CHARACTERISTIC CLASSES FOR
SYMPLECTIC FOLIATIONS

Chal Benson

1. Introduction. A transverse symplectic structure for a foliation is given by a
closed 2-form that vanishes on the leaves and is non-degenerate in the transverse
direction. That is, if & is a codimension 2¢ foliation on M, then w e Q*(M)is a
transverse symplectic structure if

(@ dw=0,
(1.1) (b) iyw=0 for all vector fields V tangent to &,
(c) w790 at all points of M.

Equivalently, (F, w) is given by a Haefliger cocycle of submersions into a sym-
plectic manifold N 29 with transition germs preserving the symplectic structure [7].

Haefliger has introduced a classifying space, BI'sp(4), for codimension 2g sym-
plectic foliations [7]. A related space is BI'sp(4), the homotopy fibre of the map
v:BT'spq) = BSp(q) =BU(q) classifying the normal bundle to the universal
I'sp(g)-structure. This space classifies (symplectically) framed symplectic folia-
tions. The central goal of this paper is to obtain new results on the algebraic
topology of these spaces. This is done in Sections 4 and 5 where it is shown that
certain homology and homotopy groups for BT's,,) and BT's, ) are enormous.

The theorems we obtain are similar in flavor to known results on the classi-
fying spaces for real, Riemannian, and complex foliations. See for example
[9]. Such theorems are biproducts of the study of characteristic classes for these
types of foliations. The characteristic classes furnished by the usual construction
in the symplectic context (outlined in Section 2) are difficult to analyze and
there are no known non-trivial examples for them. These difficulties are circum-
vented here by the introduction of a new and more manageable family of invari-
ants in Section 2.

The characteristic classes are constructed using differential geometric methods
which do not involve properties of Haefliger’s classifying space. The final results
follow in part from explicit computations for certain examples described in
Section 3.

A special class of symplectic foliations are the Kidhler foliations. These are
modeled on a Kihler manifold N?? where the transition germs preserve the
Kihler structure. Such foliations are studied by Matsuoka and Morita who con-
sider characteristic classes related to the ones here [15].

In this paper, all manifolds and foliations are of type C*. Cohomology groups
are taken with real coefficients unless otherwise specified. When M is a manifold,
H'*(M) should be thought of as the (de Rahm) cohomology of the complex
(2°(M), d) of smooth forms on M.
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2. Definition of the characteristic classes. There are several alternative ap-
proaches to the construction of characteristic classes for foliations. The classes
considered here will be obtained by extending the Weil algebra construction as
developed by Kamber and Tondeur. We begin by briefly reviewing this theory in
the context of symplectic foliations. For details, we refer the reader to [13].

We write Sp(q) for the real symplectic group Sp(g, R) C GL(24q, R) and sp(q)
for its Lie algebra. The symplectic Weil algebra is the DG algebra given by

W(sp(q)) =A(Gp(g)*)R®S(sp(q)*),

a tensor product of exterior and symmetric algebras. The truncated algebra
W (sp(q))24 is the quotient of W(sp(q)) by the ideal generated by

@ A®S‘(sp(g)*)).

Jj>2q
If (F, w,s) is a framed symplectic foliation of codimension 2q on M (here s
denotes a framing of the symplectic normal bundle Sp(»J)) then we obtain a
characteristic homomorphism

A(T, w,5): H (W(sp(q))2q) - H (M).

The map A.(F, w, s) can be realized as a map W(sp(q))24 — (M) by using any
Bott connection in Sp(»JF).

The map A.(F,w,s) and the cohomology of W(sp(q))2, can be described
simply in terms of a cohomologically equivalent subcomplex

AzA(ylsst 0--syq)®R[e]’ €25 .00 eq]Zq-

Here e; is a symbol of degree 4i with de; =0, and y; has degree (4i —1) with dy; =
e;. The subscript 2¢g denotes truncation by the elements of degree greater than 44.

Let 8 be any Bott connection in Sp(»$%). Chern-Weil theory yields canonical
representing forms e;(8) e Q¥ (M) for the symplectic Pontrjyagin classes and
forms y;(B8, s) € @4 ~1(M) with dy;(B, s) = e;(B). The forms e;(3) are determined
by applying the invariant polynomials e;: sp(q) — R, characterized by the identity

t q . .
2.1) det(l— —_A>=1+ > (—I)Jej(A)tzf,
27i j=1
to the curvature tensor for 8. This determines a map of DG algebras

A(B): A—-Q(M),

which realizes A.(F, w,s) on cohomology.
A vector space basis for H (W(sp(q))24) is given by the “Vey basis” of classes

J1,d J
yreg=Yi AYi,\ - ANy ®ei'ez?--- ez?



CHARACTERISTIC CLASSES FOR SYMPLECTIC FOLIATIONS 107

whose indices (I,J) satisfy certain “admissibility conditions”. Adopting the
notation

q
(2-2) IJI=l(jl’jZa---sjq)l'_‘lglljl’
these can be written as

(@) I#¢,1=i1<ih< - <is=q,
b |[J]|=gq,

© i+l|J]|>q,
(d) i; <the index of the first non-zero J,.

(2.3)

It follows immediately from the Heitsch rigidity theorem [8] that all the classes
yrey are invariant under deformations through framed foliations. Moreover,
there are no known examples showing any of these classes to be non-trivial.
These shortcomings will be circumvented here by considering an easy extension
of the theory outlined above.

We start by adding an extra 2-dimensional generator  to the Weil algebra to
form W(sp(q),2)=W(sp(q))X S(w). The differential and sp(g)-operations on
Wi(sp(q)) are all extended to W(sp(qg),2) by sending w to 0. The truncated
algebra W(sp(q), 2),4 is obtained by dividing out the ideal generated by

@D (A®S/(sp(g)")®w").
Jj+2k>2q

As before, we consider a framed symplectic foliation (F, w,s) on M with 8 a
Bott connection in Sp(rF). The resulting map W{(sp(qg)) — Q' (M) is extended to
W(sp(q), 2) by sending the extra generator w to the transverse symplectic form w e
Q2(M). This gives a map of DG algebras which factors through W(sp(q), 2)24-
One can see this by combining the usual proof of Bott’s vanishing theorem with
the fact that w is F-transverse [condition (1.1)(b)]. We obtain a characteristic
homomorphism A.(F, w,s): H (W(sp(q),2)2,) = H (M), which is our exten-
sion of the usual construction.

The techniques described in [13] again allow one to replace W(sp(q), 2),, by
a cohomologically equivalent subcomplex A(yy, ..., Y4)@R]ey, ..., 4, w]24. Here
the y’s and e’s are as before and the 2q subscript denotes truncation by the mono-
mials e;w* with |J|+ & > g. In terms of this complex, the map A, (F, w, s) is given
on the cochain level by using a Bott connection to construct forms e;(3) and
»i(B, s) as before and by sending the generator w to w e Q%(M). The Vey basis for
H (W(sp(q),2)24) is given by the classes w, w2, ..., 0w together with the classes
yre;w* satisfying

(@ I#¢,

(b)y |J[+k=gq,

© a+|J|+k>gq,

(d) i, = the index of the first non-zero j,.

(2.4)

The characteristic classes y;e;w® with k> 0 will be called w-classes. These are
new characteristic invariants for framed symplectic foliations which supplement
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the old invariants y;ey. It is clear that the classes A, (F, w,s)(y,e;wk) e H (M)
are natural under pull-backs by transverse maps and are concordance invariants
of (¥, w, s). It follows that A,(F, w, s) factors through a universal homomorphism

Ay H (W(sp(q),2)24) = H (BTsp(q))-

One might hope to obtain characteristic classes for (unframed) symplectic foli-
ations by considering the complex W(sp(q), 2, U(q))24 of U(g)-basic elements in
W(sp(q), 2)24. Here we are identifying the unitary group U(g) with the maximal
compact subgroup O(2qg)NSp(q) of Sp(q). However, H (W (sp(q),2, U(q))2
contains only classes of the form e;w* and no exotic elements. This results from
the fact that the restriction map on invariant polynomials 7(Sp(q)) = I(U(q)) is
injective [13].

The construction here is closely related to the construction in [15] and [4] of
characteristic classes for (unitarily) framed Kéahler foliations and to the measure
classes for SL(g)-foliations studied in [10] and [11]. The classes for framed
Kihler foliations are represented by closed forms u#; A& Aw*. Here w denotes the
transverse Kdhler 2-form and wu;, ¢, arise from the Chern-Weil construction
applied to the Chern polynomials, using the canonical Bott connection given
locally by pulling back the Hermitian connection on the model manifold. If a
framed Kaéhler foliation is viewed as a framed symplectic foliation, then the sym-
plectic characteristic classes are determined by these Kihler classes using the
identities

ei= > (=1)¢e

JHI=2i
and

2uy; for i< 2
2.5) y, = 2uz fori=|q/2]

0 for i>|q/2].

We conclude this section by remarking that the w-classes arise naturally in the
Gelfand-Fuks cohomology of the Lie algebra 8, of formal Hamiltonian vector
fields. This is the Lie algebra of infinite jets at 0, j&(V) of vector fields ¥ on R29,
with flows preserving the usual symplectic form o € Q%(R?9). It is explained in
[3] (for example) how a framed symplectic foliation (F, w, s) on M givesriseto a
characteristic map H'(8;) —» H"(M). It is well known that there is a canonical
map W(sp(q)) - A(8%) which factors through W(sp(q))2, and relates the two
constructions. One can extend this map to W(sp(q), 2),, by sending the gen-
erator w to the 2-cocycle on 8, given by (jo'(V), jo (W))~ a(V(0), W(0)). It is
shown in [2] that this map relates the extended Weil algebra construction to the
formal vector fields construction. The computation of H"(8,) is an unsolved
problem. Partial results can be found in [5], [6], and [16].

3. Examples. One general type of example lives on the total space of the sym-
plectic frame bundle to a symplectic manifold. Indeed, if (N 24 w)isa symplectic
manifold (with symplectic structure o € 2%(/NV)) then M = Sp(7N) is foliated triv-
ially by the fibres of Sp(q) < M 5 N. This foliation F has a transverse symplectic
structure given by w = w*(«). There is a canonical Sp(g)-bundle isomorphism
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Sp(v»F) = n*(Sp(TN))
={(x,y)eMXM |n(x)=m(y)}.

From this, we obtain a framing s: M — Sp(»JF) defined by s(x) = (x, x)
We will consider the characteristic homomorphism

AT, w,5): H(W(sp(q), 2)24) = H' (M)

for this example. A Bott connection w*(8) in Sp(vJF) can be obtained by pull-
ing back any connection B:TM —sp(q) in M =Sp(7N). The resulting map

A(w*B): W(sp(q), 2) = Q (M) given by the data (n*3, s) satisfies
3.1 A(w*B)=k(8B), the Chern-Weil map for 8
’ on W(sp(q)), and A(r*B)(w)=w

Next consider the specific example given by N = 729, the 2g-dimensional torus
with its usual symplectic structure «. In this case M = T29 x Sp(g) and we car use
for B3, the flat connection

B:TM =TN xTSp(q) TSp(q)> sp(q).

Here O is given by left translation of vectors to the identity (the Cartan-Maurer
form). Let ¢: A'(sp(q)*) < Q°(Sp(q)) be the usual inclusion dual to O (as left invari-
ant forms on the group Sp(g)). The Chern-Weil map k(8): W(sp(q)) — Q'(M)
is characterized by k(8)(e;) =0 for all i and k(8)(¥;) =¥ (»;). This shows that
A(F,w,s) is determined on admissible classes by

AT, 0, 8)(r1e*)=[al* X [¥(¥1)]

(cohomology cross product) and A (F, w, s)(yre;w*)=0 for J#(0,0,0, ..., 0).
To complete the computation of A.(F, w,s), it remains only to describe the
Chevelley-Eilenberg homomorphism

H'(sp(q)) =N()1; )2, ..., ¥q) = H (Sp(q))
yi— ¥ (ynl.
Identifying U(qg) with a maximal compact subgroup of Sp(g), we have
H'(Sp(q)) =H"(U(q))
=H(u(q)) =N, uz, ..., u;).
Using identity (2.5), we see that
V(i A -- Ay ) =2u3 Nttgi, N -+ Nty

where it is understood that w,;, =0 if 2i;> gq.
This discussion yields a complete determination of A .(F, w, s) for this example.
In particular we have proved the following result.

3.2. THEOREM. Let (F, w,s) be the framed symplectic foliation on Sp(T*9)
described above. Then
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{AL(F, w,s)(y,wk) |y1w" is admissible with y;e AN(y1, ..., Y| q/2)}
is a linearly independent set in H"(Sp(7T279)).

One can also take N to be a complex torus with its usual Kdhler metric and
obtain a foliation on U(/NN), the bundle of unitary frames. The above analysis
then shows that the Kihler characteristic classes of the form A .(F, w, s)(#;w*)
are a linearly independent set.

Next we turn to an interesting class of Kédhler foliations. If H is a closed sub-
group of a Lie group G, then it is well known that the foliation of G by left
H-cosets is canonically framed. There is an extensive literature on the charac-
teristic classes for such homogeneous foliations. See for example [1], [12], and
[17]. Here we consider the case where G/H is a Hermitian symmetric space. We
refer the reader to [14] for background material on Hermitian symmetric spaces.
In this context, the left H-cosets give a framed Kihler foliation (F, w, s) on G.

The homogeneous Kihler structure on G/H has two components: a left G-
invariant complex structure J: T(G/H) —» T(G/H) and a left G-invariant and
J-invariant Riemannian metric {, ). There is a splitting ¢ =9+ m of the Lie
algebra g of G resulting from the symmetric structure. Here § is the Lie algebra
of H and we can identify m with T, (G/H). We make the following assumptions
which are satisfied by a variety of classical examples described in [14].

3.3. CONDITIONS. (a) G is semi-simple and {, ) is obtained by restriction of
the Cartan-Killing form to m.

(b) J is obtained by restriction of ad(Z,) to m, where Z; is some element in the
center of §.

There are general relationships between the characteristic classes for such Her-
mitian symmetric foliations. The key to this is contained in the following lemma.

3.4. LEMMA. Let G/H be a Hermitian symmetric space satisfying conditions
3.3. Let B: TU(G/H) — u(q) be the Hermitian connection for G/H and

h(B):R[&1,Cp, ..., Gl > X (G/H)Y=Q(G)n
be the Chern-Weil map for 3. Then

1
h(B) (&) = z—o,

where w is the Kdihler SJorm on G/H.

Proof. The invariant polynomial ¢;: u(g) — R is given by

- 1
ci(A)= —Zr—l:tl‘(A),

where A denotes a g X g skew Hermitian matrix. Hence

1
h(B) (&) = —5—tr(@)e QX (U(G/H))u(gy»
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where Q is the u(qg)-valued curvature form for 8 and the U(g)-subscript denotes
basic elements. Theorem 4.9 from Chapter 9 of [14] states that —2itr(Q) =
7*(p), where w:U(G/H)-» G/H is projection and p € Q*(G/H) is given by
p(X,Y)=S8(X,JY). Here S is the Ricci tensor for 8. This shows that

3.5) @@=
w

Writing K for the Cartan-Killing form on g, Proposition 9.7 from Chapter 11
of [14] shows that S(X,Y)= —1K(X,Y) for X,Y em = g/}. Condition 3.3(b) is
used here. Finally, condition 3.3(a) shows that p(X,Y) = —%(X , JY ). The Kéahler
form is defined by w(X,Y) =<X, JY) so that this identity together with equation
(3.5) complete the proof. O

w*(p).

3.6. COROLLARY. Let G/H be a Hermitian symmetric space satisfying con-
ditions (3.3), and (F, w, s) the associated framed Kdhler foliation on G. Then w
is an exact form.

Proof. We obtain a map W(u(q)), EN Q°(G) by using the pull-back of the Her-
mitian connection as a Bott connection. Then w = 87wA(&) =d(8wA(w,)). ]

Using Lemma 3.4, we see that the characteristic classes for a Hermitian sym-
metric foliation satisfy

A€oy = (8m) A (uséfe)).
Considerably more can be said in this context.

3.7. THEOREM. Let G/H be a Hermitian symmetric space satisfying conditions
3.3. Let 2q =dimr(G/H) and (F, w, s) be the associated framed Kdhler foliation
on G. We write A, for A (F, w,s). Then for w-classes u,Eka (with k> 0) we have

(@) Au(u;E0")=0if i1+ || +k>(g+1),

(b) Au(u;870%) = aA(nuiyuiy -+ ui,09) = (87)9alA (Ui, iy -~ u; &) for

someaecR if i1+ |J|+k=(qg+1).
If in addition G is connected and G/H compact, then (a) and (b) also hold for
the admissible classes with k =0.

Proof. This is a version of Pittie’s theorem on parabolic foliations [17] in
the Kahler setting. Pittie’s proof carries through here so we give only a brief
summary.

Let a=u;Aé A0k e 2°(G) be a form representing A*(uléka) and computed
using the pull-back of the Hermitian connection in G/H.

One first shows that there is a form ye A2MI+2%=2(g%y,, with yAw ~ & Aw*
(“cohomologous to”). Of course when k> 0, this is obvious. When k£ =0, one
must use the additional hypotheses of connectivity and compactness and apply
the hard Lefschetz theorem. An easy computation shows that we also have
U NG AD* ~u Ay Aw.

When i+ |J|+k>(g+1), we compute that d(8muyAu;Ay)=u;AyAo. It
follows that A,,(uIEka) =0 in this case.
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Next suppose that i+ |J|+ k= (g+1). Here there are two cases to consider:
ii=1and /;>1. If iy =1, then |J|+k=¢g and one must have & Aw;=aw? for
some a € R. In this case u,Ac“J/\wk=au1/\u,-2/\---AuisAw". When i;>1, we
compute that

d(iyNurNy) = u,/\'y/\c"l—ui/\u,-?_/\ ce /\u,-sl\'y/\c“,-l.
Hence
u,/\fy/\wk~81ru1/\'y/\51

~87ru1/\u,-2/\ tes /\u,-s/\'y/\é‘,-,.

Here deg(y A¢;;) =2g so we must have yAé;, = bw? for some beR. Letting a =
87 b, this shows that

Ui NG A ~auy Aup, A -+ Auj A O

Theorem 3.7 is a negative result in the sense that it puts severe limitations on
the non-triviality theorems that one can obtain by studying Hermitian symmetric
foliations. If such a foliation is viewed as a framed symplectic foliation, then the
symplectic characteristic classes are determined by using identities (2.5). In view
of the admissibility conditions (2.4), Theorem 3.7 shows that all the symplectic
classes vanish. Despite this fact, we will return to Hermitian symmetric foliations
in Section 5 when we turn to the study of w.(BT'sy(4)).

Next we describe a specific Hermitian symmetric foliation. The group U(q)
can be considered as a closed subgroup of SU(g+1) by letting

—0—

U(g) =

a
|
o| B
I

where Be U(q), ae S' c Cand adet(B) =1. Then SU(qg+1)/U(q) = CP?, which
is a famous Kéhler manifold. In Chapter 11 of [14] it is shown that this is a Her-
mitian symmetric space satisfying conditions 3.3. The resulting framed Kéahler
foliation on SU(g +1) has been studied by Kamber and Tondeur in [12] and by
Matsuoka and Morita in [15]. It is known that

~q
At iy -+ U; C1 ) =Ky, . ig Ui\ oo AU NUg g

where k(,,...,i,) is a non-zero real number and we identify H (SU(g+1)) with
A(uz, us, ..., ug41). This fact together with Theorem 3.7 can be used to prove the
following theorem.

3.8. THEOREM. Let A, be the characteristic homomorphism for the framed
Kdhler foliation of SU(q+1) by cosets of U(q). If u;é;w* is admissible and
h+|J|+k=qg+1, then A (u;é 0") is a non-zero multiple of

Uip NUis N\ -~ ANuj Nug 1€ H(SU(g+1)).
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Proof. In view of the above remarks, one need only show that the constants a
in Theorem 3.7 are all non-zero. This can be done by using the identity

ci(CP7) = (‘?)c.(CP")

I

1V q
=|—-— w
87 i
for the Chern classes of CP9=SU(q+1)/U(q), together with the proof of
Theorem 3.7. O
Theorem 3.8 shows that if we fix (i;, J, k) with i;+ |J|+ k = g +1, then

~ k
{Au(uiyurcyjo®) luye AN(uig+1, ..., Ug)}

is a linearly independent set in H (SU(g+1)). In view of Theorem 3.7, this is the
best possible non-triviality example from among the Hermitian symmetric
foliations.

4. Results on H*(BI'sp(4)). The existence of a framed symplectic foliation
(F, w,s) for which certain characteristic classes A*(S’,w,s)(y;ejwk) form a
linearly independent set implies that the corresponding universal classes

Au(yresw*)ye H (BTsp(g)

are also linearly independent. In addition to such independence considerations,
one also asks about the variability of these classes.

4.1. DEFINITION. A finite set
8 ={ay, s, ..., 0y} CH (BTsp(g))
is independently variable if evaluation of 8 gives an epimorphism
H(BT'spq); Z) > R".

A set of homogeneous classes 8 C H"(BI'sp(q)), finite in each degree, is indepen-
dently variable when the classes of degree / are independently variable for each
1=1,2,3,....

One does not expect any classes of the form A.(y,;e;) to belong to indepen-
dently variable sets in H '(stp(q)) since, as was noted in Section 2, all the
yrey classes are rigid. In contrast, one has the following result concerning the
w-classes.

4.2. THEOREM. Let SCH' (W(sp(q),2)24) be a set of w-classes. Then
A(8) C H (BT'sp(q)) is independently variable if and only if it is an independent
set.

Proof. We begin by noting that if (F, w) is a symplectic foliation on M, then
so is (&, tw) for all # = 0. In the following discussion, we will assume that > 0.
The Sp(g)-bundle Sp(v(F, w)) CGL(¢F) is the set of w-symplectic frames.
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This means that for x € M, the fibre Sp(»(F, w)), is the set of all frames (Zf, 5) =
(a1, az, ..., g, b;, bz, ooy bq) in (V‘C-F)x where w(a,-, bj) = 6,’j and w(a,-, aj) =0=
w(b,-, bj) o W

Let 1/V¢ : Sp(»(F, w)) > Sp(»(F, tw)) be given by (a,b )—~1/Vt (@ ,b ) on each
fibre Sp(»(F, w)),. This is an isomorphism of Sp(g)-bundles with inverse
vVt : Sp(v(F, tw)) = Sp(»(F, w)). These isomorphisms are obtained by restriction
of the automorphisms of GL(»J) given by 1/V¢1, V¢TI and the usual right action
GL(»F)xXGLR2q)—>GL»%).

If s:M —Sp(»(F,w)) is a framing, then 1/Vts =1/Vtes is a section in
Sp(v(F, tw)). In this way, a framed symplectic foliation (F, w, s) yields a one
parameter family {(F, tw,1/Vts) |t >0} of framed symplectic foliations.

Now suppose that 3: TSp(»(F, w)) —sp(qg) is a Bott connection for (F, w).
This means that 8 comes by restriction of a Bott connection v in GL(»J). It is
not hard to show that the connection

(V)*(B) =B-D(Vt): TSp(»(F, tw)) = sp(q)

is also obtained by restriction of . Hence (V¢ )*(8) is a Bott connection for
(F, tw).

Using B8 and (V¢)*(8) to compute representing forms e; and y; for (F, w,s)
and (&, fw, 1/Vts), we obtain the same results in Q°(M). This shows that

4.3) AT, to, INEs) (yre;0*) = tF A U(F, w, s) (y1e50%)

for all admissible classes y;e;w*.

Now suppose that 8 = {oy, a3, ..., a, ) CH (W(sp(q), 2)2,) is a set of w-classes
with A,(8) C H'(BTsp(4) linearly independent. Standard methods of Haefliger
imply that there is some framed symplectic foliation, say (F, w,s) on M, with
A(F,w,5)(8) CH (M) linearly independent. Without loss of generality, we
assume all classes in 8 have degree /. The universal coefficient theorem shows
that there are homology classes {zi,22,...,2,} CH;(M,Z) with A=[A4;;]=
[A«(F, w,5)(e;)(z;)] a nonsingular matrix.

Let f;: M — BI's(4) be the classifying map for (F, tw, 1/Vts), where ¢ > 0. Then
Au(a;i) (fi(z;)) = A;; and using (4.3) we see that A, (o) (fix(z;)) =A,-j_tf", where
a,-=erJw"", say. Now let ¢t =(t1,t2,...,t,) € (RY)” and define f;(f )eR by

> n
Ji(t)=Au(c) '21 ﬁj*(zj))
Jj=
< k
= E A,‘jtj i.
i=1
Here X7, f,j*(zj)eH,(Bf‘sp(q);Z), so that

Im(f;: (RY)">R)C Im(A(x;): H,(BI—‘Sp(q); Z)—R).
Letting F: (RT)" - R" be given by F(T) = (fl(?), ...,f,,(?)), we have

Im (F) C Im(H,(BTspq); Z) 225> R7).
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One computes that the differential of F at the point (1,1,...,1) is given by the
Jacobian matrix

ki
k> A

0 k,
which is nonsingular since A4 is nonsingular and each k; is positive. It follows that
Im(F) contains an open set in R”. Since A,(8) is an abelian group homomor-
phism, it follows that A.(8) is surjective. L]

By combining Theorems 3.2 and 4.2, we obtain a specific independently vari-
able set.

4.4. THEOREM. Let S C H (W (sp(q),2)2,) be defined by

8 = {y;w* admissible | yre N(¥1, .., ¥ q/2))}-

Then A.(8) C H'(BT'sp(q)) is an independently variable set. In particular, there
are epimorphisms H,(BPsp(q),Z)—»Rdl where d;=the number of classes of
degree l in 8.

5. Results on n,(BTs,(4)). There is a general method used to transform results
on the cohomology of a classifying space BI', for some type of framed folia-
tions, into results on w,.(BI'). The main step employs the rational Hurewicz
theorem to conclude that H,(BT; Q) = 7.(BT')®Q in a certain range of degrees
* depending on the connectivity of BT". This idea is used by Hurder in a number
of papers including [9] and [11].

For this method to work, one needs BT to be highly connected. We have seen
that the class w = A ,(w) € H*(BTsp(y)) is non-zero, so that BI's,, cannot beeven
2-connected. This complicates the application of Hurder’s methods in the sym-
plectic case.

We circumvent this difficulty by considering a related space introduced by
Haefliger in [7]. The class we H? (BI'sp(q)) corresponds to a homotopy class of
maps w: BI‘Sp(q)—>K(R 2). The homotopy fibre of w will be written BI‘bp(q)
It is shown in [7] that this space is (2g —1)-connected. Since ; (BT'spig)) =
w;(BTsp(q)) for i#2, the space Bl's,(,) can be used to gain information on the
higher homotopy groups of BI‘Sp(q)

Elementary obstruction theory shows that BI‘Sp(q) is a classifying space for
Ispg)-foliations as defined below.

5.1. DEFINITION. A I‘Sp(q)-fohatt‘on (F, w,n,s) is a framed symplectic folia-
tion (5, w,s) together with a 1-form n satisfying dn = w.

Additional cohomology invariants for I's,4)-foliations will be introduced. The
new invariants are given by closed forms divisible by 7. We begin by adding a
one-dimensional generator 5 to the A-complex for W(sp(q), 2),4, described in
Section 2, yielding



116 CHAL BENSON

az/\(yls Y2, cees Vg 17)@11[31, €2, ...,€4, w]Zq-

Here of course dnp=w in Q. If (F, w,,s) is a Tsy(,-foliation on M, then we
obtain a DG algebra map A(B): @~ Q' (M) by choosing a symplectic Bott con-
nection 3. We obtain a characteristic map A.(F, w, n,5): H (@) - H (M) which
is independent of the choice of 8.

The Vey basis for H°(Q®) is given by admissible classes of three types:

(a) yrey as in (2.4);

(b) yre;w® asin (2.4), with k=1and i+ |J|+ k= (q+1);

(c) yreyw”*y, where I=¢ or 1=ij<ir<---<i;=gq, |[J|+k=q and i; <the

index of the first non-zero Jj;.
The classes of types (a) and (b) are the classes arising from H (W(sp(q), 2)24)
which are potentially non-zero for framed symplectic foliations with an exact
transverse symplectic form. The classes of type (c) are new invariants for Fsp(q)-
foliations which will be called n-classes.

Suppose that G/H is a Hermitian symmetric space satisfying conditions (3.3).
The proof of Corollary 3.6 shows that the resulting framed Kihler foliation
(F, w,s) on G becomes a f‘sp(q)-foliation by specifying » = 8w A(u;). Using this
identity, it is easy to relate the y-classes to the Kihler characteristic classes for
(F, w,s). One has:

5.2. THEOREM. Let G/H be a Hermitian symmetric space satisfying condi-
tions (3.3) and (F, w, 7, s) the associated T'syq)-foliation on G.
(@ Ifyioime H'(R) is an n-class with y; € N(¥1, Y2, ..., ¥ | q/2])» then

Au(yrwin) = x87 A (uuz ).

Here uz; =i Nuzi, \ -+« N2i if yi=yiu N\ -+ NYi.
(b) A.(yr ejwkn) =0 for all other n-classes.

This result combined with Theorem 3.8 shows:

5.3. THEOREM. The y-classes {A.(y;w9yq) Iy,e/\(yl,...,qu/ZJ)} Jor the
fsp(q)—foliation of SU(q+1) by U(q)-cosets form a linearly independent set in
H(SU(g+1)).

One can define independent variability for a set 8 C H'(BTs,(4)) as in Defini-
tion 4.1. The methods used in proving Theorem 4.2 also show that if S C H*(Q®) is
any set of n-classes, then A (S)C H '(Bf‘sp(q)) is independently variable if and only
if it is linearly independent. In particular, if 8 = (yrwi | yre A1, .o Y 1g721))
then A.(8) C H'(BI'sp(q)) is independently variable.

In view of the high connectivity of BI's,(4), this can be converted into a result
on the homotopy theory of BI'sp(4) and BT'sy (-

5.4. THEOREM. Let 2g+1=n=<4qg—1 and let
by =dim(A" 7Yy, yay ooy Y 0ar2)))-
Then there are epimorphisms w,(BTsy ) > R’ and 7 (Blsp(g)) > R7n,

Proof. Let {0y, az, ..., ap,} be a basis for ATT20 Gy oy, Yaqs2))- It will be
shown that the composition
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Tu(BTsp(q)) 5 H,(BFspq); Z) S RPn

is surjective where 3C is the Hurewicz map and G is given by evaluation of
(Au(1w99), A(azwy), .. A*(abnw 7)). This will prove the theorem since
for n>2, 7r,,(BI‘Sp(q)) = 7r,,(BI‘sp(q)) and for n=2qg+1, 7r,,(BI‘sp(q))®Q =
Tn (BI‘Sp(q))®Q The latter fact follows by tensoring the homotopy sequence for
the fibration BT'sp(q) < BL'sp(q)>> BU(q) with Q.

Let (F, w, 0, 5) be the I'sp(q)-foliation on M = SU(q +1) considered previously.
Let f;: M — BTs, () classify (F, tw, t5, 1/Vts) for t > 0. Since Blsp(q) is (2g—1)-
connected, we can adjoin cells of dimension <2¢g to M and obtain a (2g—1)-
connected CW complex WD M and extended maps F;: W— Bf‘sp(q). We know
that G: H,, (stp(q); Z) — R%n is surjective even when restricted to the subgroup
G generated by U,-oIm(f;.). This is the same as the subgroup generated by
U;>o Im(F,,), since n=2g+1 and only the 2q skeleton of M was altered to
obtain W.

The rational Hurewicz theorem shows that

T(W)®QEEL H (W;Z)®Q

is an isomorphism when n<2(2g—1)=4g—2, and is onto when n=4¢g—1.
Since H,(W;Z) is a finitely generated abelian group, we conclude that
3C: w,(W)—> H,(W; Z) hits all non-torsion elements for n<4qg—1.

G vanishes on torsion elements in H,(BTsp(,); Z) since R?» is torsion free.
Hence G is onto even when restricted to the subgroup G’ generated by the images
of all the non-torsion elements in H,(W; Z) under all the maps F;.. We havealso
shown that when (2g+1)<n=<(4qg—1), G’ is contained in the group generated
by the images of all the maps F;,o3C = 3CoF,y. ]

One can obtain extensive improvements of Theorem 5.4 by using additional
methods of Hurder. As before, we let b, =dim A" 297 1(y,, ey Y| gs2)) for n=
2g+1,.... Form the free graded Lie algebra £ with b, generators of degree n—1
and let a,=dim(£""!). If g=2, then £ has at least 2 generators (w%y and
y1w79) and it follows that {a,} has a subsequence tending to infinity.

5.5. THEOREM. There are epimorphisms

7n (BT sp(g)) > R
and
Tn(BTsp(g)) > R

Jorall n=2qg+1).

This result can be proved by introducing a family of dual homotopy invariants
for symplectic foliations and working by analogy with [9]. These invariants
arise from 'n-*(Izq), the dual homotopy of the algebra I, =Rley, ..., €4, w]z;. If
(F,w,n,8)isa Fsp(q) -foliation then some of the lower-dimensional 1nvar1ants are
obtained by using the characteristic classes (arising from H°(®)) and the Hure-
wicz map as in the proof of Theorem 5.4. In some sense, the higher dual homo-
topy invariants are iterated (dual) Whitehead products of the lower dimensional
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ones. Theorem 5.5 is proved by evaluating such higher dimensional invariants on
iterated Whitehead products of non-zero classes detected in Theorem 5.4. An
important observation is that all products of the cocycles used to obtain the Vey
basis for H°(Q) are zero. This makes the situation here formally identical to
those considered in [9].

In conclusion, we note that Theorem 5.4 shows that 7r2q+1(BI=‘Sp(q)) # 0 and
hence that BI'sp(q) is at most 2g-connected. It has been conjectured by McDuff
that BI'sp(4) is indeed 2g-connected.
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