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1. Introduction. Let f be a meromorphic and locally univalent function in the
upper half-plane U, that is, f’(z) # 0 and any pole of f is simple. It is natural,
when looking for criteria which imply the univalence of f, to introduce the
Schwarzian derivative S(f, z), defined by

"N\’ 1 n\ 2
suo=(%)o-3(F) @

We shall use the notation

U={z:Imz>0}, L={z:Imz<0}, B(z,r)={w:|w—z|=<r}.

If f can be extended to a local homeomorphism F defined on the whole sphere
C then f will be univalent in U. This method for establishing univalence was
emphasized by Ahlfors in [1], where he gave extensions and alternative deriva-
tions of many known criteria for univalence. If F is differentiable at z = zq, say,
the condition |F;| < |F,| for z =z ensures that the Jacobian of F is not zero at zq
and hence that F is a local homeomorphism at zo. The stronger condition
|Fz| < k|F,| for all ze L, where 0 <k <1, says that f has a k-quasiconformal
extension to L. This is not the standard terminology, but agrees with that used by
Ahlfors in [1]. Thus for 0 <k <1, a k-quasiconformal mapping is one whose
maximal dilatation does not exceed (1+k)/(1—k). Ahlfors has proved the fol-
lowing result [1, p. 29].

THEOREM A. Suppose that 0< k<1, |c—1|<k and y=1Imz. If f is mero-
morphic and locally univalent in U and such that

)
(1.1) 2y23(ﬁz)—c(c—1)<z+"> <kc|

z+it

Jor all ze U and some t >0, then f is univalent in U and has a k-quasiconformal
extension to C.

The case ¢ =1 is the half-plane version of the well-known criterion of Nehari
[4] and Ahlfors and Weill [2]. As Ahlfors remarks [1, p. 29], the criterion (1.1),
depending as it does on establishing that the values of y2S(f, z) lie in a variable
disk, seems too complicated to be useful. Ahlfors let r - o in (1.1) and asked if
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the corresponding condition implies the existence of a k-quasiconformal exten-
sion for f. This is indeed the case, as the following result shows.

THEOREM 1. Suppose that f is meromorphic and locally univalent in U and
satisfies there the inequality

(1.2) 12¥2S(f,z)—c(c—1)| <k|c|,

where 0 <k <1 and |c—1|<k. Then f is univalent in U and has a k-quasicon-
Sformal extension to C. If |c—1| <1 and (1.2) holds for all z € U with k =1, then
[ is univalent in U.

The case k=1 can be dealt with by modifying the proof for 0 <k <1, or by
using the standard method of extending the result from 0 < k <1 to cover the case
k =1 (see Lehto [3]). These methods are discussed in Section 5. Moreover, the con-
dition (1.2) is sharp for ¢ =1in the sense that the theorem fails if £ > 1: the func-
tion f(z)=2z", 6>0, is not univalent in U but [2y2S(f, z)| =»?|z| 2(1+6%) <
1+ 62. However, the condition (1.2) cannot be sharp in the same sense for ¢ close
to zero since the condition |2y2S(f, z)| < 1 both implies univalence and is implied
by (1.2) for k> 1, if |c| is small.

2. The quasiconformal extension. We may assume that there are no poles of f
or zeros of f” on the positive imaginary axis—if f”(z) =0, there is nothing to
prove. We use the following notation. For 0 < r <1, set

2
R=1 rﬂa 2o=i(1+R*)"2,
so that
2
R<(+R)2=1F"
1—r?
We also set

D,=D(r)={z:|z—z20| <R},
Dy=Dy(ry={z:z2=00 or |2—2¢| >R},

and put D, =T. Clearly D,CcU, D,DL and, if 0<ri<r,<---<r,—1 as
n — oo, then

C_OJIDI(r,,) ~U.

Finally, we use the notation

u(z)=f2) (S @)% v =),
so that
wv—vu=l, u'v—v'u=0, u”v’—v”u’=%S(f, Z).
Note that (f’(z))"? is properly defined since f’(z) # 0 and all the poles of f”, if

any, are double poles.
The anticonformal mapping ¢ — z({) given by
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2(§)—zo=R*(§—Z0)
maps D, onto D,, D; onto D,, and has z({) = ¢{ for {eI'. Moreover,

az oz -2 42 _
df_ R(f ZO) ’ d§‘_ .

For a fixed r, 0 <r <1, we define

&) =f), ¢eDUT,

u(z)+((§—z)/c)u’'(z)
v(z)+((§—z)/c)v'(z)’

where z =z(¢) and u and v are as above. Clearly, f will depend on r, but we do
not emphasize this.

Theorem 1 for 0 < k <1 will follow if we show that, for a sequence {r,} of
values of r tending to 1, the above fis a k-quasiconformal mapping of C onto C.
In fact we shall show that f is a k-quasiconformal mapping for all r outside a
countable exceptional set which arises when I' contains poles of f. For such a
sequence {r,}, r,—1— as n— o, we consider the corresponding k-quasicon-
formal maps, denoted by f,. The set {f,|ne N} forms a normal family and by
passing to a subsequence, if necessary, we obtain a limit function F such that

(@) f,(¢) > F({) as n— oo, locally uniformly in C,

(b) F(5)=/($) for el _ _

(c) Fis a k-quasiconformal map of C onto C.

Since

2.1

)= §eDs,

_; Fa+r)+i(1—r?)
T EA-rH+ia+ry’

z(£)

we see that, as r—»1—,
z(H)-§ —z2(H-¢-¢.

Thus, no matter how the subsequence {r,} is chosen, it is clear from (2.1) that for
¢ € L we have

_ u(§)+((s—5)/oyu' ()

v(§)+H((E=) /v’ ()

Suppose that k = 1. In order to prove Theorem 1 in this case it suffices to show
that for a sequence {r,} of values of r tending to 1 as n — oo, the corresponding

mappings f, are locally univalent and hence univalent in C. Since £,(z) = f(z) in
Dy (r,), it follows that fis univalent in D;(r,) for all n. Hence fis univalent in U.

F($)

3. The function f. We have to show that the function f given by (2.1) is locally
homeomorphic at co and on I"' =adD,, and that

G.1) fi#0, |fel<k|fil

for ¢ € D,\{c0}. Note that if (3.1) holds, then fis a local homeomorphism at all
points ¢ € D,\ {o}. Hence f is locally univalent and hence univalent in C. Since
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f is clearly absolutely continuous on lines, (3.1) then implies that f is k-quasi-
conformal in C.
Henceforth we consider f{( f) only for {eDZUI‘ We have

o 15—z f')
A =flay+ =2 f()(l e f,(z)),

where z = z({). We may choose the sequence {r,}, and hence the fixed » now con-
sidered, so that I" contains no poles of f. Since f’(z)#0 for ze Uand f'(z) # o
except when f(z) = oo, the derivatives above remain finite on I'. Thus, for {He T’
and 6 sufficiently small,

Sf(So+8)=f(50) +8/($0) +O(57)
if ¢o+6€ D;UT, while if {(+ € D, we have

f(§0+5)=f(§'0)+f'(§'o){ g_—(i'o)+ [(5’ $o)—(z— 5'0)]}4'0(52)

1) d
23D z_(§o>}+0(a ).

—f<§o)+f'(ro>{ o
Since |(dz/d?)(§o)| =1and |c—1| =k <1(or [c—1|<1if k=1), it follows that f
is homeomorphic in a sufficiently small neighborhood of ;. (When k=1, the
assumption |c—1| <1 is made to ensure this.)
To prove that fis homeomorphic and sense-preserving also in a neighborhood
of o we note that, as {— o, we have

RZ
z2(§) =zp+ —=+0(7?).

§
Thus
AD=A+B(5) '+ B¢+ 057,
where
A= f(z0) —2(f"(z0)Y* (/" (zo) ™"
B = [3f (z0)—2/¥(z o)( J{((z";) }
By = —4c(f(20))*(f"(z0)) ™%
Now B, # 0 and
éi__mﬂ __—R* .,
B, S(f Z0) = 2e(+RD) Y6S(f, 20)»

since yo=Im z¢o= (1+R2)‘/2. From (1.2) we know that
- 2c)’oS(f,Zo)EJB<— 1 4>
and hence

B
B,

R? k 1
< — 1 <
1+RZ (lc [+hy=5=75
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since |c—1|<k<1. Also, |B,/B,| <3 if k=1. Thus f is homeomorphic and
sense-preserving also in a neighborhood of infinity.
To prove (3.1) we note that for {e D, \{]},

of =z, \7?

—ai' =c~ (v(z)+ v (z)) ’
of _ 1 (§—2)> {—z o\ dz
a._ =C ((C ) 2c S(.f,Z))(U(Z)'*‘ c v (Z)) dg-:s

where, of course, z=2z({). Also

v(z)+ = v(z)—(f’(z))“3/2[f( )— f( )(s“— )]

and this expression is finite even at the poles of f(z). Thus 6f/6§'¢0 as we
asserted. Moreover, f will be k-quasiconformal at ¢ if the complex dilatation p
satisfies

i.e. if the following inequality holds:
-1

d
(3.2) |—1 (¢—2)28(f,2) —c(c—1)| < k|c| —di_

Care must be taken at those points where f(z(¢)), f, 8/3¢, or 3f/3 becomes
infinite. If

fz(§)) = and flz(§)+h)=A_h '+ Ag+Ah+ -,
then
A_c
=20

Hence the above analysis remains valid in this case. If f, df/d¢, or 3f/9¢ is
infinite, then

S(§)=Ao+

S(z) _ 2¢
fl(z) =z’
At such points we consider 1/f instead of f. Now [u(1/f)|= [x(f)| and

B AN__ m2df f—zr)_z
65“(f> (2= (u(z)+ w@) .

$—2z2 f(7)
2¢ f'(2)

(3.3)

But

/()2 [u(z>+ i u’(z)] =f<z)(1— )+ =2 .

Thus, at points where (3.3) holds,

a
Y <—~> =—c(§—=2)2(f ().
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Hence even at these points {, we see that~6(l/ £)/d¢ is non-zero and remains
finite. A similar argument applies to d(1/f)/d¢. Thus it suffices to prove (3.2)
also for these ¢.
If we set
_(5-2)? -
4y* ’
then (3.2) reduces to showing that

2Ty2S(f,z) € B(c(c—1), k|c|V),

dz

V= a7

T=

’

when, by (1.2),
2y2S(f,z) € B(c(c—1), k|c|).

Thus to show that (3.2) is implied by (1.2), we must show that the disk
B(Tc(c—1), k|c||T|) is contained in the disk B(c(c—1), k|c| V). This will be so if
and only if the distance apart of the centers plus the smaller radius is equal, at
most, to the larger radius. We shall show that |T| <V, so we are required to
prove that |Tc(c—1)—c(c—1)|+k|c||T| < k|c|V or that

(3.4) |T—1{|c||c—1| = kl|c|(V—|T]).

Since we must establish this whenever [c—1| <k, we have really to prove the
inequality

(3.5) |T—1|<V—|T|.

Note that if k=1and |c—1| <1, and if |T| < V and (3.5) holds, then (3.4) holds

as a strict inequality.

4. The inequality. The final step in the proof is the verification of the inequality
(3.5). Since T and V depend only on {e€ D,\{o} we express them in terms of
ze€ D1\ {zp}. Set

z2=2z¢+Ne?®, O0<A<R, 0<0<27.

We show that, for all Ae (0, R) and all 8, the inequality (3.5) holds. Putting
R/N=p>1and z=x+iy we have

4.1) y=Imz=(14+R*)V24\sin @
and
_| |7 _|f-R) | R PR,
“ldf| | R Z—20 i
Since also

4y? T =N(p?*=1)%,  |T—1|=4y*) 7 [Ne?(u*—1)>+4y?|,
the inequality (3.5) reads
4.2) IN2e20(u2—1)2+4y?| < dy?u®— N (p2—1)2
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The preliminary inequality, V' > |T|, which we must establish is equivalent to
showing that the right-hand side of (4.2) is positive. Giving y its smallest value
yo=(1 +R2)1/2—)\ for a fixed A\, we must show that

4p>[(1+R*) 2= NP =N (p*=1)*>0

for 0 <X < R. That this latter inequality is true is most readily seen by replacing
(1+R?%)"/? by the smaller quantity R and verifying the ensuing inequality.
Returning now to the inequality (4.2), we note that

l)\ZeZiG(M2_1)2+4y2| 5)\2([12‘—1)2""4)’2
and this latter term is less than 4y2;¢2——)\2(,u,2—1)2 if 2y22)\2(,u2—-1). Thus we
need to prove (4.2) only in the case when y < [% (R2—2?)1"2 < R/V2 and, in par-

ticular, only when —r < 6 < 0. Now (4.2) is equivalent to the inequality G(8) =0,
where

G(0) =[4y22 =N (p? = 1)1 =[N} (u> — 1)* cos 20+ 4y |* — [N (u* — 1) sin 201%,

and y is given by (4.1). Elementary considerations show that the minimum of
G(6) in the range [—m, 0] occurs at § = —«/2. So it suffices to verify (4.2) for
6 = —x/2. Then it reads

[4((1+RY 2N =N (p?—1)*| = 4{(1+RD)2=N2W? =N (2 —1)%

If the expression in the modulus sign is positive, the inequality is obvious, since
p > 1. Otherwise the inequality reads

(RZ=N) (p2=1) =2[{(1+RH)Z NP (2 +1).

This final inequality is true for all R and \, 0 <X <R, as is again readily seen on
replacing (1+R?%)"? by R. Thus (3.5) is finally established and the proof of
Theorem 1 is complete for k < 1.

5. The case k = 1. Suppose that k=1 and |c—1| < 1. We have seen that then f
is locally homeomorphic at every point in D;UI’ U{eo}. As we remarked at the
end of Section 3, (3.4) holds as a strict inequality. In fact, this would be true for
0<A<Revenif [c—1|=1, ¢#0, since our proof of (3.5) shows that (3.5) holds
as a strict inequality. Thus the closed disk B(7c(c—1), |cT|) is contained in the
interior of B(c(c—1), |c|V) so that |u(f, )| =|(Fe/f:) ()| <1 for every
¢ e D\ {oo}. Hence fis locally homeomorphic in D,\ {eo}. We conclude that fis
a global homeomorphism, so that fis univalent in U. The proof of Theorem 1 is
complete. O]

We remark that the case kK =1 can also be dealt with as follows, by using the
method in Lehto’s paper [3, p. 606]. If (1.2) holds with k=1and |c—1| <1, let f,
be a locally univalent meromorphic function in U with

S(f,2)=1-1/n)S(f,z), zeU.

Since 2y?S(f, z) € B(c(c—1), |c|), it follows that 2y%S8(f,,2) € B(c(c—1), k,|c]|),
where k,=1—(1—|c—1|)/n < 1. By what we have proved, f, is univalent in U.
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Thus, by means of a Mdbius transformation, we can normalize f, so that f,
agrees with f at three given points of U, where f attains distinct values. Hence
the functions f, form a normal family, and a subsequence converges locally uni-
formly in U to a univalent function g with S(g, z) = S(f, z). Therefore fog ~!isa
Mobius transformation, so that also f is univalent, as required.
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