THE CLASSIFICATION OF PL FIBRATIONS

Mark Steinberger

Here all PL spaces are locally finite and all PL maps are proper, hence trian-
gulable [13]. By a PL fibration we mean a PL map which is a Hurewicz fibration.
A concordance between PL fibrations over B is a PL fibration over B X I which
restricts to the given fibrations over B X dl.

By a PL fibration with fibres of the homotopy type of the PL space K and with
a fibre homotopy trivialization we mean a PL fibration p: E — B together with a
continuous fibrewise map j: BX K — E, which is a fibre homotopy equivalence.
A concordance of same includes a fibre homotopy equivalence from BXx I x X to
the total space (over BXx[I) as part of the data. (A more traditional definition
would be to additionally require the maps j in fibrations and concordances to be
PL inclusions. We show in Corollary 4.6 below that these two definitions give
rise to the same set of concordance classes. This would also follow much more
simply from a sequel [17] in which we show that PL fibrations are fibrations in
the PL category.)

PL fibrations were first studied by Hatcher [12], who showed that the fibres
of a PL fibration over a connected base are naturally (via fibre transport) simple
homotopy equivalent (see [5] for a generalization to compact ANR-fibrations).
In addition, he asserted the following:

ASSERTION A [12, 3.1].

(i) PL fibrations are classified up to concordance by the classifying space of
the category of compact PL spaces and CEPL maps (PL maps with con-
tractible fibres).

(ii) PL fibrations with fibres of the homotopy type of K and with fibre homo-
topy trivializations are classified up to concordance by the category of
compact PL pairs (L, K) with K C L a homotopy equivalence, and CEPL
maps which restrict to the identity map of K.

ASSERTION B [12, 9.1]. Let C(M) denote the space of concordances of
the PL manifold M and let BC(M) be its classifying space. Then passage
from concordance bundles to PL fibrations induces a homotopy equivalence
from li_r_r;k BC(M X1 k) to the basepoint component of the classifying space
for PL fibrations with fibres of the homotopy type of M and with fibre homotopy
trivializations.

ASSERTION C [12, 9.1]. The natural map BC(M) — lim; BC(M x I*) is highly
connected in a “stability range” depending on the connectivity and dimension
of M.
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In [18], Waldhausen developed machinery to compute the rational homotopy
groups of a space @ WhP(X), conjecturally equivalent to the classifying space
for PL fibrations with fibres of the homotopy type of K and with fibre homo-
topy trivializations. Several papers have been published which carry out these
computations and give deductions via Assertions B and C above regarding the
rational homotopy groups of automorphism groups of manifolds (e.g., [2], [3],
[81, I9])-

Unfortunately, although Hatcher’s [12] is insightful and has been highly influ-
ential, the arguments given there for Assertions A, B and C are now well known
to be insufficient. Arguments for Assertions B and C have been announced,
although none have yet appeared. Here, we provide and prove a suitable refor-
mulation of Assertion A and show that @ WhPY(X) does classify PL fibrations
with fibres of the homotopy type of K and with fibre homotopy trivializations.

Let 8 be the category of finite ordered simplicial complexes and ordered sim-
plicial maps (i.e., the vertices of each simplex are ordered, compatibly with the
orderings for its faces, and the maps respect this order) and let ¢8 be the sub-
category whose maps are CEPL. For an ordered simplicial complex K, let ¢8(K)
be the category of finite ordered simplicial pairs (L, K); with K C L a homotopy
equivalence, and ordered simplicial CEPL maps which restrict to the identity
map of XK.

THEOREM 1. The classifying space BcS classifies PL fibrations up to concor-
dance. Moreover, PL fibrations with fibres of the homotopy type of K and with
Jibre homotopy trivializations are classified up to concordance by BcS(K).

Let C be the category of finite simplicial sets (c.s.s. complexes) and let ¢C and
cC(K) be the simplicial set analogues of the categories ¢8 and ¢8(K) above.
(The analogue of a CEPL map is a map whose geometric realization has con-
tractible fibres. We call such maps contractible.) To an ordered simplicial com-
plex K we may associate a simplicial set whose k-simplices are the ordered sim-
plicial maps of the standard k-simplex A* into K. This identifies $ with a full
subcategory of C and induces t: ¢S —»cC and ¢:cS(K) — cC(K). Waldhausen
defines @ WhPL(K) to be classifying space BcC(K) (e.g., [19, §3]), so that the
connection between @ WhP(K) and PL fibrations is given by the following.

THEOREM 2. The maps c:¢c8S - cC and .:c8(K)—cC(K) are homotopy
equivalences.

Following Quillen [16] this means that the induced maps of classifying spaces
are homotopy equivalences.

REMARK. The order preserving property of the maps in ¢8 seems a bit unnat-
ural geometrically. Our classification theorem actually proceeds by first classi-
fying PL fibrations by a more geometrically natural category ¢®D of convex cell
complexes and then comparing ¢® with ¢8 via first derived complexes (which are
naturally ordered). As there is no natural comparison between an unordered
simplicial complex and its first derived, we do not know if the analogous cate-
gory of unordered simplicial complexes is equivalent to these.
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We also consider the much simpler case of PL quasifibrations (PL maps which
are quasifibrations), showing these to be classified up to concordance by the
classifying spaces of the homotopy equivalent categories #8 and hC, where the
prefix # denotes the subcategory of 8 or € whose maps are homotopy equiva-
lences (after geometric realization). We also give the unpublished result of Wald-
hausen that if ACg is the subcategory of #C whose objects have the homotopy
type of K, then the natural map from BhCg to the classifying space for Hurewicz
fibrations (without finiteness conditions) with fibres of the homotopy type of K is
a homotopy equivalence. \

We give an outline of our constructions and methods in §1, and state our pri-
mary classification theorem (Theorem 1.1) as well as the basic tool results needed
later. We prove Theorem 1.1 in §2, and prove Theorem 2 and the absolute case
of Theorem 1 in §3.

Section 4 is devoted to the case of PL fibrations with fibre homotopy trivial-
izations, and includes unpublished material of Waldhausen. Section 5 contains
proofs of some tool lemmas stated in §1. This is followed by §6, which gives a
categorical interpretation of the functor on PL spaces represented by the classi-
fying space of a discrete category.

The author wishes to thank Marshall Cohen for numerous helpful conver-
sations.

1. Basic constructions. Let D be the category of all finite convex cell com-
plexes in Euclidean space and all maps f: L; — L, such that if ¢ is a cell of L,
then f restricts on o to a linear map f;: ¢ — 7, with 7 a cell of L, such that

(1) f1 admits a linear section carrying interior points to interior points, and

(2) if ryC 7 is a face, then f; '7; is a face of o.

We say that & C D is special if

(1) Finite simplicial complexes are objects of &.

(2) Restrictions of domain and codomain of maps in & remain in 8.

(3) Cartesian products of complexes (with cells the Cartesian products of the

cells of the factors) and maps in & are in &, as are the projection maps.

Note that 3 itself is special and that there is a unique smallest special sub-
category @, whose objects are the subcomplexes of finite products of simplicial
complexes, with polysimplices (products of simplices) as cells, and whose mor-
phisms are restrictions of ambient projection maps.

For a subcategory & of D, let c& (resp. £8) be the subcategory of & whose
maps are CEPL (resp. homotopy equivalences). We think of the prefixes c or & as
denoting subcategories of “weak equivalences” to be denoted generically by a
prefix w as in [18]. We prove the following.

THEOREM 1.1. Let & be a special subcategory of . Then Bc§E (resp. BhE)
classifies PL fibrations (resp. quasifibrations) up to concordance.

Thus, for w=c or A&, any two such Bw& are homotopy equivalent provided
that their fundamental groups are countably generated. Clearly this is true of
Bw(®. The following gives such homotopy information in many cases and implies
the absolute case of Theorem 1.
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THEOREM 1.2. Let & be a special subcategory of 3 containing the cate-
gory of finite simplicial complexes and simplicial maps. Then the natural map
x: w8 - wé& is a homotopy equivalence for w=c or h.

We prove this in §3.

First, we give a categorical interpretation of the set of homotopy classes of
maps from a PL space to the classifying space of a category. Note first that if £
is a partially ordered set (hence category) then the classifying space BL is naturally
a simplicial complex. Let C be a category and B a PL space. Define a simplicial
functor from B to C to be a triangulation BL = B (= denotes a PL homeomor-
phism) together with a contravariant functor F: £ —» C, where £ is a partially
ordered set. Two simplicial functors are concordant if there is a simplicial functor
on B X I which restricts to the given functors on B x dI. We write {B, C} for the
set of concordance classes of simplicial functors from B to C.

The following theorem ought to be folklore. We prove it in §6.

THEOREM 1.3. The set of homotopy classes of maps from B to BC is naturally
isomorphic to the set of concordance classes of simplicial functors from B to C.

Passage from simplicial functors on B to PL fibrations or quasifibrations over
B will be given by a triangulated iterated mapping cylinder functor to be defined
below. The idea of using iterated mapping cylinders to classify PL fibrations is
originally due to Hatcher [12]. Modulo change of notation, he defines the iterated
mapping cylinder, M(f, ..., fx), of maps f;: L; —» L;_; by induction, with M (f})
the cylinder of f;, and with M(f;, ..., fx) the mapping cylinder of the inductively
defined composite M(fi,1,..., fxr) = L; = L;_,. There is a natural, inductively
defined projection map of M(f;, ..., fx) onto the k-simplex A¥, which may be iden-
tified with the iterated mapping cylinder of k£ copies of the identity map of a point.
The construction as stated is defined unambiguously and functorially in the topo-
logical category; but is not well-defined in PL, as the simplicial mapping cylinder
of [6] or [20] depends strongly on the triangulation of a map, with isomorphisms
between the mapping cylinder of a simplicial map and a subdivision being non-
canonical and not fibrewise. (One way of seeing the non-canonicity is that the
natural embedding of the topological mapping cylinder of a degeneracy A% — Al in
the join A2 Al is onto a non-PL subspace. Another, and related way is that push-
outs are not functorial in the PL category.) We generalize Cohen’s simplicial
mapping cylinder [6] to an iterated mapping cylinder C(f;, ..., fx) of maps of con-
vex cell complexes, and generalize Whitehead’s proof [20, §10] that this con-
struction is fibrewise homeomorphic to the topological iterated mapping cylinder
M(fi, ..., fx) (Lemma 1.4 below).

Note that if A¥ is viewed as the classifying space of the partially ordered set k =
Vo< --- < v and F: k — spaces is defined by F(v; < v;) = fi41°---ofj: L;j — L;, then
M(fi, ..., fx)— AFis precisely the 2-sided bar construction B(ob &k, k, FF) » Bk =
A¥ of [15, §12], sometimes referred to as the homotopy colimit of F. For a gen-
eral simplicial functor F: £ — spaces we write ex: M(F) - BL =B for the natural
projection of the homotopy colimit of Fonto B£L = B. Once again this is precisely
the assembly procedure given by Hatcher [12, p. 109].
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For L any convex cell complex (possibly infinite) let £ be its category of cells,
the partially ordered set of the cells of £, ordered by inclusion. Write L’ for BL,
the abstract first derived complex of L, simplicially isomorphic to any first derived
subdivision.

Generalizing the work of Cohen [6], we define the iterated mapping cylinder
C(fis.--» Jx) of maps fi:L;—>L;_;in D, for 1 =i=<k, to be the subcomplex of
the iterated join L{* --- * L} consisting of those simplices o¢* --- * gz such that if
i <j and o; and ¢; are not the empty simplex, say o;=0;,0< -+ < 0in; and o; =
0jo< +++ < 0jnj> then in; < fiy1°---°fj(0j0). Thus C(fy, ..., fx) is the classifying
space of the partially ordered set obtained by adjoining the relations generated
by fi(o) < o for o C L; to the disjoint union of the categories £;. The natural pro-
jection 7: C(fi, ..., fx) — AF, the k-simplex, is the simplicial map taking L; to the
ith vertex of A¥, and is induced by the obvious map of partially ordered sets.

Let F: £ —> 3 be a simplicial functor on B. Let ng: C(F) > BL =B be the
simplicial map which restricts over each k-simplex, xg< .- <xy of BEL to
T C(F(XxX0<X1)s ooy F(Xp_1<Xx)) — AN=xg<--- < X, the last isomorphism pre-
serving the order of the vertices. As above, 7 is induced by the obvious map of
partially ordered sets. :

We show the following in §5.

LEMMA 1.4, Let F': £ - D be a simplicial functor on B. Then C(F) and M(F)
are fibrewise homeomorphic.

This permits us to use topological information in deducing when ng: C(F) - BL
is a fibration or quasifibration.

The following is a straightforward generalization of an argument in [12, 2.1].
We give another argument in §5.

LEMMA 1.5. Let F be a functor from a locally finite partially ordered set £
into the category of compact ANR’s. Then er: M(F)— BL is a fibration if and
only if each map F(v <w) is cell-like (CE) (i.e., point inverses have the shape of
a point) and is a quasifibration if and only if each map F(v <w) is homotopy
equivalence.

Since CEPL maps are precisely those maps which are both PL and CE, we
obtain the following.

COROLLARY 1.6. Let F: £ - D be a simplicial functor on B. Then
7 C(F)->BL =B

is a PL fibration if and only if F takes value in c® and is a PL quasifibration if
and only if F takes value in h®.

For simplicity, we give the following basic observation here. By a simplicial
fibration (resp. quasifibration) over B we mean a simplicial map onto a triangula-
tion of B which is a Hurewicz fibration (resp. quasifibration). A concordance
between such is simplicial (quasi-) fibration over B X I which restricts to the given
ones over Bxdl. Let A Fib(B) (resp. AQF(B)) be the set of concordance classes
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of same over B and let PL Fib(B) (resp. PL QF(B)) be the set of concordance
classes of PL (quasi-) fibrations over B.

LEMMA 1.7. The natural maps 7
AFib(B) - PL Fib(B) and AQF(B)—PL QF(B)
are isomorphisms.

Proof. By the Alexander trick of inductive coning, for any two triangulations
of a given PL map p: E — B there is a triangulation of pX1: EX I — B X I which
restricts to the given triangulations over B X dl. O

The simplicial iterated mapping cylinder functor is seen to define a map
C: {B,cD}— AFib(B). Passage from simplicial fibrations to simplicial functors
may be obtained from the following more highly structured version of a con-
struction of {12] (see Remarks below).

Let p: E — L be a simplicial map with L = B. Define u(p): £ - @ as follows.
(As above, £ is the category of simplices of L.) For ¢ a simplex of L let u(p) (o)
be p_lé, where 6 is the barycenter of o, with cells o;N p_lé for each simplex
o1 with po; = 0. Note that if ¢ has vertices vy, ..., Ux, then o;N p"'c‘r is naturally
linearly isomorphic to (o;Np ~'vg) X «-- x (01N p ~'vy), so that w(p)(a) is iso-
morphic to a subcomplex of p lvgX .-+ X p~lvi. For 1 Co, let u(p)(r <o) be
the restriction of the projection away from the inverse images of the vertices not
in 7. Here the image of ¢;N\p ~'é under w(p)(t<a)is aNp~ 7.

The partially ordered set defining C(u(p)) has as objects the cells o p ™~ "¢ as
above, mapping down onto the object ¢ of £. Mapping ;N p ~!6 to o, induces
an isomorphism over £ from this category to the category of simplices of E. We
obtain the following.

1

LEMMA 1.8. C(u(p)) is fibrewise simplicially isomorphic to a first derived
triangulation of p.

Thus, any simplicial map has a well-defined combinatorial iterated mapping
cylinder decomposition.
This, together with Corollary 1.6, gives us well-defined maps

p: AFib(B)— {B,c®} and u:AQF(B)—{B,h®}

such that Ceu = id. Thus, Theorem 1.1 will follow if we display a concordance of
simplicial functors from u(C(F)) to F. We do this in §2.

REMARKS. Let p: E — L be a simplicial map and let x’(p) be the functor which
assigns to each o € L the first derived complex of u(p)(o). Hatcher [12, p. 105]
studied u’(p) as a functor from £ into PL spaces and noted that M(u’(p)) is
fibrewise topologically homeomorphic to p. This forms the intuitional starting
point of our approach, and our emphasis on convex cell complexes arises from
Lemma 1.8 together with the fact that without the machinery we give here we see
no way to provide a concordance of PL fibrations between p and C(u’(p)) for a
PL fibration p. ‘
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By a compact ANR-fibration over a PL space B we mean a proper map, with
ANR fibres and total space, which is a Hurewicz fibration. Write ANR Fib(B)
for the set of concordance classes of same. By [5, Theorem 1] and Lemma 5.2
below this is equivalent to the set of isomorphism classes of Hilbert cube mani-
fold bundles over B. As noted in [12, p. 103], Assertion B above is thus equiva-
lent to the statement that the natural map j: PL Fib(B) - ANR Fib(B) is an iso-
morphism. Let c®£L be Hatcher’s category of compact PL spaces and CEPL maps.
The constructions of [12] provide us with a well-defined commutative diagram

4

PL Fib(B) = A Fib(B) £ {B, c®L)

J M
ANR Fib(B).

However, even given a proof of Assertion B, and hence an inverse, j ~!, of j, the
existence of a concordance of simplicial functors between u(j ~'M(F)) and F is
highly non-obvious. The author does not see any reason why Bc®£L should clas-
sify PL fibrations.

The techniques presented here have yet to be applied to PL bundles.

CONIJECTURE. PL bundles are classified up to fibrewise isomorphism by BfD,
where 7D is the subcategory of  whose maps are transverse cellular [1].

Finally, we shall need some information regarding the fibrewise PL properties
of the iterated mapping cylinder C(F).

First, note that if F is the constant functor to a complex L;, then nf is the pro-
jection map from the usual ordered triangulation of L] X B£ onto BL. In general,
restricting to a totally ordered subset of £, say xo < --- <Xy, let G be the constant
functor to F(x,) and let y: G — F be the natural map. We show the following in §5.

LEMMA 1.9. If F(x;) is a convex cell for 0 <i <k, then the induced map C(n)
is collapsible and transverse cellular as is the restriction of C(n) to the fibres over
points not in the (k—1)-simplex xo< --- <xy_;. For general F, the restriction of
C(n) to these samne fibres is collapsible, and C(n) is CEPL if and only if the maps
of F are CEPL.

2. Classification of PL fibrations and quasifibrations. We prove Theorem 1.1.

As noted above, for w=c or A and for a simplicial functor F: £ - w& on B it
suffices to provide a concordance of simplicial functors between u(wg) (i.e.,
peC(F)) and F, taking value in w&. Preservation of the category & C O in the
constructions below is a consequence of the definition of special subcategory.

Write £; for the category of simplices of BL and define ¢: £,—- £ by
e(xo< -++ <xy)=Xxk. Then F; =Fee is concordant to F by the proof of Theorem
1.3 below. We define a subfunctor pgr: £; — & of the cartesian product functor
u(wr) X F as follows. The cells of pr(xp < --- <Xxi) are those product cells A X o
such that the carrier of A4 is contained in the closed star of ¢. Here, the carrier of
A is the smallest cell 7 of F(xy) such that A is contained in the iterated mapping
cylinder of the restriction of the maps to 7.
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Let p;: pr— p(7r) and p,: pg— F; be induced by the projection maps. Then if
x is an interior point of 4, p; !'(x) is the closed star of carrier 4, and hence col-
lapsible. For x an interior point of o, p; !(x) is the fibre of 7 over an interior
point of xo < --+- <Xy, where H is the restriction of the maps of F to the closed
star of o and its iterated images. This is collapsible by Lemma 1.9. Thus, there
are natural transformations

F < pp— p(mF)

through CEPL maps, giving rise to the desired concordance of simplicial functors
(see §6) provided that the maps of pg are in w&. This is immediate for w= A, so
let w=c.

If F'is a constant functor, the point inverses of an interior point (x, y) of A X o
are isomorphic to those of x in u(7g) with H as above, which are contractible,
as 7y is a fibration. If we restrict to a totally ordered subset of £, we obtain a
natural transformation 5: G — F, where G is a constant functor. Since fis CEPL
whenever g and fog are CEPL, the following lemma suffices.

LEMMA 2.1. Let n: G — F be a natural transformc{tion between functors G,
F: £ —c®. Then the induced map p,: pg — pr is CEPL.

Proof. First note by inspection of the first derived functor that if f: L, —> L, is
a map in O and if x is an interior point of the cell ¢ of L,, then f~!x is isomor-
phic to the category of cells 7 of L, for which f(7)=o.

Let AXo be a cell of pr(xg< --- <xy¢). If ,u('zr,,)(/_l) = A, then n(carrier A) =
carrier A. Thus, if 7 is the smallest cell of F(x;) containing both o and carrier A
and if p,(AX &)=AXxo, and o(A X &) is the smallest cell of G(x,) containing &
and carrier A, then y(a(A X &)) = 7. Thus, « defines a functor from the category
of cells of pg mapping onto A X ¢ to the category, X, of cells of G(x;) mapping
onto 7. Since the maps of y are CEPL, X is contractible, and it suffices to show
that « is a homotopy equivalence.

We use Quillen’s Theorem A [16]. Let (e) = 7. Then (A X &) C € if and only
if carrier A C e and 6 Ce. Thus, the comma category e\« is the product of the
category of all such A4 and the category of all such &. The latter has a terminal
object eMNn ~lg, hence is contractible. The former is isomorphic to a point inverse
in the fibre over an interior point of AX of the natural map from C(gy, ..., gx) to
C(fi,..-» fx), where g; and f; are the restrictions of the maps of G and F' to the
iterated images of € and 7 respectively. The result now follows from Lemma 1.9
and the fact that y: e — 7 is CEPL. L]

3. Proof of Theorem 1 in the absolute case and of Theorem 2. The abso-
lute case of Theorem 1 follows from Theorem 1.2 which we prove here. Let
B: w& — w8 be the abstract first derived functor, (L) = B£L = L’ in our notations
above. For L an ordered simplicial complex there is an ordered simplicial map
e: L’ — L, natural with respect to ordered simplicial maps, which takes a vertex
oo < --- <oy of L’ to the last vertex of o;. We show that e is CEPL, and hence
induces a natural transformation from gx to 1,s, and hence a homotopy from
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B(Bx) to 1g,s. Since e preserves the simplices of L and pushouts of CE maps are
CE it suffices to show that ¢: ¢’ — ¢ is CEPL for a simplex ¢. This factors as the

composite
cone €

o’=cone((do)’) =5 cone(do) > o,
where » is the identity on do and takes the cone point to the last vertex. Since v is
collapsible the result follows by induction on dimension.

To show that B(x8) is homotopic to the identity, we construct a functor
p: w& — w§, and natural transformations p;: p — x8 and p,: p —1,,5. As in the
proof of Theorem 1.1, p(L) is the subcomplex of L’ X L consisting of cells A X ¢
such that carrier A C star g, and p; and p, are induced by the projections. Here
carrier has the usual meaning. Again p; and p, are trivially CEPL, and the proof
that the maps of p are in w& is analogous to that of Lemma 2.1 but simpler.

REMARK. The argument above does not apply to the category of unordered
simplicial complexes in place of & as the product of unordered simplicial com-
plexes is not functorially triangulated.

The following version of Theorem 2 includes the case of quasifibrations.

THEOREM 3.1. For w=c or h, the natural map .: w8 - wC is a homotopy
equivalence. Moreover for any object K of 8, 1:c8(K) — cC(K) is a homotopy
equivalence.

Proof. We give the proof in the absolute case, with the argument being iden-
tical for the case of pairs.

We apply Quillen’s Theorem A. Since the geometric realization of «(L) is
naturally isomorphic to L, ¢ is an embedding onto the full subcategory of wC
consisting of objects for which the characteristic maps of nondegenerate sim-
plices are embeddings determined by their vertices. We call such objects sim-
plicial complexes, identify w8 with its image under : and identify ¢ with the
inclusion of this subcategory. Since w8 is full, the comma categories ¢(L)\ ¢ are
contractible. Let f: «(L) — L; be a map in wC. Since products and subcomplexes
of simplicial complexes are simplicial complexes, the pullback over f induces a
functor f*:L;\¢— (L) \¢ and a natural transformation »: f, f*— 1(z,\.). Thus,
L\ is contractible and the hypothesis of Theorem A is satisfied, provided each
L\ is nonempty (i.e., that any finite simplicial set is the contractible simplicial
image of a finite simplicial complex). We prove this by induction on the number
of nondegenerate simplices. Let L =X U, A¥ with A: 9A* > X ,andlet f: Y X
be contractible with Y a simplicial complex. Let Z be the pullback over 42 of Y
and let #: Z — Y be the induced map. Then L = C(#)Ucone Z is a simplicial com-
plex and each map below is contractible.

L ' C(h)Ucone 9A" 225 X7 U, cone A" =L{ 5 L,.

Here C(4) is the analogue of our mapping cylinder for simplicial sets, fjis the
natural map, f; is induced by the natural collapse of C(4) onto X’ and e is the
analogue for simplicial sets of the map ¢ in the proof of Theorem 1.2 above. [
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4. PL fibrations with fibre homotopy trivializations. We first specify our pre-
ferred classifying space for ordinary Hurewicz fibrations (without finiteness condi-
tions) with fibres of the homotopy type of K. Let 2§k be the topological category
whose objects are the compact ANR’s of the homotopy type of K (embedded in
the Hilbert cube) and whose space of morphisms from X to Y is the space of
homotopy equivalences from X to Y. Then Bh classifies fibrations as above
by [15, §12].

.For any of the categories wQ® defined above, let wQg be the full subcategory
whose objects have the homotopy type of K. Then there is an induced functor
v:wQy — hk, compatible with all of the inclusion maps between the categories
w@, which corresponds, on passage to classifying spaces, to forgetting the PL
and finiteness conditions on a PL fibration, and to passage from a quasifibration
p: E — B to the induced Hurewicz fibration Hur p: E xgB! - B.

Suppose given a PL fibration p: E — B with classifying map B = BL 25 BeSg.
By the covering homotopy property, a nullhomotopy of BveBF induces a fibre
homotopy trivialization of p. Moreover, the induced equivalence between the
space of nullhomotopies of BroBF and the space of maps from B to QBhgx
shows that homotopy classes of nullhomotopies are in 1-1 correspondence with
homotopy classes of fibre homotopy trivializations. Since homotopic trivializa-
tions are concordant, and since concordant PL fibrations are homotopy-canoni-
cally fibre homotopy equivalent, we obtain the following.

PROPOSITION 4.1. Concordance classes of PL fibrations with fibres of the
homotopy type of K and with fibre homotopy trivializations are classified by the
homotopy fibre of Bv: BcSx — Bh{k.

The following is an unpublished result of Waldhausen, analogous to [12, 3.2].
PROPOSITION 4.2. For any object K of C, the natural maps
BcC(K)— BcCg — BhCg
Jorm a fibre sequence.

Proof. Let 5: cCg — hCg be the natural inclusion. We show that for any object
L of Cg, the natural inclusion of ¢c@(L) in the comma category L/5 is a homo-
topy equivalence and that the hypotheses of Quillen’s Theorem B hold for 7.

For the first statement, note that cC (L) is the full subcategory of L/y whose ob-
jects are (weak) homotopy equivalences L N L which are inclusions. Denote this
by ir:c@(L)YCL/y. Let pr: L/g— c@(L) be given by p, (L L L))=LC Z(f),
where Z(f) is the standard mapping cylinder functor in the simplicial category.
Then the projection of Z(f) onto L, induces natural transformations displaying
pr as a homotopy inverse to i;.

For the second statement, it suffices to show that a contractible map f: Lo — L,
induces a homotopy equivalence f*:L;/n— Lo/n, so then the natural maps
Sd"L - L and L xI— L induce homotopy equivalences of comma categories,
and hence so does any weak homotopy equivalence (cf. §6).
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Thus, let f: Lo — L, be contractible, and let f,:cC(Ly) - cC(L,) be obtained
from pushing out by f. Because f is contractible, the pushout diagram

L2 f*LZ
U U
Ly L,

induces a natural transformation from iz :cC(Lo) C Lo/n to f*f.. Moreover,
since f is contractible, the natural map from the double mapping cylinder
Z(f)UL,Z(f) onto L, is contractible, inducing a natural transformation from
JubLo f*iL, tO i, With pr, as above. O

Theorem 3.1 now gives the following.
COROLLARY 4.3. The natural maps
BceS(K) — BeSg — BhSk
form a fibre sequence.

Theorem 1 now follows from Proposition 4.1 and the following unpublished
argument of Waldhausen (cf. [10, 4.6]).

THEOREM 4.4, The natural map BhCx — Bh g is a homotopy equivalence.

Proof. Define a simplicial category C, as follows. The objects of C,, are the same
as those of hCk for all n. The morphisms of C,, from Ly to L, are the weak homo-
topy equivalences of simplicial sets Ly X A" — L; X A” which fiber over the projec-
tions to the canonical n-simplex A”. The faces and degeneracies in the simplicial
structure of C, are obtained from pulling back along the simplex coordinate.

Let B be the geometric realization of the simplicial space (BC),. Considering
the classifying space functor as the realization of the simplicial nerve and revers-
ing the order of realization in the resulting bisimplicial set, we see that B is the
classifying space of the topological category whose objects are those of #Cx and
whose space of morphisms from Lg to L, is the geometric realization of the sim-
plicial mapping space of weak homotopy equivalences from Ly to L;. Thus,
there is an induced homotopy equivalence from B to BhJx by [15, §12]. More-
over, the natural map of BACg to Bh{x factors through this equivalence via the
identification of ACx with Cy and the natural map BCy— B =|BC,|. Thus, it
suffices to show that the total degeneracy map s: Cy— €,, is a homotopy equiva-
lence for all n.

Note that morphisms in C,, from Ly to L; are in 1-1 correspondence with weak
homotopy equivalences of simplicial sets from LgoXx A" to L;, via the projection
of L x A" onto L;. Note also that a morphism is in the image of the total degen-
eracy map s if and only if this map Lo X A" — L, factors through the projection of
Loyx A" onto Ly. This induces an identification of Ly /s with the category whose
objects are weak homotopy equivalences Ly X A" — L; and whose morphisms are
commutative diagrams
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L,
LoXx A"
L,

of weak homotopy equivalences. This category has an initial object given by the
identity map of Ly x A¥, and hence is contractible. The theorem follows from
Quillen’s Theorem A. L

Note that a similar argument, using the existence of homeomorphisms from
M x A* to M for M a Hilbert cube manifold, shows the following.

THEOREM 4.5. Let M be a Hilbert cube manifold and let HE(M) be its space
of self-homotopy equivalences. Let HE®(M) be the same monoid, but with the
discrete topology. Then the natural map BHE®(M) —» BHE(M) is a homotopy
equivalence.

Let p: E — B be a PL fibration. By a strong fiber homotopy trivialization we
mean a fibre homotopy trivialization j: B X K — E which is a PL inclusion. Such
inclusions also give rise to a notion of strong concordance. Theorem 1, together
with passage to iterated mapping cylinder projections from simplicial functors
L — c8(K), gives the following.

COROLLARY 4.6. Concordance classes of PL fibrations with fibres of the
homotopy type K and with fibre homotopy trivializations are in 1-1 correspon-
dence with strong concordance classes of PL fibrations with fibres of the homo-
topy type of K and with strong fibre homotopy trivializations.

5. Fine structure of iterated mapping cylinders. First we prove Lemma 1.9. If
each F(x;)=o;, a convex cell, then C(G) = g} x A*. Note that the boundary of
C(G) is the full inverse image of its image under C(y) and that the analogous
statement holds for the restriction of C(5) to fibres of points not in xg< --- <
Xr—1. Thus, by [6], it suffices to show that C(y) is collapsible.

In the general case, let F(x;)=L; for 0<i=<k and write f;:L;—L;_, for
F(xi_1<x;), 1=i=<k. Let A*¢g be a simplex of C(F) with ACC(fy,..-, fx—1)
and ¢ C L;. If ¢ is nonempty, say e =0¢< -+ < 0,, then A* ¢ is in the iterated
mapping cylinder of the restriction of the maps f; to the iterated images of o,,.
Simplices of C(G) which map onto A4 * ¢ are of the form A * g, where A C o x A" ™!
maps onto A under the composite

, —1 JrXx1 P -
oo X A"V I (fro0) X ATV D C(fiy s Sro1)-

Thus, we are back in the special case. By induction, the map 5 in the above com-
posite is collapsible onto its image, and f; X1 is a collapsible retraction so the
composite is collapsible onto its image by [6, Theorem 8.1]. Thus, the point
inverse under C(n) of an interior point of A X o is collapsible. If A is empty, then
point inverses are trivial. If ¢ is empty, then a similar argument to the one above
works in the special case, while in the general case, the composite
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Lix ARV I 1o s ANV O(A, ey o)

is CEPL by induction.

To prove Lemma 1.4, note that if f;: o; — 0,; are maps of convex cells for 1 <
i<k, then C(fi,..., fx) isthe cone on C(fi, ..., fx—1, fx | 80x) with the cone point
at the centroid of o. Since w g is simplicial, this coning is fibrewise linear along
the cone lines. If we show that the analogous statement holds for M (i, ..., fx),
then Lemma 1.6 follows by an inductively defined cone by cone fibrewise homeo-
morphism.

Choose a linear section s; for f;, with s;(interior ¢;_;) C interior o;. Let
g;: o — o; be the composite sgo-:-o85;0 fio---0of, for 1 =i =<k and let g4, be the
identity map of ox. Thus, g;°g; = gmin(, j)- Linearly embed oy as a neighborhood of
the origin in R”, with 0 in the interior of g;(ox), and define 8: g X A > oy X A* by

k 1 k—i
0(x,u)= ( ,20 (3) uigi+1(x), u) = (0u(x), u),

where
k
u={(ug,...,ug) €A

k
- {(uo, v ig) R ;=0 for O<i=<k, X u,-=1].
i=0

This induces 8: M(fj, ..., fi) = ox X A*. We shall show

(1) 6 is an embedding.

(2) The linear coning of (M (fi, ..., fkx—1, fx | 30%)) to the cone point 0 X vy is

a homeomorphism onto (M (fi, ..., fx)). Here vy is the last vertex of AX.

Note that (1) is true by induction on k provided that 6, is an embedding
when 1 = 0. Identify A¥*! with the join of A* and the origin in R**! and define
Pu: o — o by

k
Pu(x) = _20 Ui &i+1(x)

for ue A¥*1. Then 6, = ¢,,, where )\u=((1/2k)u0,...,uk). For ue AK*! with
u; #0, define ¥,: o, = R” by

¥ _ 1 kil U;
u(Xx) = ukx 2 Wi gi+1(x),
where
k
wi= X uj.
J=1

Then (1) follows from the following lemma.
LEMMA 5.1. ¢, and ¥, extend to inverse isomorphisms of R".
Proof. Let ¥,(x) =y. One shows by induction on j that

k Jj=1 u,-wj
D uginx)=y— > ——g;i+1(»)
i=j i=0 WiWit
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for 0 < j < k. The induction follows by applying g;, to both sides of the above.
When j =k, the result follows.

To prove (2), we show that the coning map, «, restricts to a homeomorphism
on the preimage of each 0,(ox). If ux =1, o ~'0,(0x) = cone 8oy, mapped homeo-
morphically onto ox. If u; <1, let

7= Ugp Uk 0
1—u’ "7 1—uy’ ’

Then o~ '6,(ox) is homeomorphic, by a homeomorphism 4, to the union of
0z(ox) and 0 _yu+,a2(d0x) for 0 <¢ =<1, which is in turn homeomorphic to the
mapping cylinder of the restriction to do; of fie---of; for some i. Since this is
contractible and since the inclusion of 6,(do;) factors through it, o must be
onto. An easy calculation shows that the appropriate restriction of aef°0_ )y 4z
is the inclusion in the fibre over v of ¢\ —sv;), Where s = ruy /(1 —up +tuy). So it
suffices to show that if u € A**! with ur #0and for 0 < ¢ <1, the image of ¢, —ru; v,
lies in the interior of the image of ¢,. Since ¢u_ upv, =1 —1)Py+tPu—uuvps
it suffices to assume 7r=1. But ¥, oci)u upve(X) can be easily seen to be a sum

f—-é rigi+1(x) with r; =0 and 21_0 ri<l.

As for Lemma 1.5, the statement about quasifibrations is well-known (cf. [15,
7.6 and §12]). That the maps of F are CE whenever e¢x: M (F) — B is a fibration
follows as in [12], essentially by noting that a map f: X — Y between compact
ANR’s is cell-like if and only if Y is a Z-set in M(f). To show that ex: M(F) - B
is a fibration when the maps of F are CE, note that the composité

M(F)x Q 22, pr(F) £ BE

is fibrewise homeomorphic to erxi14: M(FX1g) —» BL, where Q is the Hilbert
cube. The maps of Fx1gp, being cell-like mappings of Hilbert cube manifolds,
are near homeomorphisms [4, 43.2]. Thus, erx1, is easily seen to be completely
regular, and hence a bundle map [11]. Thus, ¢ is a fibrewise retract of a bundle,
and hence a fibration.

Chapman and Ferry [5, Theorem 1] have shown that if £ and B are locally
compact metric spaces, with B locally finite dimensional and locally path con-
nected, and if p: E — B is proper and a Hurewicz fibration with Hilbert cube
manifold fibres, then p is a locally trivial bundle. Given this, the above argument
produces the following.

LEMMA 5.2. Suppose a commutative diagram of proper maps of locally com-
pact metric spaces, with B as above:

E—»E’

aval

Suppose that p and q have ANR fibres, that p is a Hurewicz fibration, and that
fis CE. Then
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(1) q is a Hurewicz fibration.
(2) The natural map M(f)— BXx I is a Hurewicz fibration, providing a con-
cordance of fibrations between p and q.

This would also follow from the fibrewise Edwards theorem given in [5] if B is
an ANR.

6. Functors of PL spaces classified by discrete categories. We prove Theorem
1.3. The basic ingredient is the following result of Kan [14].

LEMMA 6.1. Let X and Y be simplicial sets. Then the homotopy classes of
maps between the geometric realizations of X and Y are naturally isomorphic to
the direct limit over k of the homotopy classes of simplicial maps of the kth bary-
centric subdivision of X into Y.

Here, the direct limit system is induced by the natural map ¢: X’ — X described
in §3.

Theorem 1.3 is stated for contravariant functors. However, the analogous
statement for covariant functors is equivalent, as the classifying space of a cate-
gory is naturally homeomorphic (by a map of simplicial complexes if the cate-
gory is a partially ordered set) to the classifying space of its opposite category.
We prove the covariant version.

A simplicial functor, of course, will correspond to the induced map of classi-
fying spaces in the isomorphism of Theorem 1.3. Concordant functors clearly
induce homotopic maps. Since simplicial maps and homotopies between nerves
of categories are induced by functors and natural transformations, respectively,
the lemma shows that any homotopy class from B to BC is induced by a sim-
plicial functor and that any two simplicial functors with the same domain cate-
gory are connected by a chain of natural transformations after sufficient sub-
division. Since a natural transformation between two functors from £ to C is
induced by a functor from £ X 9 to @, where 9 is the partially ordered set {0, 1}
with 0 <1, natural transformations induce concordances of simplicial functors.
Thus, it suffices to show that if £¢and £, are partially ordered sets triangulating
B and B£, is a subdivision of B£L;, then any simplicial functor defined on £, is
concordant to a simplicial functor defined on £4, particularly to the induced
functor in the direct limit system if £ is the category of simplices of BL,.

Subdivide BL; X I inductively by the Alexander trick, to obtain BL, along
B£,x0, BL, along BL; X1, and coning each ¢ X I in the interior, o a simplex of
B£L,. Since coning is the geometric consequence of adjoining a terminal object
to a category, this triangulation is induced by a partially ordered set £. Now
precompose the given functor with the functor £ — £; which takes a given vertex
to the last vertex of the carrier of its projection into BL;.
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