MULTILINEAR CONVOLUTIONS AND TRANSFERENCE

Margaret A. M. Murray

1. Introduction. In this paper, we present some theorems which are basic to
the study of a wide class of nonlinear operators which arise in partial differential
equations and many other parts of analysis. These results are part of a contin-
uing program of nonlinear analysis developed over the past several years by
R. R. Coifman, A. Mclntosh, Y. Meyer, and others (see, for example, [1], [2],
and [3]). A typical problem is that of obtaining L” estimates for linear operators
T(b) which depend nonlinearly on a functional parameter 4 in a Banach space B.
By analogy to the calculus of functions in finite dimensions, 7 is said to be
analytic at the origin in B if and only if for all b with || sufficiently small and
for all fe LP(X),

(1.1) TO)f= 3 Mei(b, .sb, 1),

where M, is a bounded (k + 1)-multilinear operator on (B)* x L? which satisfies
an estimate of the form

(1.2) | My +1(D, ..., b, O, = CX|bISI 1,

for some absolute constant C > 0. The multilinear operator k! M, (b,..., b, f)
is, in fact, the action of f of the kth Fréchet differential of 7 at O in the direc-
tion 4. In order to prove that 7 depends analytically on b, it suffices to find an
explicit representation for T as a convergent “power series” of multilinear oper-
ators in a neighborhood of the origin in B. The problem of obtaining L” esti-
mates for 7 is thereby reduced to that of obtaining L” estimates for the Taylor
coefficients of 7. Thus we are led to investigate certain broad classes of multi-
linear operators which arise naturally as the Fréchet differentials of nonlinear
operators.

Of particular interest are the multilinear convolutions: multilinear operators
which commute with the simultaneous action of a group of measure-preserving
transformations of the underlying measure space. Specifically, let (X, ) be a
o-finite measure space, and let {U,} be a group of measure-preserving trans-
formations of X, indexed by R”. Let B be a Banach function space on X, and
suppose that for b e B, |b-U,|p=|b|p; that is, the norm on B is invariant under
the action of {U,}. A k-multilinear operator M, is called a multilinear convolu-
tion if and only if

(1.3) M (fieUy, ..., fioU) =M (fi, ..., fi)oU,.
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Multilinear convolutions arise naturally as the Fréchet differentials of operator-
valued functions 7 which commute with the simultaneous action of U, on B and
LP(X); that is, for be B and fe L”(X),

(1.4) T(bU,) foU,=(T(b)f)U,.

The classical example of such an operator T is the Cauchy integral for a Lipschitz
curve. The Calderén commutators, which arise as the Fréchet differentials of the
Cauchy integral, are multilinear operators which commute with simultaneous
translations in R (see [1] and [3]).

In this paper, we shall examine the properties of multilinear convolutions,
concentrating on the cases X =R", X=T" (the n-torus), B=L"(X), in which
the measure-preserving transformations are given by translations. We show that
LP(R") estimates can be transferred to other settings via measure-preserving
actions of R". As a consequence we are able to give necessary conditions for L?
boundedness of the tensor product of multilinear convolutions, and prove a
deLeeuw-type theorem on L boundedness of periodized multilinear convolu-
tions. As a partial converse to this last result, we give conditions under which it is
possible to pass from L” estimates on 7" to L? estimates on R”.

2. Multilinear convolutions on 7" and R”. We begin with some notation.
Euclidean space R” is defined by

2.1) R'={x=(x1,...,x,): x;€R, 1<i<nj;

the lattice of integer points in R” is given by

2.2) Z'"={xeR" x;eZ, 1<i=<n}

and will usually be denoted A,,. The n-forus is then defined by

(2.3) T"={xeR":x;€[0,1), 1<i<n)

and is identified with the quotient space R”/A,. For each x, £ € R”, we define
(2.4) ex(§) = exp(2mix+£) = exp(2mi(x; &1+ -+ + X £n)).

For fe L'(R"), the Fourier transform and its inverse are defined according to the
normalization

@) F®=| e )0 dx,

2.6) foo=| , e® s ds.

If fe M(T") —that is, fis measurable on 7" —then, for each k = (ky, ..., k,) € A,,,
we define

@.7) fuey=\_ e_w®) S5 at,

the Fourier coefficient corresponding to k. Any finite sum of the form
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(2.8) 2 Cr €y (|k|=k1+"’+k,,)

lk|=m

is called a trigonometric polynomial, and the set of all trigonometric polynomials
on T"is denoted ®@(T"). We define a family of translations on R” by setting, for
each £, xeR",

2.9) Te(x)=x—§

which gives rise to a family of translations on 7" if we define, for £ e R” and
xeT”,

(2.10) Fe(x) =7e(x) mod A,,.

We shall abuse this notation slightly by writing 7; f= fo7; and 7; g = go7;, where
f, g are measurable functions on R”, T”, respectively.

Now suppose that M; is a k-multilinear operator acting on (®(7""))* which
commutes with simultaneous translations. That is to say, M : (®(T"))* - m(T")
is linear in each variable separately; and moreover, if ¢, ..., t, e ®(T"), £ R",
then

(2.11) M(Tety,y .o, Tel) =Te My (8, .0, te).
Then the operator M has a special form.
PROPOSITION 2.1. If t;, ..., t, e ®(T") and 6 € T", then
@.12) Mty t)(®)= 3 ( R AR ATA fk(m)em(e)

meA, \|l|=m

where, for (I, ..., 1) € (A,)%, we have |I| =1+ -+ +1; and
(2.13) o(lts .., k) =My(ey, ..., €,)(0).

Proof. For any 0,ye T" and for any / = (/y, ..., Iy) € A,,, we have

My(e,...,e  )(0+n)=7_gMi(ey, ..., e1,) (1)
(2.14) =Mi(T_ger, ..., T-ge,) (1)
=ey(0)M(ey, ..., e) (n).

Taking » =0 in (2.14) and defining ¢ according to (2.13), we obtain
(2.15) My(ey, ..., e )(0)=ey(B)a(ly, ..., k)
and (2.12) follows by multilinearity of M. 0

COROLLARY 2.1.1. Suppose that 1 < p,, ..., px, q <, and

k
(2.16) IMi(t1, ..., t0)]q=<C _Hl 14l o,
J_—_

Then o is bounded by C on (A,)*.

Proof. By (2.15), we have |o(ly,..., k)| = |Mi(e,, ..., €,)(0)] for all feT"
and all /, ..., I, € A,,. Moreover,
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k
2.17) C=C I lelp, = IMe(eys - e1)lg-
j:

But it is easy to see that |a(/}, ..., ;)| = |Mi(eys ..., €,) 4> from which the result
follows. L

As a consequence of these results, we see that any bounded multilinear con-
volution M, on T" has the form

k A~
@18)  My(fiy-r SO = 3 ([2 ol es 1) TL A1) Jen(®)
Jj=

meA, \|l|=m
where

(2.19) Sup | (s, o5 1) | = | Ml op-
Ak
We now consider multilinear convolutions on R”. In this context we may think
of the test functions Cy°(R") as the proper substitute for the trigonometric poly-
nomials ®(7T"). If M, is a k-multilinear operator on (C§(R"))* which com-
mutes with simultaneous translations and takes its values in the space MM (R") of
measurable functions on R”, then M, has the form

(2.20) ¢
M (fis ..o JH)(X) = SR”k ex(&i+ -+ E)or(Ersons &) ‘I_I]f_‘[.(gj) d§ ... d&,.
j=

Alternatively, we may write
k
Q21 Melfiseos SO = [ Kty ooy ) TTS ) dty... ity
j=

=Kk*(_f1®"'®fk)(x,.--,X),

where K, = ;.. The function o : R™ — C is called the multilinear symbol of M.

3. Transference from R”. In this section, we use the technique of Coifman
and Weiss ([4]) to show that L?(R") estimates for bounded multilinear convolu-
tions may be transferred to other settings via measure-preserving actions of R”.
We begin with some notation.

Suppose that K, is a bounded, measurable, compactly supported function
on R, and let M, be defined by (2.21). Now let {U,} be a group of measure-
preserving transformations of a o-finite measure space (X, n) onto itself (i.e.,
U U,=U,,,). We define the “transferred” operator M} for functions F, ..., Fi
on X by setting, for each xe X,

k
G.1) MI(F,, ..., F)(x) = SRM Kty .o ) TT Fj(U_y,x) dy ... duy.
Jj=1
Our basic result is the following.

THEOREM 3.1. Let 1 < p <o, and suppose that there is a constant C,, so that
whenever f|, ..., fxr—_1€ L (R"), fr,€ LP(R"),
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k-1

(3.2) Wi £y = Co T i ) il
Jj=

Then whenever Fy, ..., F,_,€ L°(X), F,e L?(X), we have
k=1

(3.3) \MEEL .oy FO Loy < cp( Il nﬂnmm) Fil s
J=

Proof. For each we R", U,, is a measure-preserving transformation of X onto
itself, so that

(3.4) [ 1MEE, o Fo@)IP dueo = IMEE, ..., F) (U )] dut).

Now let N be a positive integer so that supp K is contained in {u € R": |u| < N}¥;
let M be any positive integer; let x denote the characteristic function of the set
(yveR": |y|=M}+{yeR":|y|<NJ; and let A, denote the volume of the solid
unit sphere in R"”. Then we may write :

M”Qn"le(Fl, seey Fk)"ip(x)

=S|w|sM SX ]le(Fl’ °"’Fk)(wa)|pdp-(X) dw

p

k
[ o Koty cees 1) TT Uy ) ity | dw ()
Jj=1

XS]W|5M

S
=i )i
S

Cﬁ(SmJ[%(U@x)XUVdeW>( IIC%SUDU?(UMXH> dp(x)

j=1 weR"

k p
[ e Kty cees ) XOV=18) TT Fy Uy, %) dlty .. ct | dw ()

Jj=1

< C2( T 1)) § o xO0) | 10017 ) i
=C} (

IF, um)a (MA+NY [Eel .

Thus

M+NY kol
(3.5)  IMEF, - Flonxy < (T) Cﬁ( Hl "Fj"iw()()) |7 pex)-
Jj=
Now, M was an arbitrary positive integer, and so (3.5) evidently holds in the
limit as M — oo; taking pth roots gives (3.3). O

We now consider a number of applications of Theorem 3.1. Let us recall a few
facts regarding tensor products of multilinear operators. If misa positive integer
and f, g: R"™ > C, then the tensor product f®g: R*" - C is defined by
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(3‘6) f®g((ula vl)’ seey (um: vm)) =f(ul, ceey um)g(vls seey Um)'

Similarly, suppose M, and N, are two (not necessarily bounded) multilinear con-
volutions, each of which acts on (L°(R")*~!x LP(R")). The tensor product
M; ®N, is defined on (L*®L®)*~!x (LP® L") by setting

B.7) M QN(fi®gi, ..., [i®gk)(x, ¥y =Mi(fi,..., i) (X)Ni(g1, ..., g)(¥).

B. C. Krikeles has shown (see [5]) that if M, and N, are defined in terms of the
multilinear symbols o, and pu;, respectively, then M; @ N, may be extended to all
of (L®(R?*"))¥~1x LP(R?*") by means of the symbol o,® u;. Moreover, he has
shown that if M}, N, are bounded multilinear convolutions, their tensor product
is not necessarily bounded. We can, by virtue of Theorem 3.1, give a necessary
condition for the boundedness of M, QN.

COROLLARY 3.1.1. Let M, N, be as above, and suppose that each of the
symbols oy, uy is the Fourier transform of a bounded, measurable, compactly sup-
ported function on R™. Suppose, moreover, that M, ® N, is a bounded multi-
linear convolution from (L®(R*"))*~1x LP(R?") to LP(R*"). Then the operator
Ty, defined in terms of the symbol oy py, is a bounded multilinear convolution
from (L®(R™))¥~1x LP(R™) to LP(R").

Proof. Let K = oy, and L = py. Theniif £, ..., fi— € L°(R*") and f, € L°(R*"),
we have

M @Ni(f1s .. 1) (X, )
(3.8) k
=SR2"kK®L(x1,y1,--.,xn,yn) Hlj}(x—xj,y—y;) dx;dy,...dx,dy,.
_I:
Moreover, it is not difficult to see that for F, ..., F,_;€ L°(R") and F; e L°(R"),
we have

Ti(F1s ..., Fi)(2)

(3.9) k

=SR2nkK®L(x1,y1,.-.,xn,yn) II]F,-(z—(xj+y,.-))dx1 dyr...dx, dy,.
j:

Now define, for every w=(x, y) e R*" and for every zeR", U,z=z+(x+y).
Clearly {U,,} is a group of measure preserving transformations indexed by R?”",
and

Tk(Fla “"Fk)(Z)
(3.10) )
- SRWK@)L(xl, Vis eevsXns V) _I_IIF,-(U_wjz) dw,...dw,,

J
where w; = (x;, y;). The result is now immediate from Theorem 3.1. U

Theorem 3.1 may also be used to transfer results on the analyticity of operator-
valued functions from R” to other measure spaces. The following Corollary is
immediate.
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COROLLARY 3.1.2. Suppose that T: L”(R") —» £(LP(R")) is analytic at the
origin in L*(R"), and suppose that T has the series expansion

(.11 T0)f= 5 Mi(b,....b, ),

where

Mk(ba --.,b, f)(X)
3.12) .
J=

Then if we define T*: L*(X) —» £(LP(X)) by

(3.13) T"B)F= Y M{(B,...,B,F)

k=1
with notation as in Theorem 3.1, then T* is analytic at the origin in L*(X), and
the operators M} satisfy the same estimates as do the operators M.

Finally, we can use Theorem 3.1 to extend a result of deLeeuw (see [6], Chap-
ter 7, Theorem 3.8) to the multilinear case. Consider the action of R” on 7" by
simple translation (modulo the lattice points). We define, for xe R", U, =7_,;
that is, for every 0 e T", U,80=0+x (mod A,). As in Theorem 3.1, we suppose
that K is bounded, measurable, and compactly supported on R"*, and we define
M, according to (2.21). Recalling that M, also has the representation (2.20),
where o, = K., we define the periodization of M to be the operator defined for
functions Fj, ..., F;, on T" by

k -~
C1)  MiF, o FOO= 3 (3 ol sl I 7504 )en®).
J=

melA, \|l|=m

We claim that M is precisely M}; for M} is evidently a multilinear convolution
commuting with simultaneous translations, so that, by Proposition 2.1,

k A
(.15 MEF,...F)@®)= 3 (12 el s 16) TLE) Jen(®)
j=

meA, \|l|=m

where p(ly, ..., Ik) =M (ey,, ..., €,)(0). But

k
prllyy e k) = SRnk Ki(uy, ..., uk)( _H] e—lj(uj)> duy...duy
J:

(3.16) = SW exp(—=27i(ly, v, L) (Wt ooy 1)) Kt .., 1) dity .. dity

=ox(l1, -5 k).
Thus M}, =M,f , and we have the following.

COROLLARY 3.1.3. Let K; be a bounded, measurable, compactly supported

function on R™, and define the multilinear operator My according to (2.20)
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and (2.21). Let 1< p <oo and suppose that there is a constant C, such that if
Sisoees Su—1€ LZ(R™) and f,, € LP(R") we have
k-1

GAT) Moo S liogen < c,,( 11 uz;-um(m) el o

Jj=1
Then, if My is the periodization of M, defined by (3.14) for functions
Fi,...,Fp_eL>(T"), F,e LP(T"), we have

k—1
(3.18) |Mg(Fyy s Fi) | o rmy < C,,( Hl ”Fj”Lw(Tn)) |Fkl Lo(rny-
ji=

We can, indeed, say a bit more.

COROLLARY 3.1.4. Undef the hypotheses of Corollary 3.1.3, we have
lok| Lomriny =< C,, where o, = K.

Proof. For A\> 0, define M} to be the multilinear operator obtained from M
by replacing K in (2.21) by its dilate Kj , = A K (sX71). Tt is not difficult to
show that M} is a bounded multilinear operator, and indeed, for fi, ..., fr_i €
L®(R") and f; € LP(R"),

k—1
G19) UMM eer f) oy = cp(jgl uf,-u,,wmn))ufkanmn).

Therefore, by Corollary 3.1.3, each periodization (M})° satisfies the analogous
estimate in L?(T"). By Corollary 2.1.1, it follows that, for all /, ...,/ € A,,, and
each A >0,

(3.20) lok (N, ..os M) | < G,

Now since oy is the Fourier transform of an L' function, it is continuous. There-
fore, since |oy| is bounded by C, on a dense subset of R we must have
loklo = Cp. -

4. “Deperiodization” from 7", In this section we obtain a partial converse to
Corollary 3.1.3, which generalizes a known result for multiplier transformations
(see [6], Chapter 7, Theorem 3.18).

THEOREM 4.1. Let 1 < p < o, and suppose that o is the Fourier transform of
a bounded, measurable, compactly supported function on R"*. Define the multi-
linear operator My, according to (2.20) and for each \ > 0, define M}, (M})" as in
the proof of Corollary 3.1.4. Suppose, moreover, that there is a constant C,
such that for all \ >0 and for all Fy, ..., F,_,e L™(T"), F, e L’(T"),

k—1
“4.1) (MR (R, s F) Loy = Cp( II] "Fjl|L°°(T"))”Fk"Lp(T")-
j=

Then, for all fy, ..., fi_1€L®(R"), fie L°P(R"), we have

k-1
@) M Ol = ol L 1 humen )il
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Proof. It clearly suffices to assume that f, ..., fx € Co(R,,). For A >0, define
Ji.x» the periodized dilate of f;, by setting

~ _ X+m
4.3) Fir=\"" 3 fj( )\ )
meA,
(see [6]). By the Poisson summation formula, we have
(4.4) finx)= 3 fi(xm)e,(x).
meh,

We claim that, for every x e R”,

(4.5) Mi(fisoees S (X)) = :in; NDRY (fins -ees Jen) AX),

where (M) (fixs +ee Jx,») is defined on all of R” by periodic extension from 7.
To see this, observe that

NADRY (Fins oes Frn) AX)

k -~
=\ 3 ( % 0k(Mypy .oy M) Hlij\lj))em(?\x)
J:

meA, \|l|=m

(4.6)

is a Riemann sum for the integral
k

SRnk ok (&1, ..o Ek)( I1 Ji‘(fk))ex(iri' o+ &) dE .. dE

Jj=1
=Mk(ﬁ) --':fk)(x)s

and this establishes the claim. Now, if we choose a nonnegative function ne
Cy(R") satisfying (0) =1 and

(4.8) Y, (n(x+m))?=1 forall xeR"
meA,
(see [6], Chapter 7, Lemma 3.2.1), then we have

(4.9) ){in; N (Fins -vs Fen) O0) ) = My (fis -oe5 fi) (%)

4.7)

for every x, since 5 is continuous and 7(0) =1. Then we have

| o INIRY (s o5 Fe ) O O) |7 dx
=N Y (Finsooos Fe) )Py
@10) =X 5 | NG G Fe) Py +m))? dy

=N GO B (Fins oo ) D)7 Y

_ k—1 g P
<x 0 0cp (a0l ay( T esssup 5001}

Jj=1 yeTr?n
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For X sufficiently small, the supports of A\™" fj(-)\"') lie entirely within 7", and so
this last expression equals

k—1 P
x”“‘l’—”c;,"SRn |>r"fk(y>r')|"dy< IT ess sup |)\‘”fj(y)\‘1)|>

Jj=1 yeR”n
4.11) i ,
= Vv (T 1l ) -
J =
Therefore
lim inf { (NG (s Fen) )1 O0) |7
4.12) ‘i ,
= A1 ( L 1limcun ) -
J =
In view of (4.9) and (4.12), the result follows by Fatou’s Lemma. L
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