HARDY SPACES AND BMO-FUNCTIONS INDUCED BY
ERGODIC FLOWS

Jun-Ichi Tanaka

1. Introduction. Let X be a measure space with probability measure m, and
let {T,},<r be an ergodic measurable action of the real line R on X preserving rm.
The ergodic Hilbert transform on X, Hx ¢, of a function ¢ in 5 (X)) is defined
by the formula:

(1.1) (Hx ¢)(x) = lim ig

e +0 T Je<|t|<1/e
for a.e. x in X. The existence of this limit is shown in [2]. Let H*(X) be the sub-
algebra of L*(X) consisting of functions of the form ¢ +iH x ¢, and let Hy (X))
be the subspace of all functions in H*(X) with mean value zero. The space
HP(X) (resp. HY(X)), 0< p < oo, is defined to be the closure of H (X)) (resp.
HF (X)) in LP(X). The measure m is multiplicative on H*(X), and H*(X) be-
comes a weak*-Dirichlet algebra in L*(X) (cf. [10], [16], and Proposition 5.1 in
Section 5).

Let Y be a measure space with probability measure #1;, and let 7" be an ergodic
measure preserving transformation on Y. Suppose that F is a bounded measur-
able function on Y, bounded away from zero, and normalized to have inte-
gral one. Throughout this paper, we shall always assume that the ergodic flow
(X, {T;};er, M) is the “special flow under the function F” generated by ergodic
dynamical system (Y, 7, m;). More precisely, we define 7 to be the function by
the formula

dt
(T x) =~

n—1 .
S F(T’y)  if n>0,

1.2 ,n)y=+ 77°
(1:2) (7, m 0 if n=0,

—7(T"y, —j) if n<oO,

for each integer n and each y in Y. Let X be the region of Y X R under the graph
of F, that is,

X={(y,s):yeY and 0=s<F(y)},

and let m be the restriction of dm; Xdt to X. Then it is easy to see that m is a
probability measure on X by the hypotheses of F. By using (1.2), a measure pre-
serving transformation group {7;};cr on X is defined by the formula

(1.3) T,(y,s)=(T"y,s+t—7(y, n))
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if 7(y,n)=s+t<7(y,n+1), for each (y,s) in X (see [11, Section 2]). Then
(X, {T;},er, m) is an ergodic flow. The theorem of Ambrose [1] asserts that every
ergodic flow is isomorphic, in a measure preserving fashion, to a special one
just constructed in above. Thus there is no loss of generality from assuming it
throughout.

By the way, our setting may be regarded as a direct extension of local product
decompositions, which is very useful for understanding compact abelian groups
with ordered duals (cf. [8, Chapter II] and [15]).

Our principal objective is to establish an isometric isomorphism between
HF(X), 1= p<oo, and a certain Banach space associated with analytic func-
tions on Y X R, and particular attention is given to ergodic theoretic generali-
zations of BMO-functions. Our approach should make clearer the relationship
between classical Hardy spaces and analyticity on ergodic settings.

In the next section, we present some preliminary material which we shall -
need. In Section 3, our representation of H§(X), Theorem 3.1, is obtained and
we provide another proof of the basic theorem concerning BMO-functions. We
also study VMO-functions on strictly ergodic systems and a construction of
unbounded VMO-functions is given in Section 4. We close with some remarksin
Section 5.

This work was completed while the author was visiting the University of
California, Berkeley, and he would like to acknowledge the hospitality of the
Department of Mathematics. In particular, he would like to express his sincere
gratitude to Professor Henry Helson for stimulating discussions. The author is
also grateful to Professor Yuji Ito for his valuable advice about ergodic theory,
and to the referee for his useful suggestions which improved the first version of
this paper.

2. Preliminaries. We begin with some basic properties about the classical
Hardy spaces, H”(dt), 0 < p <o, on R. It is known that H!(dt) is the space of
all integrable functions of which Fourier transforms vanish on negative real line.
We define H(dt/(1+¢ 2)) = H®(dt), that is, the space of all boundary functions
of bounded analytic functions in the upper half-plane. Let H”(dt/(1+ %)),
0 < p < oo, be the closure of H®(dt/(1+¢t2%)) in LP(dt/(1+t?)). Then f lies in
HP(dt/(1+1t?)) if and only if f(¢)/(¢+i)*? lies in H?(dt). Recall that a locally
integrable function f is said to be a BMO-function on R if the norm

|/ 1emory = Sup |1| ‘f(l)—*—s f(s)ds|dt

17
is bounded, where the supremum is taken over all bounded intervals /. Then the
sp?ce BMO(R) of all BMO-functions on R.is isomorphic to the dual space of
H'(dt).

When 1 < p <0, H”(X) equals the space of all functions ¢ in L”(X) such that
the function of ¢, ¢(7T,x), lies in H”(dt/(1+¢?)) for a.e. x in X. In an ergodic
setting, an analogous definition of BMO-functions is given by Coifman and
Weiss [3]. A function ¢ in L!(X) belongs to BMO(X) if and only if the norm
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1 €
2.1) |l amocx) = ess sup sup - S |6(T, x) — M, $(x)| dt
X €e> —€

is bounded, where M.¢(x) = (1/2¢) [ ¢(T;x)dt. Similarly we denote by
BMO(Y X R) the space of all functions f(», ¢) in L(dm; x dt/(1+ %)) of which
the norm

| £l sMO(yx Ry = €85 sup| f(¥, +) | BMO(R)
y

is bounded.
Let Y, T, and F be as in Section 1, and define
(2-2) o(y, t)=(Ty’ t_F(y))

for each (¥, ¢) in Y X R. Then we may easily see that the hypotheses of F imply
that Y X R is the disjoint union U7~ _o ¢/(X). Let « be the mapping of YXR
onto X defined by

(2.3) (¥, ) =(T"(y), t —7(y, n))

if 7(y,n)=<t<7(y,n+1), where 7(y, n) denotes the function defined in (1.2).
Every function ¢ on X has the automorphic extension ¢" to YXR by

(2.4) 'y, t)y=dow(p, )

for each (y,¢) in Y X R. This automorphic extension will play an important
role in what follows. We note here the space of all automorphic extensions,
BMO(X)#, of functions in BMO(X) becomes a closed subspace in BMO(Y X R).

Let B be a Banach space, and let F be a closed subspace of B. The dual space
of B is denoted by B*. The annihilator F* of F is the subspace of all L in B* which
is orthogonal to F. Recall that by Hahn-Banach theorem F* and (B/F)* are iso-
metrically isomorphic to B*/F* and F*, respectively.

We refer to [6] for results about classical Hardy spaces and BMO-functions on
R. Analyticity in our setting can be found in [8] and [5, Chapter VII], and our
reference for the basic facts about Banach spaces is [4].

Let us introduce certain Banach spaces consisting of measurable functlons
on YxR. For 1 < p < oo, we define £” is the space of all f in L'(dm x dt) such
that

oo F(Tiy) . 1/p
N,(f)= X [SJ If(y,s+7(y,J))!”dmn(y)ds]

PR 0
2.5) g

o0

1/p
= X [S lf°o_’(x)|”dm(x)]
j=—o X

is bounded. Then £7 becomes a Banach space with the norm N,,. The dual space
(£7°)* of £7 is easily determined by the properties of the space of sequences (cf.
[4, Chapter I1V]). Suppose that 1/p+1/q =1. We denote by 917 the Banach space
of all measurable functions g on Y X R of which the norm
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3 F(TJy) . 1/q
Nj(g)= sup 5},5 lg(y,s+r(y,1))|"dm1(y)ds]

—°°<J<°° 2 0
(2.6) - Ve
= sup SX |goa"’(x)|"dm(x)}

—w< j<oo|

is bounded. Then (£”)* is isometrically isomorphic to 919. More precisely, if L
belongs to (£”)*, then we may choose a unique g in 917 with |L| =N}(g) such
that

L=\ " r0.080.0dm) ar
2.7

o0

= 3 | (oo dmwx

J=—00

for each fin £”. Conversely, for a given g in 919, (2.7) defines a linear functional
on £”. We notice that £! and 91 are equal to L'(dm, x dt) and L®(dm, x dt),
respectively.

By identifying (£7)* with 919, we obtain the following.

LEMMA 2.1. Let 1 < g < . For a given g in 99 and for a positive integer k, we
put

(2.8) he(y, )=

k

ol (v 1),
2k +1 j:E_kg o (»: 1)

Then there exists a weak-* limit point h of {hy}, which satisfies that h=0" for
some 0 in LY(X) with |0],<Nj(g).

Proof. Since N;(goaj) =Nj(g) for all j, we have easily Nj(h;) <Nj(g) for
all k. Then Banach-Alaoglu theorem can be used to have a weak-* limit point
h of {h}. Let {hg } be a net consisting of points in {A;} which converges to A
in weak-* topology. Then it follows from (2.8) that

hi o0o(y,t)—hg (¥,t)—0 (in norm-topology), and
hg ca(y,t) > heo(y,t) (in weak-* topology)

They yield that heo(y, ) =h(y, t) for a.e. (¥,¢) in Y X R. Since Nj(h) =< Nj(g), it
follows from (2.6) that the restriction 8 of 4 to X has the desired properties. [l

It is sometimes useful to define £%°, though its dual space is difficult. The space
£% is similarly defined to be the space of all f such that

(2.9) No(f)= X esssupl|f(y,0)]; (¥, 1) €’/ (X))

j=—o0
is bounded. For 1 < p < oo, a closed subspace JC” of £7 is defined to be the space
of all f such that the function of ¢, f(y, t), belongs to H'(dt) fora.e. yin Y. It
can be easily seen that 3C?, 1 < p < oo, is the closure 3C* in £”. We notice that the
dual (3CP)*, 1 =< p < oo, is isometrically isomorphic to 919/(3C”)" .
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We finally define a linear mapping ® of 3C?, 1< p=<o, into L?(X) by the
formula

(2.10) SNWs)= X feol(y,s)

J=—
for each (y,s) in X. It follows from (2.5) and (2.9) that ® is a bounded linear
mapping of which the norm is at most one.

3. Representation of Hardy spaces and duality. The following theorem is
derived from several well-known results in functional analysis. Let ker ¢ be the
closed subspace of all fin JC” such that ®(f)=0.

THEOREM 3.1. Let 1 < p <o, and let 3¢?, H{(X), ®, and ker ® be as before.
Then 3CP/ker ® is isometrically isomorphic to H§(X) via the mapping ®. In par-
ticular, ® maps 3CP onto H§(X).

Proof. We first show that the image ®(3C”) of JC” is a dense subspace of
HE(X). Let 1/p+1/g=1. If ¢ lies in H7(X), then we see that

) o0 nreddoinameyar=\{ gen(r, 000, 0 dmi(y)de

for each fin 3C?, where o and = are defined in (2.2) and (2.3), respectively. So it
follows from (2.4), (2.10), and Fubini’s theorem that

| smenmamex={ |~ ' 0,050, 0dm») dt

={ [S: ', 0 f(, 1) dt] dmy(y)

=0.

Since H{(X) '=HY(X), ®(f) belongs to HY(X). Similarly if a function ¢ in
L7(X) is orthogonal to ®(3CP), then we see easily that the function of ¢, ¢* (¥, 1),
lies in H9(dt/(1+t?%)) for m;—a.e. y in Y. This implies that ¢ is orthogonal to
H{(X). Thus we obtain that ®(JC”) is dense in H{(X).

Since |®(f)|, = Np(f) for each fin JCP, we may regard ® as a bounded linear
mapping of JC’/ker ® into H{(X). Then the adjoint ®* of ® maps H{(X)*
into (JCP/ker ®)* by the formula ®*(L)=L-® for each L in H{(X)*. We con-
sider 3C?/ker ® as a subspace of £7/ker ®. Notice that the dual spaces H{(X)*
and (£”/ker ®)* are isometrically isomorphic to L(X)/H?(X) and (ker ®)*,
respectively.

Next we show that ®* is an isometry of H§(X)* onto (J3C?/ker ®)*. Indeed,
for each U in (3CP/ker ®)*, we can extend U to a linear functional on £” with the
same norm |U| by Hahn-Banach theorem. Hence there exists a function g in 99
such that g is orthogonal to ker ®, Nj(g) =|U], and (2.7) represents U. On the
other hand, it is easy to see that f(», ¢) — feo ~/(», t) belongs to ker @ for each f
in JC? and for each integer j. Therefore we have
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Uf+ker )= |~ g0y, 0/, 0) dmy(y) ar
= SY S: g, 1) foa /(. t) dmy(y) dt

= SY g: goal(y, 1) f(y, 1) dmy(y) dt

for all f in 3CP. Since fyeo ™/ lies in ker ® for each fp in ker ®, goo’ is also
orthogonal to ker ®. Hence every geg”’ has the same properties as g. Let Ay be the
function defined by (2.8) with this g, and let # and € be as in Lemma 2.1. Then it
follows from the property of weak*-topology that (2.7) replaced g with A also
represents U. Recall that #=6% and @ lies in L9(X). So if we define Lo(d)=
fx 0(x)d(x) dm(x) for all ¢ in H{(X), then Ly is a linear functional on H§(X)
with |Lg| =0+ HI(X)|, where |0+HI(X)| denotes the quotient norm of
0+ HY(X)in LY X)/H?(X). Then since

P(Lo)(S+ker @)= | 0(0) BN (x) dm(x)

=Hx‘9(y,s) , S feol(y,s)dmi(y)ds

J=—0o0

={ |7 _o'G,0.f0,0) dmy) ar

= L |~ no, 01,0 dmy(y) ar

= U(f+ker o)

for each fin 3C”, we have that ®*(Ly) = U. Furthermore, since |U| = N;(g) and
Nj(h) =8|, it follows from Lemma 2.1 that

[2*(Lo)| = [0)g= |0+ H(X)]| =|Lo|-

On the other hand, since |®*|=]|®| holds generally, we also have |$*(Lg)| =
|® | | Lg| < |Lg]. This shows that ®* is an isometry of H{(X)* onto (3C”/ker &)*.

Therefore, by the closed range theorem [4, Chapter VI, 6.4], we obtain that & is
also a bounded linear mapping of 3CP/ker ® onto H§(X). It is easy to assert that
® is also isometric. This follows from the relation:

|®(f+ker ®)|,=sup{|L(P(f+ker ®))|; Le HY(X)*, and |L| =1}
=sup{|®P*(L)(f+ker ®)|; Le Hf(X)*, and |L| =1}
=sup{|U(f+ker ®)|; Ue (3C’/ker ®)*, |U| =1}
=N, (f+ker &),

where N,(f+ker ®) denotes the quotient norm of f+ker ® in JC’/ker ®. Thus
® is an isometry of JCP/ker ® onto H} (X), and this completes the proof. [



HARDY SPACES AND BMO-FUNCTIONS 341

In view of Theorem 3.1, it is interesting to provide a characterization of ker ®.

PROPOSITION 3.2. Let 1< p<oo, and let GP be the space of all f(y,t)—
Sfoa(y,t) with fin 3CP. Then G? is a dense subspace in ker ®.

Proof. 1t is obvious that f(y, ) — foo (¥, t) lies in ker ® for each f in 3C”, so it
suffices that (G?)*is included in (ker ®)*. For each L in (§”)", there is a function
gin N9, 1/p+1/q =1, such that (2.7) represents L. Suppose that 4, is the func-
tion defined by (2.8). Then since

[ 17 v o-r0, 80,0 amyyy dr=0

for each f in 3C”, every Ay represents L on JCP. Therefore, by Lemma 2.1, we
may find a function € in L9(X) such that

Ln=\{"_ron6y,0dm)a

- SX B(f) (x)0(x) dm(x)

for each f in 3C”. Hence L( fy) = O for each f; in ker ®; this proves the propo-
sition. J

We can extend the above mapping ® to the case where 0 < p < 1. The space 3C”
is defined to be the closure of IC®NLP(dm; X dt) in L?(dm, x dt). Since we use
the ordinary metric when 0 < p <1, 3C” is more natural than any other case. It is
easy to see that ® maps JC” into H§(X). In [11, p. 322], Muhly asked whether

$(3C?), 0< p=1, actually equals H§(X). Theorem 3.1 is motivated by this
question and shows that at least it is true for p=1.

Coifman and Weiss showed that the dual space of H'(X) is isomorphic to
BMO(X) in [3, Theorem 2]. We provide another proof of this fundamental
result. Their techniques are different from ours and based on deep results in har-
monic analysis and uniform algebras.

THEOREM 3.3. The dual space of H)(X) is isomorphic to BMO(X). More
precisely, if L is a bounded real linear functional on H{(X), then there is a real
Junction ¢ in BMO (X)) satisfying that

3.1 L) = Rey(x)$(x) dm(x)

for each  in HY(X ), where ¢ is unique up to additive constants. Moreover there
are two positive constants Cy and C, such that

(3.2) Ci|L| = |¢|smox) = Ca|L].

In order to prove Theorem 3.3, we need a definition and two lemmas.
For a given f in L(dm, x dt/(1+t2)), we define

) 1
Hyxr f(y, )= lim — |
em +0 T Je<|t—u|<i/e

1 u
f(y,u)[t_u + 1+u2]a’u
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for a.e. (y,#) in YXR just like the ergodic Hilbert transform Hy defined by
(1.1). The existence of this limit follows easily from Fubini’s theorem. Since
Riesz’s projection theorem holds for weak*-Dirichlet algebras, if € lies in L*(X),
then Hx0 lies in L'(X). Then we may see that Hy.r0%(», t)—(HXB)#(y, t) is
only an integrable function of y. In other words, there is a function p in L(Y)
such that

(3.3) (Hx0)"(y,1) = Hyxr0"(y, )+ p(»)

for a.e. (y, ) in Y X R. This also implies that
|(Hx0)" — Hy» g 0" smo(yxry = 0.

The next lemma is an immediate consequence of the case concerning H'(dt),
so the proof is omitted (cf. [6, Chapter VI, Section 4]).

LEMMA 3.4. The dual space 3C' is isomorphic to BMO(Y X R). Consequently,
if f lies in BMO(Y X R), then there are functions g, and g, in L(dm; X dt) and a
Sfunction q in L'(Y) such that
S, )=a(y, 1)+ Hyxrg(y, 1) +q(y)
Jor a.e. (»,t) in YXR.

From this fact, Lemma 2.1 enables us to characterize functions in BMO(Y X R)
which belong to BMO(X).

LEMMA 3.5. If f belongs to BMO(Y X R), then the following properties are
equivalent;

(1) f(,t)—feo(y,t) is only a function of y, and
(ii) we may choose functions 6, and 0, in L™(X) and a function r in L'(Y)
such that

(3.4 01+ Hx0)" (¥, t) = f(y, t) +r(»)
Sfor a.e. (y,t) in YXR.

Proof. (i) implies (i), so it suffices to show that (i) implies (ii). Suppose f
satisfies (i), and let gy, g, and ¢ be as in Lemma 3.4. For j =1, 2, we denote by
(h;)x the function defined by (2.8) replaced g with g;. Let h; and 6; be as in
Lemma 2.1. Notice that #; and 0; belong to L™(dm; X dt) and L*(X), respec-
tively. It follows from (i) that

S, )= (¥, )+ Hyxr(h2)x (¥, 1) +qr(y)
for some g, in L'(Y). We may also see that

{7 men ), namo) ar

= _SYSO_OOO Re g(y, ) Hyxr(M)x (¥, ) dm(y) dt

for each g in JC*. Therefore, by Lemma 3.4, we obtain that
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S, )=y, )+ Hyxrha(y, 1) +qo(y)

for some ¢go in L'(Y). Since hj= Bf, it follows from (3.3) that f satisfies (3.4).
]

Proof of Theorem 3.3. Let L be a bounded real linear functional on H{(X).
By the Hahn-Banach theorem, there exist a constant C and real functions 6, and
6, in L*(X) such that 0|+ |62]~ =< C|L|, and

L) =  Rey(x)(01(x) + Hx 05(x)) dm(x)

for each ¥ in H{(X). On the other hand, it follows from (2.1) that there is a con-
stant C’ such that

|Hx0lsmowx)=<C’[|0]|l and |0]smox)=]0]w

hold for each # in L*(X) as in the case of BMO(R) (cf. [6, Chapter VI]). Thus
|61+ H x 62| smo(x) < C2|L| for some absolute constant C,. If ¢ is a BMO-func-
tion on X, then ¢ belongs to BMO(Y x R). Since ¢ satisfies the property of (i)
in Lemma 3.5, we may find real functions 6; and 6, in L*(X) such that ¢ =
0+ Hx8,. If L is the functional defined by (3.1) with this ¢, then L is bounded.
Notice that, for ¥, and ¥, in L*(X), ¥, + Hx ¥ induces zero functional on H{(X)
if and only if ¥, + Hx {, is constant. Therefore by the above argument, we have
that |¢|emox) = C2|L|. Thus the closed graph theorem assures that there exists

an absolute constant Cj satisfying the inequality (3.2). This completes the proof.
[

4. Unbounded YMO-functions on strictly ergodic systems. For the case of
ergodic dynamical systems (Y, 7, m,), analogous definitions are also given in [3].
A function p in L(Y) is said to belong to BMO(Y) if the norm

n

| Pl BMO(y) = Sup ess sup > | p(T/y)—M,p(y)|
n y 2n+1 j=-—n

is bounded, where

n
T'y).

M,p(y)=

The ergodic Hilbert transform Hy p of a function p in L'(Y) is defined by the
formula

Hyp() =" % p(T ).
T j=0 J

In this section, we always assume that 7" denotes a homeomorphism on com-
pact Hausdorff space Y for which the topological dynamical system (Y,7)
is strictly ergodic. The unique invariant probability measure on Y is also denoted
by my. Thus, because of a theorem of Sarason (see [6, Chapter VI, Theorem
5.1] and [13]), the class VMO(Y) of all: VMO-functions is defined to be the
closure of C(Y) in BMO(Y), where C(Y) is the space of all continuous func-
tions on Y.
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In [12] Petersen showed, among other things, that there exist unbounded
VMO-functions on Y under the condition that (Y, 7') is a strictly ergodic sub-
shift. We now show that this holds on every strictly ergodic system (Y, 7).

To apply the property of ® defined in (2.10), we consider a continuous flow
built under the constant one. Let X be the quotient topological space Y x[0,1]
by identifying (y,1) and (7, 0) for all y in Y. We then define 7, by 7,(y,s)=
(TH+y s+t —[s+¢]) for each (y,s) in X =Y x[0,1), where [¢] denotes the
largest integer not exceeding ¢ (compare this with the definition (1.3)). Then
(X, {T,};cr) becomes a strictly ergodic flow and the unique invariant probability
measure m is the restriction of dny X dt to X (cf. [14]). Notice that if £ is an open
set in Y, then m(E)=m(E x[0,1)) is positive.

THEOREM 4.1. We may choose ¢ in H{(X) such that

(4.1) Re ¢ is continuous on X, and ’

(4.2) if we set p(y)=I{dIm ¢(y,s)ds, then p(y) is an unbounded VMO-
Junction on Y, and so it is an unbounded BMO-function on Y.

In order to prove Theorem 4.1, we need the following.

LEMMA 4.2. There are a sequence {¢,;} of continuous functions in Hy (X ) and
sequences {E,} and {F,} of open sets in Y which satisfy
(4.3) |Re ¢ (x)|<27" for each x in X,
(4.4) the sequence {E,} is decreasing and Im ¢,(y,s)>2" for each (y,s) in
E,x[0,1), and
4.5) |Im ¢,(y,s)|<2™" for each (y,s) in (Y\F,)Xx[0,1), and m(F,)<
%ml (E,_1) forn=2.

Proof. Assume by induction, we have found {¢,, ¢3, ..., &,_1}, (El, E>, ..., E,_1}
and {F, F;,...,F,_1} for which the properties (4.3), (4.4), and (4.5) hold. By
the definition of Hilbert transform on R, we may choose a continuous analytic
function f on R such that lim,_ .| f(¢)|>=0, Im f(¢)>2"+1 on [0,1), and
|IRe f(z)] <2~ "*D on R. Let k be an integer such that 2k s+ < 2=+
for each s in [0,1). We fix a point y, in E,_;. Then there is an open neighbor-
hood W of y, in E,_; such that {T/W; j=0, +1, ..., +k} are disjoint from each
other, and Efz _em(T'W) < %m,(E,,_l). We set F, = Uf= «T/W. Let g bea
function in C(Y) satisfying that 0=g =<1, ¢ is supported on W, and g=1 on
some open neighborhood E, of y, in E,_,. We define g(y, t) = g(») f(t) for each
(», t) in Y X R. Then since g lies in 3C°, ¢, = P(g) lies in H§ (X). It is easy to see
that above ¢,,, E,, and F,, have the desired properties (4.3), (4.4), and (4.5). 0O

Proof of Theorem 4.1. Let {¢,}, {E,}, and {F,} be as in Lemma 4.2. Since F;
contains E; for all j, (4.5) implies that m, (Fj.,) <3 /m(E,). So if we set V, =
E \(U7=1 Fj4,), then my(V,) is positive. ‘Notice that Im ¢;(y, s) > 2/ for each
(y,s) in V,,x[0,1) and for j=1,2,...,n. We define that ¢ = >~ ¢,. Then it
follows from (4.3) that ¢ belongs to H3(X), and Re ¢ satisfies (4.1). On the other
hand, |[Im ¢, ,(y,s)| <2~U*+M for each (y,s) in V, %[0, 1) and for each j. So
we have that Im ¢(y,s)>14+2%2+234 ... 42" for each (3, s) in V,x[0,1). This
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shows that p(y) defined in (4.2) is unbounded. Let us show that p(y) is a VMO-
function on Y. Recall that there is a constant C such that |Hx¥|smowx) = C|V|«
for each ¢ in L*(X). Furthermore, it follows easily from the .definition (2.1)
that

< ¢l Bmox)
BMO(Y)

NS; v(y,s)ds

for each ¥ in BMO(X). Thus we have

k
Im ¢— 3 Ime,

=<
n=1 BMO(Y) n=1

1 Kk
lp1={, = msu0 a5

BMO(X)

k
Re ¢ — >, Re ¢,

n=1

=C -0,

0

as k —oo. Since the function of y, {§ ZX_,Im ¢,(», s)ds, lies in C(Y), this
implies that the unbounded function p(y) belongs to VMO(Y). This completes
the proof. ]

Theorem 4.1 can be used to give an additional information about the differ-
ence between ergodic settings and classical ones.

COROLLARY 4.3. There exists a continuous function 8 on X such that
(4.6) the function of t, 0(T,x), is infinitely differentiable for each x in X, and
(4.7) the ergodic Hilbert transform H x 0 of 0 is unbounded.

Proof. Let ¢ be the function in Theorem 4.1, and let g be an infinitely differ-
entiable function on R such that g is supported in (;];, %) and has integral one.
Then we put

1
00y, 1)=g(0)-| Re $(y,5) ds

for each (y,¢) in X =Y x [0,1). It is easy to see that @ has the property (4.6). We
extend 6 —Re ¢ on X to Y X R as follows:

_ ] 0y, t)—Rep(y,t), for (y,¢) in YX[0,1),
(>, t)—{ 0 , otherwise.

Observe that A lies in LlﬂL”(dmlxdt) and that {2, k(y, t) dt =0. Hence we
may easily find a function f in JC' such that Re f= A by the definition of Hilbert
transform on R. Then the function ®(f) in H{}(X) satisfies Re d(f)=60—Re 9.
Since Re f is supported in Y X [0, 1) and bounded, we have that

sup|Im f(y, )| = O(t~?), as t— oo.
y
From this fact, it is easy to see that the function of y, {bIm ®(f)(y,s)ds, is

bounded. So the function of y, j(l) Hx0(y,s)ds, cannot be bounded by (4.2).
Thus H x @ satisfies the desired property (4.7). U
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5. Remarks. (a) We do not know whether Theorem 3.1 holds when p =co.
However, just as in the proof of Theorem 3.1, we see that ®(3C™) is weak*-dense
in Hy(X). With the notion of automorphic extension defined by (2.4), this fact
enables us to provide another proof to one of the most fundamental results in our
direction (cf. [10, Theorem I] and [16]).

PROPOSITION 5.1. H®(X) is a weak *-Dirichlet algebra under pointwise mul-
tiplication.

Proof. If ¢ lies in H®(X), then ¢ f lies in 3C* for all f in J3C®. So we have
fx P (f) dm=0. Since ®(IC) is weak*-dense in Hy (X ), this implies that m is
multiplicative on H*(X). On the other hand, if ¢ in L'(X) is orthogonal to
H®(X)+ H®(X), then ¢ is orthogonal to JC*+ JC*®. Therefore it follows from
the ergodicity that ¢ must be a constant, so it is null. Thus we obtain that
H*(X)+ H>™(X) is weak*-dense in L®(X). |

(b) We denote by H?(d6/2w), 1< p < o, the classical Hardy space on the unit
circle, and let H{(d6/2x) be as before. By considering the case where Y is one
point and F is equal to 2w, Theorem 3.1 implies a relation between a certain sub-
space of H(dt) and H§(d0/27), 1< p <oo. Furthermore, by a normal family
argument, we obtain the following.

PROPOSITION 5.2. If ¢ belongs to Hy(d8/2x), then there exists a function fin
H\(dt) with ||¢|,=|f|: satisfying that

$()= 3 fls+2m))

J=—c0

for a.e. s in [0,27).

(c) It is not known whether there exists a function ¢ in H}(X) for which
H®(X)¢ is dense in H{(X). This problem is old and very attractive (cf. [8,
Chapter 5, Section 4]). Several equivalent forms were given by Gamelin [5,
Chapter VII, Theorem 7.8]. If, however, a single generator ¢ existed, it would be
represented as ®(f) for some f in JC'. This fact may be useful to attack the
problem.

(d) Let p be a positive function in L'(Y) satisfying that p(y)log*p(y)
does not lie in L'(Y), where log*p(y) =log max(p(»),1). Choose a positive
constant ¢ such that F>2c¢ on Y, and define a function A(y,¢) on YXR as
follows

—p(»y), for (y,t) in Yx|c,2c),
5.1 h(y,t) = p(y), for (y,t) in Yx[0,c), and
0 , otherwise.

It follows easily from the definition of Hilbert transforms on R that there is a
function f in JC! such that Re f=h, so ®(f) belongs to Hé(X). Notice that
Re ®(f)=h. Let L(X)log*L(X) be the space of all real functions ¢ for which
|| log™|¢| lies in L'(X). By (5.1), it is easy to see that Re ®(f) does not belong
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to L(X) logTL(X). On the other hand, we know that if 6 lies in L(X) log *L(X),
then Hx8 lies in L1(X) (cf. [7]). Thus we have the following.

PROPOSITION 5.3. Re H(X) is strictly larger than L(X)log*L(X).

By considering the case where F=1, a similar argument enables us to show
that Proposition 5.3 also holds in the discrete setting (cf. [9, Section 3]).

PROPOSITION 5.3'. There is a function p in L'(Y) which does not lie in
L(Y)logVL(Y) but Hyp lies in L'(Y).

(e) Let Y and X be as in Section 4. We remark how to relate BMO-functions
on X to those on Y. Since the proof is not difficult, we omit it (cf. [3, Proof of
Theorem 3]).

PROPOSITION 5.4. If p belongs to BMO(Y), then there exists a function ¢ in
BMO (X)) for which

1
(5.2 p(y)= SO o(y,s)ds

for a.e. y in Y. Conversely, (5.2) defines a function in BMO(Y) for each ¢ in
BMO(X).

(f) Let Y and T be as in Section 4. Suppose that F'is a positive continuous func-
tion on Y. By identifying (y, F(»)) and (7y, 0) topologically for each y in Y, the
region X of Y X R under the graph F becomes a compact Hausdorff space, and
the one parameter group {7;},cr in (1.3) defines a continuous flow (X, {7;},er)-
We may extend Corollary 4.3 to this case. It is slightly more complicated but
involves no new ideas. It would be interesting to determine what kind of con-
tinuous flows can be represented by the ones defined above, because we do not
know whether there exists a minimal flow on S3, where S° denotes the three di-
mensional sphere. If there were a minimal flow on S 3, it could not be represented
by a continuous flow built under a continuous function. On the other hand, every
minimal flow has an analogous representation (cf. [14]).
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