-
gent immersions whose rotation numbers add up to R(g). Continue applying this
construction to these two immersions until all are embeddings C; (with R(C;)=
+1), with X ; R(C;) =R(g). ]

Figure 3

Consider f;, the immersions defined on dD;. Let Q; be the number of negative
incidences in 8D;. Break up f; into embeddings so that R(f;) = P;— N;. Note that
> O; =2c, where c is the total number of negative pairs in the k-grouping. Hence-
forth, we will suppress the subscript / when it is clear that we are working within
a single D;.

LEMMA 1. In a break-up of f;, there cannot be a negative circle composed solely
of arcs.

Proof. No ray can intersect a negative circle, for that would give an unpaired
a~'in w(f). Therefore, none of the regions defined by Im(f) can be contained
entirely within a negative circle. O

The next two lemmas are due to S. Blank [3]. They were originally proved with
M = D? but are shown here to hold for any M we consider.
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LEMMA 2. N<Q.

Proof. Let C be a negative circle obtained in a break-up of f;. By Lemma 1, C
must contain at least one incidence. Suppose it is a positive incidence. Then C
must also have a negative incidence along the same ray such that the interval of
the negative incidence contains that of the positive. The inside of C must be be-
tween the positive incidence and the ray but cannot cross the ray, by Lemma 1.
So there must be a negative incidence between the positive incidence and the ray.

Thus every negative circle has at least one negative incidence. We now show
that one negative incidence cannot be shared by two negative circles.

Look at a tubular neighborhood 7 of @ which contains only the negative inci-
dences. Let m be the number of such incidences. For each negative incidence there
is one arc which enters 7" and one which leaves 7. There may also be arcs of f;
crossing the ray. Circles which contain arcs crossing a ray must be positive. Dis-
counting these arcs, we have m arcs entering and leaving 7. These can yield at

most m different circles. ]
i AN |
| |
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i |
___.:___4 |
-—-—-—:-)—-q i
I !
| ]
} f
T
Figure 4

DEFINITION. In a break-up of f;, a key circle is a negative circle with two neg-
ative incidences or a positive circle.

LEMMA 3. For each f;, there is at least one key circle. Equivalently,
P—-N+Q=1 (P>0o0r N<Q).

Proof. We work toward a proof by contradiction. Suppose P =0 and N = Q.
Let 2! be the point of 8D which is on a negative incidence and which is the
largest such point on @. We assume that a ! implies the arc is leaving 7. (If the
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arc is entering 7 the following argument still holds, but f; must be traced in the
opposite direction.)

Let C be the circle in the break-up of f; that contains @ ~!. Let a be the first
point on C after a~! which is on an incidence from @. We now prove a stronger
fact than the lemma: There is a key circle along f; | ;-14 (Or f;|sq-1 if the arc is
leaving 7).

= o)

Figure §

Let C'=C|,-1,. There cannot be an incidence on C’ since C can have at most
one negative incidence (we are assuming that N= Q). Soif C’'= f; | ;-1 then C'=
S | a—12 and w(f) would not be reduced. Therefore there must be a circle C*, tan-
gent to C’ at a point x. R(C*) = —1 (since P =0 by assumption), so the interiors
of C and C* intersect in a neighborhood of x. C* must have an incidence along
a or else there would be a region defined by Im(f) contained in the intersection
of the two interiors. Thus C* meets @. Let @ be the first point of intersection of
C* with a after x. Restore the original parameterization at the point of tangency
to obtain an arc C” from a ! to @. But the same argument can be applied to C”.
Therefore we obtain a contradiction by infinite repetition. ]

The proof of Lemma 3 yields the following stronger statement.

LEMMA 4. Let C be a circle in a break-up of f; with the following property: C
contains a~', a letter from a negative incidence such that there is a positive letter
aton C witha™'<a™!. Then f; | a—14+1 (Or fi| a+14-1) contains a key circle.

LEMMA 5. Let M be the result of cutting and smoothing M along one of the
pair intervals (a;, a;”"). Let g be the resulting immersion on 8M. Then if the pair
is positive, 7(g)=7(f)+1. Otherwise 7(g)=7(f)—1.

Proof. The proof is immediate from Figure 6.

LEMMA 6. Let w be the number of pairs in the k-grouping. Then M is divided
up into (2—n—2k+w) disks by the intervals connecting the pairs.
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Figure 6

Proof. After performing the required (n—1) joins and k assemblage opera-
tions, M has been reduced to a single disk. Each of the remaining (w—n+1—2k)
pairs create an additional D;-type region. O

LEMMA 7. For each f;, there is exactly one key circle. Equivalently,
P—-N+Q=1.
That is, either (P=0and N=Q—1) or (P=1and N = Q).

Proof. Let w be the total number of pairs. Let ¢ be the number negative pairs
and d the number of positive pairs. For each f; we have R(f;)=P;—N;=1-—-0;
be Lemma 3. Then

2—n—-2k+w

> R(f)=(2—n—-2k+w)—2c
i=1
=2—n—2k+d—c.
We could have obtained this sum of the R(f;)’s in another way. The f;’s are ob-

tained from f by cutting along d positive pairs and ¢ negative pairs. By Lemma 5
we have

SR =1(f)+d—c
=2—n—-2k+d-—c.

Therefore, the previous inequality must actually have been an equality. This
could only have occurred if P;—N; =1— Q; for each region D;.

COROLLARY 1. Let f: dM — R? where M is a compact connected orientable
surface with n boundary components and genus k. If f has a k-grouping then
7(f)=2—n—2k.

Proof. Follow the same procedure as in the proof of Lemma 7 but make no
assumption on 7(f). O

The next three lemmas were proved by S. Blank [3] for M = D? and are now
shown to hold for any M.
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LEMMA 8. If D is a negative circle obtained in a break-up of f;, then no part
of D can come from a positive incidence.

LEMMA 9. In a break-up of f;, no positive circle can contain any part of a neg-
ative incidence.

LEMMA 10. There are no negative pairs (Q =0).
The proofs of Lemmas 8 and 9 will be given after the proof of Lemma 10.

Proof of Lemma 10. Let (a,a”!) be a negative pair. Let D; and D; be the two
D;-type regions containing the two sides of the incidence from (a,a”'). Note
that we may have D; = D;. Let P be the region defined by Im( f) that contains the
point @ ! on its boundary and intersects the interval (a, a~') (on the ray). Break
up f; and f; and consider the circles which contain the negative incidences (a, a™h).
By Lemima 9 these circles are negative. Suppose P is not contained in the union
of the interiors of these circles. This means that P “overflows” beyond the two
circles through some incidences. By Lemma 8 these incidences must be negative.
Apply the same technique on the circles on the other side of these new incidences.
Eventually we contain P in a union of negative circles. This means that P cannot
be the unbounded region defined by Im(f'), since all incidences are in the interior
of P and the boundary is only arcs. Therefore P must contain the origin of a ray.
But this contradicts the fact that no ray can originate in the interior of a negative
circle. So there are no negative incidences. O

Proof of Lemma 8. Let a be the largest point on & corresponding to a point on
a positive incidence in D. By the proof of Lemma 2 there is a point ¢ ! on & that
corresponds to the end of a negative incidence on D with ¢ !> a. Similarly, if
a~!is the smallest point on @ on a positive incidence in D then there is a point a
with @ = @~ ! such that ¢ is the end of a negative incidence on D. We first consider
the case where g7 !>a and a<a™. ,

Consider the two restrictions f; |5-1, and f; | 7Z1;» In a break-up of f; there is
exactly one key circle. Therefore at least one of the two restrictions is without a
key circle, contradicting Lemma 4.

Now look at the case where the positive and negative incidences on D termi-
nate at the same point on 4. This point must correspond to a negative intersection
of Im( f) with @. Therefore, the positive incidence must extend beyond that point.
So there must be another circle, D’, tangent to D at the largest point of the posi-
tive incidence on D. If D’ is a positive circle we are done since the remainder of f;
would not have a key circle. If D’ is a negative circle, substitute D’ for one of the
restrictions of f; in the first case and perform the same analysis. Ol

Proof of Lemma 9. First consider a circle C which travels along a negative in-
cidence and crosses the ray @. (The same argument holds for a circle which first
crosses a ray and then goes along a negative incidence.) Since no ray can inter-
sect a negative circle, R(C) = +1. The intersection of C with @ must be positive
and so cannot correspond to the end of the negative incidence. Therefore, the
incidence continues farther along the ray. By Lemma 7 there can be no more
than one positive circle in a break-up of f;, so this negative incidence must be on
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a negative circle. But then f; restricted to the arc defined by this circle is without a
key circle. So no such C can exist.

Let 7 be the tubular neighborhood of @ which contains only the negative inci-
dences. By the previous paragraph, all of these incidences are on circles which
enter and leave T without crossing d. If there are m incidences, there can be at
most m negative circles. If one of the circles were positive there would be strictly
less than 2 negative circles. There would then be two key circles, a violation of
Lemma 7. O]

Now we have P— N+ Q =1and N=Q =0. Therefore, R(f;) =P =1and f;is an
embedding and can be extended to D;. We now have an extension F: — M — R2.
We have already mentioned that the extension class of F is independent of the
intervals. Note that the constructed intervals are part of the inverse image of the
rays F~'{a;}. Therefore, any two different k-groupings of w(f) would result in
extensions that could not be factored through each other. So we get one exten-
sion class for each k-grouping.

We now complete the proof of Theorem 1 by showing that if f extends to F,
then w(f) has a k-grouping and 7(f) =2 —n—2k.

As mentioned earlier, 7(f) =2 —n—2k by a result of A. Haefliger [6]. Let {a;}
be a ray system for f= F|s. Look at the inverse image of all ray segments in
Im(f). Each ¢ 7! is paired with the a*! which is the other boundary point of the
interval in 7 ~!(a) which contains a~!. We claim that this natural pairing deter-
mines a k-grouping.

We first show that all boundary components can be joined. That is, no proper
subset of {f;} has the property that all negative letters are paired with positive
letters from the same subset.

Assume that m such mutually exclusive subsets of {f;} do exist. Let g; (i=
1,...,m) be frestricted to the ith subset. Let #; be the corresponding number of
boundary components.

We now consider w(g;). We can assume that the n; components of w(g;) may be
completely joined. If w(g;) does not group then there must be linked pairs (a;, a;”")
and (a;, a;"') such that w(g;) = Aa/*'Baj*'Ca;"'Da;"'. Since the two intervals con-
necting these pairs are disjoint, cutting along them reduces the genus by one. The
resulting word ADCB must either group or have two more linked pairs. Continue
cutting along linked pairs until the resulting word groups.

Do this for all g;’s. Note that the total number of all linked pair steps for all
g:’s must be <k since otherwise the intervals could not be pairwise disjoint. Let
k; be the number of linked pair steps in the process for g;.

Since w(g;) has a k;-grouping, by Corollary 1 7(g;) =2 —n;—2k;. Therefore,

m

=3 1e)= 3 @em—2k)=2m—n—23 ki

i=1 i=1
>2m—n-—2Kk.
But since 7(f) =2 —n—2k, we must have m = 1. Note also that for the above

to be an equality, there must be exactly &k steps of linked pairs. Therefore w(f)
has a k-grouping. O
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BRANCHED IMMERSIONS. We now consider extensions with branch points.
A polymersion F: M — R? is a map locally of the form F(z)=z", m>0 and z
a complex variable. We seek necessary and sufficient conditions for extending a
normal immersion f: dM — R? to a polymersion. As in the case of extensions to
immersions, these conditions are presented in terms of w(f) and operations that
modify the word. We define an appendage to w(f) to be a collection of L words
(L =0), each of the form (a~!)?, where a is a positive letter in w(f) and p>1.
The valence, val, of an appendage is the sum Ef=1 p(J). We denote the word
w(f) together with an appendage by w(f)*.

THEOREM 2. An immersion f: dM — R? extends to a polymersion from M if
and only if w(f), the word of f, admits an appendage satisfying

Q) 7(f)=XM)+val—L and

(i) w(f)* has a k-grouping.

Proof of Theorem 2. Assume F is a polymersion extending f. Since M is com-
pact there are only a finite number of branch points of F, that is, points in M
where F is locally of the form F(z)=z" (m>1); m—1 is the multiplicity of the
branch point. Furthermore, we can assume that each component in R? of the com-
plement of the image of f contains at most one image of a branch point, and that
no such image point is on the image of f. In addition, we can assume that the ray
for a component containing a branch value starts at that value. Let vy, ..., v, de-
note the values of branch points and for each v; let b,-f , J=1,...,0(i), be the branch
points with value v;. Let m(i, j) —1 be the multiplicity of b,-j . Choose a family of
circles S/ embedded in M which satisfy: each circle bounds a disk containing one
branch point, namely b,-j ; the images of the circles under F are mutually disjoint;
and these images are in a standard form, namely each is a normal immersion with
m(i, j)—1 double points as illustrated in Figure 7. Furthermore, if b,-j and b,-j +1
are two branch points then we require the image of S,.j *1to be within the inner-
most component, that is, the disk component of F(S,-j).

Let F’ be the restriction of F to the closure in M of the complement of the disks
enclosed by these circles, and let f” be the restriction of F’ to the boundary of this

s
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Figure 7
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subsurface of M. Note that this subsurface still has genus k. Since F’ has no
branch points it is an immersion extending f’. We will show how to relate a word
for f/, w(f’), to w(f) and a k-grouping of w(f”’) to a k-grouping of an appendad
w(f). _ _

First choose rays 9}, 97, ..., 0,-’(’), where: 7(i) = f‘;’l m(i, j)—1 which are par-
alell to o; and lie within a tubular neighborhood of o; containing rays from the
system for f; each 9/ is to the right of §/*!, where ‘right’ is with respect to the
forward direction (towards o) of the rays; and such that each 9/ *! intersects the
image of £’ in one fewer place than 8/ for each n =0, where 9° = 9; (see Figure 7).

Construct a word for f’ using the ray system for f. One obtains a word for f’
by performing the following operations on w(f):

Type I. Replace each instance of a branch value v; in w(f) (resp. v;"') with the
string v;viv? - 0f D (resp. [v/ P17 - [P [V 1 V1T,

Type I1. Construct L additional words, where L is the total number of branch
points dnd where each new word is of the form

£772 Iy (£778 Rk €73 Rk B € (/7S IR €775 Ik £ 73 I
where m(j) =%~ m(i, k) —1. That is, introduce a word for the circle Sij, J=].

An appendage to w(f) is obtained by deleting from each type 1I word all the
letters [u;’.]“1 where j > 0.

Since F’ is an immersion extending f’, the word w(f’) has a natural A-group-
ing that is given by the pairings determined by the inverse image under F’ of the
rays in the system for f’. We now show that these pairings also yield a k-grouping
for the appended word w(f)*. Recall that a given pairing can be regarded as a
joining pair, part of a linked pair, or as a grouping pair. Observe that if a string
of negative letters from either of the two operation types contains a letter which
is part of a join or a linked pair, then the remaining letters, after rearrangement
in the latter case, are from grouped pairs. In fact, if one performs reduction after
joining or performing an assemblage, these letters are eliminated. Thus the pair-
ings in w( f)* obtained by restricting the pairings in w(f’) have the same number
of joins and linked pairs as w(f’), and hence is a k-grouping.

Furthermore, the total rotation numbers of f and f’ satisfy

() =7(f)— 3 m(i,Jj),
ij

since each boundary component S,-j has rotation number —m (i, j). Since X(M)—L
is the Euler characteristic of the domain of F’ and X;; m(i, j) = val, we have 7(f) =
X(M)+val — L. Thus the condition of Theorem 2 is necessary.

Conversely, assume there is an appended word for w(f) with a k-grouping.
Choose L circles in M which bound L disjoint disks. For each appendage word
[v;11% select an immersion from one of these circles into the component contain-
ing the initial point of the ray 9;. We select these mappings so that the images are
in standard form, as described earlier. Denote the resulting extension of f by f'.
Construct additional rays as before. The pairings in w(f)* extend to pairings in
w(f’) so that adjacent negative letters in a type I or type II string are paired with
adjacent positive letters in a type I string of positive letters. Furthermore, since
each such negative string contains at most one join letter or one linked pair letter
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and the remaining letters are in groupings which reduce, the pairings in w(f’) do
comprise a k-grouping.

Since the total rotation number of f’ equals the Euler characteristic of the sub-
surface of M which is the closure of the complement in M of the disks, by Theo-
rem 1 there is an immersion F’ from this subsurface extending f".

Finally, extend F’ to the interior of each disk using a polymersion with one
branch point. Thus one obtains a polymersion from M extending f. Note that the
number of branch points, their multiplicities, and the components of RZ—Im(f)
where their values lie can be discerned from the appendage of w(f). Conversely,
this data determines an appendage. [

Equivalence classes of extensions. Since any polymersion is equivalent to one
with no branch value on the image of f and with no component of R?>—Im(f)
having more than one branch value, we consider only these polymersions. Below
is the image in R? of an f with word abcabb which admits two extensions to D>.

y oo
a b c
Figure 8

One extension is determined by the appendage b ~'»~'b~! to bcabba, and the
pairings
b7 '~ b becabba.
P b—_——
Another extension is determined by appending words ¢ 'e~! and 675! to
bbabca, and by the pairings

ala b~ 'b~ bbabca.

We do not distinguish between two pairings which differ by a cyclic permuta-
tion of the letters in an appendage.

THEOREM 3. Two polymersion extensions of f are equivalent if and only if
they induce the same appendage for w( f) and the same pairings on the appended
word.

Proof. If F; and F) are equivalent extensions, choose circles S,-j for F as in the
proof of Theorem 2 and let A(S/) be the corresponding circles for F,. The diffeo-
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morphism #4 restricts to a diffeomorphism from the surface obtained by deleting
the interior of the disks enclosed by the S/ to the corresponding subsurface ob-
tained by deleting the interiors of the k(S,-j ). By reparameterizing these latter cir-
cles, if necessary, we can assume that F; = F, on the boundary of the subsurface.
Let F{ and F3; denote the restrictions of F; and F,. By Theorem 1, F{ and Fj are
equivalent immersions extending the map f’ on the boundary. Choose ray sys-
tems for f and f’ as in the proof of Theorem 2. Note that the appendages deter-
mined by F; and F, are the same since they are equivalent extensions. By Theo-
rem 1, the pairings given by F{ and F3 on this appended word are the same.

Conversely, assume F; and F, are polymersions extending f which determine the
same appendage for f and the same pairings. One can choose L circles S/ around
the branch points of F and L circles 4(S/), diffeomorphic images of S‘.f, around
the branch points of F,. Recall that the appendage of w(f) determines the num-
ber of branch points, their multiplicities, and the component of R?—Im(f) where
each branch point maps. Furthermore, we may choose these circles so that F;=
Foh on S;.

As before, we consider the subsurfaces of M obtained by deleting the interiors
of the circles chosen. By Theorem 1, the restriction of F; and F, are equivalent
by a diffeomorphism of the subsurfaces extending /4. Since on each S,-j , Fi=Fh
and is in standard form, we furthermore can extend /4, uniquely up to equiva-
lence, to the interior of the circles. Hence the polymersions are equivalent. [
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