THE o-REGULAR REPRESENTATION OF Z X Z

Wesley E. Mitchell

Let Z denote the group of integers. There exist multipliers ¢ on Z X Z such that
the group extension of Z X Z by o is a non-Type I group. In fact, the o-regular
representation of such a lattice group is a Type II, factor; the consequences of
this fact were investigated by Pukanszky in [5]. The main result of this paper is
the existence of decompositions of the o-regular representation of Z xZ with
respect to an infinite family of mutually disjoint measures. The integrands in the
decompositions are induced irreducibles; furthermore, they can be canonically
chosen so that the restrictions to two given normal subgroups are associated with
Lebesgue measure quasi-orbits on tori with arbitrary finite relatively prime
multiplicities.

Let G be a locally compact group, 7 the circle group. A multiplier (or cocycle)
on G is a Borel function ¢: G X G — T satisfying o(a, b) o(ab, c) = a(a, bc) a(b, ¢)
and o(a,e) =oa(e,a)=1 for all a, b,ce G, where e is the identity of G. Two
multipliers ¢ and o’ are similar if there is a Borel 8: G — T such that ¢'(a, b) =
B(a)B(b)B(ab)~a(a, b) for all a, b. A multiplier similar to unity is called a co-
boundary. For G=ZXZ, we find that every multiplier is similar to one of the
form exp(iB), where B is a real bilinear form on G X G. This follows from [4,
Theorem 9.6] and the fact that every multiplier on a cyclic group is a cobound-
ary. For convenience, we will adopt the following conventions. Elements of G
will be denoted either by n or by (p, q), with subscripts as needed. We regard T°
as R/2wZ, elements typically denoted by u, w. We view elements of 72 as vectors
Vor (V;, V,), with group action written additively. Finally, let ¢, e, be the usual
basis vectors in the real plane, e;=¢,+e,; {,) will denote the usual inner
product.

For a given multiplier 0 on G =Z X Z, define the o-regular representation R°
by the formula (RJf)(g’) = a(g’, 8) f(g'g) for fe LXG). If F: L} G) — LX(T?)
is the Fourier transform, define R°= FR°F~!. We wish next to define an action
on R? by certain homomorphisms of 7. To this end, let M = (g; Zj) eSL(2,7Z).

It is well known that M induces a measure-preserving homomorphism of 72, and
hence a unitary operator ¥, on L*(T?), given by (Vi) (v) = ¢(Mv). We will say
M acts on R° by M-R°=V,;R°V,;!. To compute the effect of this action, fix a

real matrix A= (f; fj), and let o be given by o(n;, n,) = exp(i{n;, An,)). Then,
for all p € LX(T?),

R2p(v) = c(n) exp(—i{v, ny) p(v+ An)

and
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M-R2¢(v) = c(n) exp(—i{Mv, n)) p(v+M ~'An)

where ¢(n) = a(n, n).

Note that if x is a character of G, xR? is unitarily equivalent to R“; denote the
representation M- (xR ) by U. We have U = x(M-R°). The character x will play
a crucial role in determining equivalence relations among the irreducible com-
ponents of disjoint direct integral decompositions, as will the matrix M ~'A4,

which we denote by (' 12).

Sq
We now take a first look at decompositions. For each r, s, f € T, define a repre-
sentation V= V(r,s, t) of G, acting in L*(T), by

(*)  Vaf(w)=x(n)c'(n) exp(—ir(Me,, n)) exp(—iw(Mes, n) f(w+sp+1q),
where ¢’(n) = exp(i{n, A’'n)) and A’ =M(s ’).

s {

THEOREM 1. Let sy=s3=s5 and s, =s4=1. Then U is unitarily equivalent to
the direct integral {1 V(r,s, t)dr.

Proof. Define W: L*(T, L¥(T)) —» L*(T?) by
(Wf) (v, v2) = flva—v))(vy) for all (vy,v,) eT?, fe LX(T, LX(T)).
Then

(W(S Vdr) W"'q&)(v,,vz) =((§ Vdr) W“(j})(vz—v,)(v,)

=Va(v2—v1,5, ) (W ™'¢) (13— v1) (vy)
=x(n)c’(n) exp(—i(v;—v1){Mey, n))

X exp(—ivi{Mes, n))p(vi+sp+iq,v,+sp+1q)
=U,¢(v1, v2) L

THEOREM 2. Let V be as above. Then, if " is not a coboundary for k #0,
V is irreducible.

Proof. Keeping M as before, let di=a,+a,, d, =a3;+a4. Regard each V as a
unitary representation of the appropriate group extension G°. Let

S={(a,b)|(a,b)=(1,0), (0,1), or a and b are relatively prime}.

For (a,b)e S, let Ny )= ((w,ak,bk)|keZ,weT}. Clearly, each Ny p) is a
normal abelian subgroup, and the condition on ¢ implies that orbits of non-unity
characters in N, ) are countable dense subsets of a torus. By direct calculation,
the restriction of V' to N(—a,,q,) is a product of a character on 7" with a direct sum
of characters over an orbit in Z. Hence, we may apply Theorem 8.1 of [4], since
the stability subgroup of x € N(a, by X E 1L, 1S Ny, py- £

Let us write ® for the regular representation of Z, and 1 for the identity char-
acter of 7.
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LEMMA. The representations V satisfy:
@) Vngo ~ 1 |di|®,
@) ¥y, ~ 1| ®,
where ~ denotes unitary equivalence and d, d, are as in the proof of Theorem 2.
Proof. (i) For each m=0,1, ..., |d;| —1, let
H,,={fe LX(T) | f(w) =Zc, exp(iw(d, k+m))}.

Each H,, is invariant under each V|, o,. We identify H,, with /% and find that the
restriction of ¥V{, o, has the form V(,,,O)f(k) =Q(p,k)f(k—p), feH,, where
|Q| =1 and Q(p,k)QO(q,k—p)=Q(p+gq,k). By a slight modification of
Lemma 3.7 of [2], VINu,m |n, ~1-®. Hence V|Nu,0) ~1-|d|®R. O

COROLLARY. V | N, ,, is associated with the product of a point-mass on T and
Lebesgue measure quasi-orbit on T with multiplicity \d,|.

We come now to the question of equivalence relations. The multiplier for each
V given by (%) is similar to one of the form o(ny, ny) = exp(i(d,t—d>s)p\q2),
where n; = (p;, q;), i =1, 2. Further, let ¥ denote the “character part” of V; that
is, x(n) = x(n) exp(ir{Me,, n)). Then V depends on the parameters M, s, ¢, and
x. Let V and V' be two such representations, with primes on the parameters of
V’; finally, let d, =a,+ a3, dy =a3+ay, di=a{+a3, d;=a3+a;.

THEOREM 3. V~ V' if and only if di=d{, dy=d>,
d]f'—d2S’=d|t—d25m0d27T,
and x((d>, —dy)) = x'((d>, —d,)) exp(ij(d;t —d,s)) for some integer j.

Proof. If all of the above equalities hold, then V' and V' are both concentrated
on the same (discrete) orbit in N(_dz,d,); hence V' ~ V’. Conversely, if V~V’,
then they have the same multiplier, and their restrictions to any normal subgroup
are equivalent. Hence d, =d/ and d, =dj; by the lemma; negative signs cannot
occur since the restrictions to, say, N(-d,,q,) must both be direct sums of charac-
ters. This also yields the last assertion of the theorem. 1

Thus, the decomposition of M- R° depends upon an a priori specialized choice
of parameters. We will show next that this may always be done, without chang-
ing the cohomology class of the representation.

In the matrix A4 used to define o, the diagonal entries produce coboundaries
(e.g., exp(it; p p>)). Thus, they may be changed as convenient. Suppose M is
chosen such that d, =a,+a, #0, d, =a3;+a, #0. Let us then choose ¢, =¢;d, /d>,
t4=t,d,/d;. We may readily check that the entries of M ~'A satisfy the condition
of Theorem 1.

THEOREM 4. Let ¢ be a multiplier on G such that o* is not a coboundary for
k #0. Then R° is cohomologous to a direct integral of induced irreducibles. Fur-
thermore, if d, and d, are relatively prime positive integers, there exists a de-
composition of R’ such that each irreducible in the decomposition restricts on
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N, o) (respectively, N, 1)) to a product of a point mass and Lebesgue measure
quasi-orbit with multiplicity d, (respectively, d,).

We note only that, if M is as above, the sums of the rows are relatively prime

integers; further, given d,; and d,, choose A,/ such that d;h+d,/=1. Then take

1 di=l
M= (—h di+h)*

Finally, let us investigate disjointness of these decompositions. Let
C={MeSL(2,Z)|{Me;j,e;)=0,i=1,2]}.
If My, M, € C, define M| ~ M, if and only if (M, e3, e;)| = |{Mes, e, i=1,2.

PROPOSITION. Suppose M,,M,e C, M|+ M,. Then the decompositions of
M,-R° and M- R’ are disjoint.

Proof. Let M-R°~ | V(r)ydr, My-R°~{V(r'ydr', M,=(a;), My=(b;).
Since M, + M,, at least one of the following holds:

|a1+a2| #= |b1+b2| or |a3+a4| # |b3+b4!.

Comparing the restrictions of V(r) and V(r’) to Ny ¢y or N, 1), we see that no
V(r) could be equivalent to any V(r’). O

COROLLARY. There are infinitely many disjoint decompositions of R into
induced irreducibles.

The above work was a result of investigations of certain “twisted” tensor
products of irreducible multiplier representations of Z X Z; see [1]. It turned out
that all such products formed from induced irreducibles could be written as
direct sums of some R? (except in certain degenerate cases).

The representations V discussed in Theorem 1, which depend essentially upon
a relatively prime pair of integers (d;, d»), a character ({,n) of G, and transla-
tion parameters s, ¢, can be used to yield an infinite family of irreducible cocycle
representations, of arbitrary finite dimension, of the simplest virtual group,
T x Z. We shall discuss this in more detail in a forthcoming paper.
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