TOPOLOGICAL RESULTS IN COMBINATORICS

James R. Munkres

Let A be a finite simplicial complex with vertex set V'={xy,...,x,}. Let X=|A|
denote its underlying topological space. Let K be a field. Associated with A and
K is a certain ring K[A], described as follows: Let S=K[xg,...,Xx,] be the poly-
nomial ring over K with indeterminates x, ..., x,. Let I, be the ideal of S gen-
erated by all monomials x;,- - - x;, such that iy < - - - <i, and the vertices Xjg, ..., X;
do not span a simplex of A. Define K[A]=S5/1,. ‘

Now when K[A] is considered as a module over the polynomial ring S, it has a
finite free resolution

0 > M - . = M, » M, > K[A] —0;

r

this is an exact sequence of S-modules, where each M; is free. Furthermore, there
is a unique such graded resolution which minimizes the rank of each M;; such a
resolution is called minimal. Let b;=b;(K[A]) be the rank of the module M; in
this minimal free resolution. The largest integer i for which b; #0 is called the
homological dimension (or the depth) of K[A], and denoted A(A).

It is known that n—dim A <h(A) <n+1, where we recall that n+1 is the
number of vertices of A. If #(A)=n—dim A, then the ring K[A], and by exten-
sion the complex A, is said to be Cohen-Macaulay. 1f this condition is satis-
fied and if in addition bjs)=1, then the ring and the complex are said to be
Gorenstein. These conditions have been extensively studied by M. Hochster [1]
and R. Stanley [4].

Hochster conjectured that the Cohen-Macaulay condition is independent of
the simplicial structure of A, depending only on the underlying topological
space. This conjecture has turned out to be correct, and in fact was almost
proved by a student of Hochster’s, G. Reisner. In his thesis [3], Reisner derived a
condition involving the links of simplices in A, which he proved equivalent to the
condition that A be Cohen-Macaulay. It requires only a short additional argu-
ment to show his condition equivalent to one which is topologically invariant.
See Corollary 3.4 following.

A more general conjecture was suggested to the author by Stanley. The Cohen-
Macaulay condition is just the condition that the number n—Ah(A)—dim A
should vanish. Stanley conjectured that this number itself is a topological invari-
ant of |A|. Our purpose in this paper is to prove this conjecture. It suffices to
prove n—h(A) a topological invariant, since it is well-known that dim A is.

The proof relies on a theorem of Hochster’s, stated in §1, which expresses the
numbers b; in terms of the cohomology (with coefficients in K') of A and its sub-
complexes. In §2 we use Hochster’s theorem to give a proof of our conjecture for
complexes whose underlying spaces are the sphere SV and the ball B". This case
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was already known; the proof is included because of its simplicity. All one needs
besides Hochster’s theorem is the Alexander duality theorem of topology.

We state our general theorem in §3 and prove it in §4 and §5. Section 6 gives an
application to partially ordered sets.

1. Hochster’s formula. Throughout this paper, all homology and cohomology
groups have coefficients in K; the coefficients are suppressed from the notation.
As usual, the reduced singular cohomology groups of A are denoted H'(A);
these are the derived groups of the cochain complex

~——Hom(C;(A), K)<——-+ -~<——Hom(Cy(A), K ) ~—— K ~——0.

(Here C;(A) denotes the group of simplicial i-chains of A. The map € is the dual
of the standard augmentation map, and is surjective.) We shall allow A to be
empty; in this case the cochain complex has only one non-trivial term; namely,
the group K in dimension —1. Thus H'(@) vanishes if i # —1, and it equals K if
i=—1.

If W is a subset of the vertex set V of A, we let #// denote the cardinality of W,
and we let Ay denote the full subcomplex of spanned by W. (That is, Ay, consists
of all simplices of A whose vertices belong to W.)

With this notation, we can state Hochster’s formula as follows:

THEOREM 1.1 [1]. Consider the direct sum of vector spaces Bi(A)=
Ywey HY ==Y (Aw). Then b;(K[A]) =dim B;(A).

Note that the summation extends over all subsets W of V, including W=@.

We now apply this theorem to reformulate Stanley’s conjecture. Let 4;(A) =
B,_;(A); let a(A) be the smallest index j for which A;(A)#0. Then by
Hochster’s formula, ao(A)=n—h(A). The Cohen-Macaulay condition is the
statement that «(A)=dim A; and the Gorenstein condition is the additional
statement that dim A,»y=1. We shall prove a(4) is a topological invariant of
|Al; this is Stanley’s conjecture.

We obtain an alternate expression for A;(A) as follows: Given WCV, let
T=V—W be the complementary vertex set to W. Since |A | is a strong deforma-
tion retract of the space |A|—|A7|, and since #7+#W=n+1, we can write 4; in
the form

(*) A;j(A)=Xrcy H/7H(|A|—|AL)).
This is the expression we shall use to calculate a(A).

2. The sphere and the ball. In this section we prove the conjecture in two
special cases, that of the N-sphere and the N-ball.

THEOREM 2.1. If A is a triangulation of S™, then A is Gorenstein. That is,
a(A)=N and dim Ay =1.

Proof. Let X=S". Then H'(X)=0 for i <N and HN(X)=K. In view of (*),
it suffices to prove that for j<Nand T# @, H'~*T(X—|A7|)=0.
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If A is a proper, non-empty subcomplex of a triangulation of X=S", there
are two versions of the Alexander duality isomorphism, namely H'(4)=
Hy_i_1(X—A)and H(X—A)=Hy_;_,(A), both of which hold with arbitrary
coefficients. Applying the second to our situation, we have

H (X —|Ar)y = Hnjy+ -1 (AT).
Now if j <N and A7 is not a simplex, then
(N=j)+(#T—-1)2#T—1>dim A7,

so the right-hand group vanishes. If A7 is a (non-empty) simplex, then the right-
hand group vanishes identically. Thus our statement is proved. O

THEOREM 2.2. Let A be a triangulation of BN. Then a(A)=N, so A is
Cohen-Macaulay.

Proof. Let X=B". We have H'(X)=0 for all i. We need to show that
H’~*1(X —|A7|) vanishes for j<N and all non-empty 7, and is non-trivial for
J=N and at least one 7.

If A is an N-simplex, one checks the statement easily; the only non-trivial
group is H (@), which occurs when j=N and T equals the entire vertex set
of A.

So suppose A is not an N-simplex. Then the number of vertices of A is greater
than N+1. If T is the entire vertex set of A, then H’/~*#7 vanishes for j <N,
because j —#7T < —1. So let T be a proper non-empty subset of the vertex set of A.
Let A=|A7|. We use the following isomorphism, which can be derived readily
from the Alexander duality theorem:

H(X—-A)=Hn_i_1(A,AN®BI X).

Let us set i =j —#7T in this formula. If j <N, then the right-hand group vanishes
for dimensional reasons, since N—j>0 and #7—12dim A. If j=N, and if T is
not the vertex set of a simplex of A, then it vanishes because #77—1>dim A.
Finally, if j=N and if T spans a k-simplex ¢ of A, then the right-hand group
equals Hy (o, sN®d X). This group is non-trivial if and only if s N®Bd X =®Bd o.
If we choose ¢ to be a simplex of smallest dimension among those that intersect
Int BY, then |o| will be a proper subcomplex of A (since A is not a simplex), and
will satisfy the condition cN®d X=@®d o. Letting T be the vertex set of o, we
have HY~*T(X —|A|r) #0, as desired. O

The argument just given shows in fact the following:

COROLLARY 2.3. If A is a triangulation of BN, then dim An(A) equals the
number of simplices o of X for which cN®d X=38d 0. O

Thus A is Gorenstein if and only if there is exactly one such simplex ¢. In this
case, either A consists of an N-simplex and its faces, or one can prove by standard
topological arguments that A equals the join o * X, where o is a k-simplex and £
is a homology N —k — 1 manifold, whose (integral) homology is that of SN =%,
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3. The main theorem. Here we state the major result of this paper, and derive
a corollary.

THEOREM 3.1. Let A be a finite simplicial complex; let X=|A|. Let N=
dim A. Let B(A) be the smallest integer j for which at least one of the following
groups is non-trivial:

H/(X),{H/(X,X—-p)| pEX]).
Then o(A)=8(A), so a(A) depends only on the topological space X.

Note that by its definition, —1<B(A) <N. The left-hand inequality holds
because all cohomology vanishes in dimensions less than —1. On the other hand,
if p is the barycenter of an N-simplex of A, then H™(X,X—p)=K, whence
B(A) <N.

Here is an application of this theorem to manifolds:

COROLLARY 3.2. Let X=|A| be an N-manifold, with or without boundary.
Then X is Cohen-Macaulay if and only if H'(X)=0 for i <N.

Proof. The local homology groups of X vanish (even with integer coefficients)
in all dimensions less than ~N Therefore 3(A) =N (which is the Cohen-Macaulay
condition) if and only if H'(X)=0 for i <N. O

Compare this result with that for the sphere given in §2. This corollary has
broader applications, of course; it applies for instance to any real projective
space P if the coefficient field K has characteristic different from 2.

To derive the next corollary, we need a lemma:

LEMMA 3.3. Let A be a complex; let ¢ be a nonempty simplex of A; let p be an
interior point of o. Then
H/(X,X=-p)=H/~dme=1(ep g),
Proof. Recall that St ¢ is the union of all simplices having o as a face, and £f ¢
is the union of those simplices of St ¢ that are disjoint from ¢. The symbol ““*”’

denotes the join operation.
If £ 0# @, we have the following isomorphisms:

H/(X,X—p)=H/(Sto,(Stc)—p) by excision;

=H’/(Sto,(Bdo)*(Lhao)) because (Bdo)* (LR o)
is a deformation retract
of Sto—p;

=H/"'(Bd o) * (L a)) Dby the long exact cohomology
sequence;

= f/~dmo-1(eg 5) by the suspension isomorphism.

If £4 o=@, a similar argument gives the isomorphisms
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H/(X,X—-p)=H’'(0,6—p)=H'(0, Bd 0)

K if j=dimoe

0 if j#dimo
Eﬁj—dimd—l(g). O

=H/"Y(®d a)s{

COROLLARY 3.4. Let A be a complex; let X=|A|; let N=dim A. Then the
Sollowing conditions on A are equivalent:
(i) A is Cohen-Macaulay.
(i) A/(X)=0=H’/(X,X—p) forj<N and all pEX.
(iii) (Reisner’s condition). H*(L 6)=0 for k<dim(Lk o) and all sEA,
including 0= @. (We make the convention that Lk o=A if 6=0.)

Proof. Step 1. A complex A is said to be pure if it consists entirely of N-
simplices and their faces. We show that each of (ii) and (iii) implies that A is
pure.

Suppose (ii) holds. If ¢ is a k-simplex of A that is a proper face of no simplex
of A, then letting p be an interior point of ¢, one has H¥(X,X—-p)=K. 1t fol-
lows that k=N.

Similarly, (iii) implies that A is pure: Suppose that A is a complex for which
(iii) holds, which is not pure. Then N >0, since any 0-dimensional complex is
pure. Let L be the collection of all N-simplices of A and their faces; let Y=
|A|=|L|, and let J be the subcomplex of A whose underlying space is Y. Then
dim J<N. Now |J|N|L| is non-empty, since condition (iii) applied to the case
o=@ tells us that |A| is connected. Let ¢ be a simplex of highest dimension in
JNL. Then ¢ is a face of an N-simplex ¢ of L, and it is a face of a simplex s
whose interior is contained in Y. Then

dim t <dim s <N=dim o.

The link of ¢ in A equals the union of ££(¢,J) and £4(¢, L). Both these links are
non-empty; furthermore, they are disjoint because 7 is a simplex of highest
dimension in JNL. Thus £&(¢, A) is not connected. Hence HO(L4(t,A)) #0.
This contradicts condition (iii), for ££(f, A) has dimension at least 1, since is a
face of o of dimension at most N—2.

Step 2. We show that (ii) and (iii) are equivalent. If either holds, then A is
pure, so that

dim(£Lk o)+ dim o=N—1.

Then the condition that H¥(£f ¢) =0 for ¢ non-empty and k <dim(£4 o) the
same as the condition A/ ~4m~1( &p 5) =0 for o non-empty and j <N. The latter
is equivalent to the condition H/(X, X —p) =0 for j <N and all p, by the preced-
ing lemma. Similarly, the condition that H*(£# o) =0 for k <dim (L& o) when
o= O is, by our convention, exactly the condition that H%(X) =0 for k<N.
Step 3. The corollary follows, since Theorem 3.1 implies that (i) and (ii) are
equivalent. O
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This corollary also follows readily from Reisner’s theorem. Instead of using
Theorem 3.1 in Step 3, one can use Reisner’s theorem, which states that (i) and
(iii) are equivalent.

4. The cohomology of (X, X— A). In order to prove Theorem 3.1, we need to
study the cohomology of the space X — A, where 4 =|A7| and At is a full subcom-
plex of X. As a first step in this direction, we study the relative cohomology groups
of the pair (X, X—A), under suitable hypotheses on the local cohomology groups
of X. We shall in this section and the next abuse notation and make no distinc-
tion between a complex and its underlying space, when no confusion will result.

DEFINITION. Let X’ denote the first barycentric subdivision of X; and let
X*(A) denote the subcomplex of X’ consisting of all (closed) simplices of X’ that
do not intersect A.

Now X*(A) is a full subcomplex of X’; therefore it is a strong deformation
retract of its open star in X', which set equals X —A. Therefore in computing
cohomology, we may replace X — A by X*(A) whenever convenient; this we shall
do freely in what follows.

We now introduce the notion of the dual block complex associated to X. The
reader may recognize this complex as the device used when X is a manifold to
give the classical proof of Poincaré duality.

DEFINITION. Let X be a complex of dimension N. Order the vertices of each
simplex of the first barycentric subdivision X’ in order of increasing dimension
of the simplices of X of which they are the barycenters. Then, given a simplex ¢
of X, let D(¢) denote the collection of all simplices of X’ whose initial vertex is
g, the barycenter of o, along with all faces of such simplices. We call D(¢) the
block dual to o; and we call the collection & of all the blocks D (o) the dual block
complex of X.

Given g, let D (o) denote the collection of those simplices of D(o¢) that do not
have & as a vertex. Then D(c)=0%*D(0g), where * denotes ‘‘join”’. If ¢ has
dimension m, we will call D(¢) a ‘‘dual (N—m)-block’’, even though as a com-
plex it may have dimension less than N—m (if A is not pure). We call N—m the
Jormal dimension of the block D(g).

Note that D(¢) is the union of all blocks D(X) for which I has ¢ as a face. Each
of these blocks has formal dimension less than that of D(¢); such a block will be
called a (proper) face of D(a). Note also that the intersection D(o;)ND(0;) of
two blocks is a face of each of them: If the vertices of o, and o, together span the
simplex X of X, then this intersection equals D(X); if they do not span a simplex
of X, the intersection is empty.

We define a block subcomplex @ of X to be a collection of blocks of X such
that for each block belonging to @, all of its faces belong to @ as well. The nota-
tion |@| denotes the space which is the union of the blocks of Q.

For example, consider the collection X" of all blocks of & having formal
dimension at most m. Then X" is a block subcomplex of . We call it the
m-skeleton of X.
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For another example, let A be a subcomplex of X, and let @ be the col-
lection of all blocks D(g) for which ¢ is not in A. Then @ is a block subcom-
plex of X. Its underlying topological space is just the space | X*(A)| defined
earlier.

We need the following lemma relating the local cohomology groups of X with
the cohomology of the dual blocks:

LEMMA 4.1. Let o be a k-simplex of X; let D(c) be its dual block. If p is an
interior point of o, then for all j,

H/(X,X—-p)=H'"XD(0), D(s)).
Proof. Note first that
St(6,X")=0*D(c)=p* (®d o) * D(c)
=p* Lh(5,X").

It follows that ££(6,X’) is a strong deformation retract of St(6,X’)—p. We
then consider the isomorphisms:

H/(X,X-p)=H/(81(6,X"), 81(6,X')—p)
=H’/(81(6,X"), L&(6, X)) = H/~(LR(5, X))
=" (®d o) *D(a) =A% Y(D(s))
=H/~%(D(0), D(0)).

If o is a principal simplex of X (that is, if ¢ is a proper face of no simplex of X),
then D(o) is the single point & and D(¢) is empty. Nevertheless, the isomor-
phism stated in our lemma still holds; both groups are isomorphic to K if j =k,
and vanish otherwise. O

We use the following fact, whose proof is elementary:

LEMMA 4.2. Let X be the dual block complex of X; let @ be a block sub-
complex of X. The group H'(|X"UQ|, | X"~ 'UQR)) is isomorphic to the direct
sum ¥ H'(D(o), D(0)), where the sum extends over all blocks D(o) of formal
dimension m that do not lie in Q.

We now compute the cohomology of (X, X*(A)), under suitable hypotheses
on the local cohomology of X.

LEMMA 4.3. Let X be a simplicial complex of dimension N; let A be a proper
non-empty subcomplex. Let vy be an integer such that 0 <y <N; assume that the
local cohomology groups H'(X, X —p) vanish Jor i<y and all p€|A|. Then if
k=dim A,

(i) H/(X,X*(A))=0 forj<y—k.

(ii) HY XX, X*(A)) is isomorphic to the kernel of the map

_ &* _
HY U Yy pi1s Yo i) ~——— H" K Yn_k, Yn_k—1).
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Here X denotes the dual block complex of X, @ denotes the subcomplex of X
whose underlying space is | X*(A)|, and Y;=|X'UQ|.

Proof. Let \A=N—+.

Step 1. We prove that H' (Y,+>\+|, Y;;2)=0for i </j. This group is isomorphic
to the direct sum ¥ H'(D(o), D(0)), where D(o) ranges over all blocks of
formal dimension j 4+ A+ 1 that are not in @; i.e., as o ranges over all simplices of
A of dimension N—(j+A+1)=vy—(j+1). By Lemma 4.1, H(D(0), D(0)) =
Htdme(x x_p), where p is an interior point of ¢. Since i+dimo=
v—(J—1i)—1, this group vanishes for i <.

Step 2. We show that H'(X, Y; 1\)=0 for i <. For this purpose, we begin by
considering the long exact sequence of the triple (¥j 442, Yiia+15 Yj42). Apply-
ing Step 1 to appropriate terms of this sequence, we see that H'(Yjir+2, ;+>\) 0
for i <j. One continues similarly to show that H' (Y/+>\+m, Y;\)=0fori<jand
all m> 0. If m is sufficiently large, Yj, 4+, =X, and our result follows.

Step 3. We prove part (i) of the lemma. Every simplex o of A has dimension at
most k, so every block D(o¢) of & not in @ has formal dimension at least N—k.
Therefore X' C @ if i <N—k, so that Y;=|@|=X*(A).

In particular, if j <y —k, then j+N<N—k and Y, ,=|X*(A)|, so that

HI(X, X*(A))=H’(X, Y;.))=0.

Step 4. We construct, using the long exact sequence of a triple, the following
commutative diagram of exact sequences, from which part (ii) of the theorem
follows easily:

0
HY k(X Yy )—20 HY ¥ (Yy_i, |Q)~—H"K(X, |Q|)~—0

_ o+ _
HY MY Yy ii1, Yo g )——H"" (Yy_s, Yn_i_1).

The zero at the top follows from the equation HY ~*¥*1( X, Yy_s+) =0; the zero
at the right, from the equation H"Y~%(X, Yy_x) =0; both are a consequence of
Step 2. The equality in the middle follows from Step 3. O

As a particular application of part (ii) of the preceding lemma, we prove the
following:

LEMMA 4.4. Let X be a complex that does not consist of a simplex and its
Jaces. Assume that the local cohomology groups H X, X~ p) vanish for i<~y
and all pe X.

If HY(X,X—p) is non-trivial for at least one p€ X, then there is a non-
empty subcomplex A of X, consisting of a k-simplex o and its faces, such that
HY KX, X*(A)) is non-trivial. Conversely, if there is such a subcomplex A of
X, then H"(X, X —p) is non-trivial for each p interior to o.

Proof. Let A be a non-empty subcomplex of X consisting of a k-simplex and
its faces. Let N denote the dimension of X. By hypothesis, A4 is not all of X, so



TOPOLOGICAL RESULTS IN COMBINATORICS 121

the preceding lemma applies; the group H” ~*(X, X*(A)) is isomorphic to the
kernel of the map

@.1) HY 84U Yy i1, Yo i) <2— HY K(Yn_k, Ynok—1).

Consider the collection of those blocks of 9 that do not belong to @. This col-
lection consists of the single block D(¢) dual to ¢ (of formal dimension N — k),
along with blocks D(s) (of larger formal dimension) that are dual to proper faces
s of a. Therefore by Lemma 4.2, the right-hand group of formula (4.1) is isomor-
phic to the group HY~¥(D(¢), D(0)).

Similarly, the left-hand group of (4.1) is isomorphic to the direct sum
Y HY %+t D(s), D(s)), where the sum extends over all (k—1)-faces s of o.
[If o has dimension 0, there are no such faces and the group in question van-
ishes.] Thus H”~%(X, X*(A)) is isomorphic to the kernel of a certain homo-
morphism

Y HY**Y(D(s), D(s))~——H""¥(D(0), D(0)).
SEBd o

Applying Lemma 4.1, we can rewrite this as a homomorphism

(4.2) T H'(X,X—p)=<t—H"(X,X-p,),

SERBRI o
where p, is interior to the simplex 7, for each 7. Therefore HY ~%(X, X*(A)) is
non-trivial if and only if ker ¢ #0.

In order that ker ¢ #0, it is necessary that the group HY(X, X—p,) be non-
trivial. This proves the converse of the theorem.

To prove the theorem itself, suppose that HY(X, X—p) is non-trivial for at
least one p € X. Let ¢ be a simplex of lowest dimension such that HY(X, X—p) is
non-trivial at an interior point p of ¢. In that case, the right-hand group in
formula (4.2) is non-trivial, while the left-hand group is trivial because s has
smaller dimension than ¢. If we take A to be the complex of dimension k con-
sisting of ¢ and its faces, we have HY ~%(X, X*(A)) #0, as desired. ]

5. Proof of the main theorem. In this section we prove Theorem 3.1. In fact,
we prove the following slightly more precise result:

THEOREM 5.1. Let A be a complex of dimension N; let X=|A|. Assume the
notation of Theorem 3.1. Then
(i) A;(A)=0 forj<B(A).
(i) A;(A)#0 for j=B(A).
(iii) In order that HP®) ~*1(X —|A7|) be non-trivial, for non-empty T, it is
necessary (but not sufficient) that:
(@) T span a simplex o of A, and
(b) HP®)(X, X—p) be non-trivial for at least one (and hence every) p
interior to o.

Proof. Step 1. We prove the theorem first in the case where A consists of
an N-simplex and its faces. In this case, 8(A)=N because |A| is an N-cell. We
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have already noted (in proving Theorem 2.2) that the only case in which
H’/~*T(X —|A7|) is non-trivial is when j = N and T is the vertex set of A. Thus (i),
(i), and (iii) hold in this case.

Henceforth we assume that A does not consist of an N-simplex and its faces.

Step 2. Let T be a set of vertices of X; let A=|A7|. We show that the equation
H/=*T(X—A)=0 holds for j<B(A) in general, and for j<B(A) if A is non-
empty and does not equal a simplex of X. Parts (i) and (iii)(a) of the theorem
follow immediately.

If T is empty, then Hj_#T(X—A) equals H(X), which vanishes for j <B(A)
by hypothesis. If 7 is the entire vertex set of A, then #7> N+ 1 (since A does not
consist of a single simplex plus its faces). The condition j <B(A) implies that
Jj <N, whence H/~*T(X — A) vanishes because j—#7< —1.

Finally, let T be a non-empty proper subset of the vertex set of A. Consider the
exact sequence

(5.1) o H X, X —A)y— H (X —A)ye— H(X)e——---.

If i <B(A), the right-hand group vanishes, by hypothesis. If i + 1 <G(A) — dim A4,
part (i) of Lemma 4.3 tells us that the left-hand group vanishes. (Here we sub-
stitute X*(A) for X— A, as we are allowed to do.) Therefore the middle group of
formula (5.1) vanishes for i +1<8(A)—dim A. That is, the equation

(5.2) A (X—A)=0

holds for j<B(A)+ [#T—dim A—1]. Now in general, #7 = (dim A) +1; there-
fore (5.2) holds in general if j <B(A). If A does not consist of a simplex plus its
faces, then #7> (dim A) +1; formula (5.2) holds for j <B(A) in this case.

Step 3. Now we prove part (ii) of the theorem; that is, we show that
HP®W=#(x_ A) is non-trivial for some vertex set 7, where A=|Ar|. If
HP®)(X)#0, we can take T to be the empty set and we are finished. So we
assume HP®)(X)=0. In this case, 3(A) must equal the smallest integer j for
which at least one of the groups H’/(X, X — p), for p€ X, is non-trivial. Lemma
4.4 then applies, with y=£(A). We conclude that there is a non-empty set 7 of
vertices, such that the subcomplex A spanned by 7 consists of a k-simplex and its
faces, and such that H”~¥(X,X—A) is non-trivial (substituting X—A for
X*(A) as usual). Consider the exact sequence

(5.3)
A" (X )y HT (X, X = A)%—— B (X = A)ye—— A7 (X).

The end groups vanish because y=8(A) and we have assumed A (X)=0 for
i <B(A). We conclude that the group HY ¥~ (X —-A4)=H?* ~#T(X —A) is non-
trivial.

Step 4. Finally, we prove part (iii)(b) of the theorem. Let 7 be any non-empty
vertex set that spans a subcomplex A consisting of a k-simplex ¢ and its faces.
Consider the exact sequence (5.3), with y=6(A). The right-hand group vanishes
by the hypotheses of the theorem. Therefore, the assumption that the second
group from the right is non-trivial implies that the third group from the right is
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non-trivial. By Lemma 4.4, this in turn implies that HP™)(Xx, X—p) is non-
trivial for each p interior to o. O

REMARK. The astute reader, who has noted the use of Alexander duality in
§2, and the use of techniques similar to those used in the proof of Poincaré
duality in §4, may wonder if there is some more general version of duality under-
lying our results. There is. It can be stated as follows:

Let A be a finite simplicial complex of dimension N; let X=|A|. Let G be a
fixed coefficient group for homology and cohomology. Assume H; (X, X—p)=0
for i<y and all p. Let A be a non-empty subcomplex of A. Then for i 2 dim A,

H,_(X,X-A)=H'(4; £,).

Here £, is the presheaf of local homology groups of X in dimension v, given by
£, (U)=H,(X,X-U), and H denotes Cech cohomology.

Note that this theorem resembles the Lefschetz duality theorem for manifolds,
except for the restricted range of dimensions. If it happens that y =, then this
restriction can be removed; the isomorphism holds for all i. In the case where X
is a manifold, one obtains the usual Lefschetz duality theorem; the coefficient
sheaf is simple if X is orientable, and twisted otherwise.

One can prove this duality theorem directly, following the pattern of §4.
Alternatively, one can derive it as a consequence of the powerful ‘‘Zeeman
spectral sequence’’ using the interpretation due to C. McCrory. See [2: 3.3] for
details.

Note that Theorem 5.1 is an immediate consequence of this result. Letting
G =K, one has

H, ;(X,X*(A)=H'(A4;£,).

Now if i>dim A, the right-hand group is trivial for dimensional reasons. Thus
(i) of Lemma 4.3 holds; cohomology is interchangeable with homology because
one is using field coefficients.

On the other hand, suppose A is a simplex ¢ of lowest dimension k such that
H, (X,X—p)#0 at some interior point p of o. Then the coefficient group
attached to the simplex ¢ is non-trivial, while the coefficient groups attached to
the proper faces of ¢ are trivial. It follows that there is a non-trivial cocycle of 4
in dimension k; it does not cobound because all the £ —1 cochain groups of A4
(with coefficients in £,) vanish!

6. An application to partially ordered sets. Let P be a finite poset (partially
ordered set). Let A(P) denote the complex whose vertices are the elements of P
and whose simplices are the chains (totally ordered subsets) of P. The condition
that the complex A(P) be pure of dimension N is equivalent to the condition that
every maximal chain in P have N+ 1 elements. In this case, it is easy to see that if
x is the kth element of one maximal chain in P, then x is the £th element of every
other maximal chain in P containing x. Let us define the rank p(x) of this ele-
ment x to be the number k£ — 1. Thus p(x) =0 if and only if x is a minimal element
of P, and p(x)=N if and only if x is a maximal element of P. The function p
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induces a partition of P into N+ 1 non-empty sets: p ~'(0),p ~'(1),...,p " (N).
We will call these sets the level sets of the partially ordered set P.

Suppose we consider the partially ordered set Q obtained from P by deleting
all elements of one of these level sets, say Q=P —p ~!(i). It is easy to see that
A(Q) is pure of dimension N—1, and that the collection of level sets of Q is pre-
cisely the same as the collection of level sets of P, except that the set p ~'(i) is
deleted from the collection.

In general, any complex that is Cohen-Macaulay must be pure. (See Step 1 of
Corollary 3.4.) In particular, if A(P) is Cohen-Macaulay, it is pure and the pre-
ceding discussion applies.

Stanley conjectured that if A(P) is Cohen-Macaulay and Q is formed by
deleting one level from P, then A(Q) is Cohen-Macaulay as well; or more gen-
erally that if P is a partially ordered set with A(P) pure, «(A(Q)) Za(A(P))—1.
The second conjecture implies the first: If A(P) is Cohen-Macaulay, then
a(A(P))=N. The second conjecture implies that a(A(Q))=N—1; since
dim A(Q)=N—1, this means that equality holds and A(Q) is Cohen-Macaulay.

We shall verify this general conjecture, as an application of our theorem. (It
can also be proved by algebraic means, as Stanley has shown.) We remark that
there is no converse; there is an example of a partially ordered set P such that
each of the complexes A(Q) is Cohen-Macaulay, but A(P) is not.

DEFINITION. Let A be a complex; let X=|A|. Define y(A) to be the smallest
integer j for which at least one of the following groups does not vanish:

H/(X,X—-p), for pEX.

If B(A) is the number defined in Theorem 3.1, then B(A) <y(A). If X is
empty, the local homology groups of X are not defined; in this case, we make the
convention that 8(@)=v(@)=—1.

LEMMA 6.1. Let A be a non-empty complex of dimension N. Let 3y be an
integer. The following are equivalent:
(i) v(A)=Bo.
(i) B(Lh(v,A))=Bo—1 for each vertex v of A.
(iii) B(LAh(0,A)) Z2Bo—dim o—1 for each non-empty o in A.

Proof. We note first that if o=v*s, where v is a vertex of o, then
Lh(s, Lh(v,A))=Lh(0,A).

(i)=(ii). Let v be a vertex of A. If £&(v,A)=0, then H'(X,X—v)=
H%v)#0, so 8o<0. Then B(L&(v,A)) =B, — 1 automatically.

So suppose L£k(v,A)# @. In view of (i) and Lemma 3.3, the cohomology
groups of £&(v,A) vanish in dimensions less than 8o—1. To show that its Jocal
cohomology groups also vanish in these dimensions, it will suffice, again in view
of Lemma 3.3, to show that for each non-empty simplex s of ££(v, A) and each
i<Bo—1,

Hi—dims=l(Gp(s, Lh(v,A))) =0.
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If we let o denote the simplex v *s, then this condition is the same as the require-
ment that for i <fBy—1,

Hi-9mo(ep(g,A))=0;

and the latter holds in view of (i) and Lemma 3.3.

(ii) = (iii). We proceed by induction on dim A. Condition (ii) implies that
Bo<dim A. If dim A=0, conditions (ii) and (iii) are identical. If dim A=1,
the proof is easy: If v is a vertex, then B(Lk(v,A)) =Bo—1 by (ii); while if
o is a l-simplex, £Lh(o,A)=© and B(Lh(o,A))=—1. The latter is at least
Bo—dim ¢ —1, since 8y— dim o0 < dim A—dim ¢=0.

Suppose now that the implication holds in dimensions less than N, for all 3,.
Let A have dimension N; let o be a non-empty simplex of A. If dim ¢=0, then
(iii) holds at once. If dim 6> 0, let us write ¢ =v *s, where v is a vertex of o. By
hypothesis, B(£LA(v, A)) 269 —1, so that in particular, y(L&(v, A)) Z2By—1. Thus
(i) holds for the non-empty complex ££(v, A) if B is replaced by 8y—1. Now
(i)= (ii) for all non-empty complexes and (ii)= (iii) for complexes of dimension
less than N and all 8, (by the induction hypothesis). Since ££(v, A) has dimen-
sion less than NV, we conclude that for the simplex s of £&(v,A), we have

B(Lh(s, Lh(v,A))) 2 (Bo—1)—dims—1.

Thus B(LA(0,A)) 28¢—1—dim o, as desired.
(iii) = (i). This is an immediate consequence of Lemma 3.3. O

COROLLARY 6.2. Let A be a complex; let dim A=N; let X=|A|. Assume
H;(X,X—p)=0 for j<Nand all p€ X. If 0 is a non-empty simplex of A, then
Lh(o, A) is Cohen-Macaulay. 0O

COROLLARY 6.3. Let A be a non-empty complex. Then
v(A) —1=min,{B(Lk(v,A))},
as v ranges over all vertices of A. O

We now prove the following, of which our conjecture is a special case (see
Corollary 6.6):

THEOREM 6.4. Let A be a complex of dimension N. Let T be a subset of the
vertex set of A such that each principal simplex of A has a vertex in T, and no
simplex of A has more than one vertex in T. Let X=|A| and Y=|A|—8t T. Then
Y has dimension N—1 and the following hold:

(i) B(Y)2B(X)—1,

(i) y(Y)2v(X) -1

Proof. Let (i) denote the statement that (i) holds whenever X has dimen-
sion N, and let (ii)y denote the corresponding version of (ii). If N=0, then
B(X)=v(X)=0. Because Y is empty, B(Y)=v(Y)=—1, so (i) and (ii), hold.

If N=1, then 8(X) equals 0 or 1, and so does y(X). Because Y has dimension
0, B(Y)=~(Y)=0. Thus (i); and (ii),; hold. Henceforth we assume N > 2.



126 JAMES R. MUNKRES

Step 1. We prove that (i)g, ..., (i)y—;=(ii)5. Let A have dimension N.

Let v be a vertex of A— 8t 7. Let X, be the complex £4(v, A) and let T, be the
set of those elements of 7 which are vertices of X,. Note that L&(v,A—8itT) =
X, — St T,.

Now X, has dimension at most N—1; and we assert that 7, satisfies the
hypotheses of the theorem: If s is a principal simplex of £&(v,A), then o=v*sis
a principal simplex of X. Therefore at least one of the vertices of ¢ is in T'; since
it is not v, it must be one of the vertices of s. Similarly, if f were a simplex of
Lh(v, A) having more than one vertex in 7}, then v*¢ would be a simplex of A
having more than one vertex in 7, contrary to hypothesis.

We conclude that

B(X,—8tT,)=B(X,)—1, or B(Lh(v,A—StT))=B(Lh(v,A))—1.

This inequality holds for each vertex of A— 8t 7. Suppose the minimum value
of the left side occurs when v is the vertex vy. Using the preceding inequality and
Corollary 6.3, we conclude that

Y(A) —1<B(Lh(vg,A)) SB(LA(vg, A=StT)) +1=y(A=StT),

as desired.

Step 2. Now we show that (ii)y= (i)y, and the theorem is proved. Let A have
dimension N. Let 8o=6(A). In view of (ii)y, we know that the local cohomology
groups of Y=A — 8t T vanish in dimensions less than 8y— 1. It remains to prove
the same about the cohomology groups of Y.

Consider T as a 0-dimensional subcomplex of A. Then T is a full subcom-
plex of A, since no simplex of A has more than one of its vertices in the set 7.
Therefore we may, in computing cohomology groups, replace Y=X-8&T
by X—T, or by X*(T), as in §4. Applying Lemma 4.3 to the complex X, we
have

H/(X,X*(T))=0 for j<Bo—dim T=4,.
Consider the exact sequence
HTW(X, X*(T))<— H{(X*T))~— H(X).

The left group vanishes for i + 1<y, as just shown; and}he right group vanishes
for i <y, by hypothesis. We conclude that the group H'(X*(T))=H'(Y) van-
ishes for i <fy—1, as desired. Thus (i) holds. O

The proof just given implies the following additional fact:

COROLLARY 6.5. Let X and Y be as in Theorem 6.4. If v(X)>B(X), then
B(Y)=p(X).

Proof. Let Byo=B(X), as before. Because v(X)>pB(X)=pBy, we must
have HPo(X)#0. Because v(X)=8y+1, we conclude from Lemma 4.3 that
H/(X,X*(T))=0 for j <B¢+1. Consider the exact sequence
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H'Y Y (X, X*(T))y*—H(XX(T))+—H'(X)*—H(X,X*(T))

The left group vanishes for i + 1 <, 1, as just noted, and so does H'(X); there-
fore H(X*(T))=H(Y)=0 for i<B,. The right-hand group vanishes for
i<Bp+1 and in particular for i <B,. Then HPo(X) injects into HPo(X*(T));
therefore the latter group is non-trivial. Thus 3, is the smallest index for which
H'(Y)#0. On the other hand, y(Y)=v(X)—128,, so the local cohomology
groups of Y vanish in dimensions less than 8,. We conclude that 3(Y) =0, as
desired. O

COROLLARY 6.6. Let P be a partially ordered set with A(P) pure. Let T be a
level set of P; let Q=P—T. Then

B(A(Q))ZB(A(P)) L.
In particular, if A(P) is Cohen-Macaulay, so is A(Q). 0

This corollary is all one can say in general about the relation between S(A(Q))
and B(A(P)). Examples show that in general, 3(A(Q)) may be any number
between B(A(P))—1 and dim(A(Q)).

COROLLARY 6.7. Let P be a partially ordered set with A(P) pure. If
Y(A(P)) —B(A(P))=Z2m>0, then deletion of m levels from P leaves a poset Q

Jor which 3(A(Q)) =B(A(P)).

Proof. This follows from Corollary 6.5, once one notes that by Theorem 6.4,
deletion of one level from P decreases the value of y by at most 1. O

EXAMPLE. Let X be a triangulated N-manifold, and let P be its collection of
simplices, ordered by inclusion. The complex A(P) is then just the first bary-
centric subdivision of X, so y(A(P))=N. Suppose that A(P) is not Cohen-
Macaulay. Let k<N be the smallest index for which A/(X) is non-trivial. Then
B(A(P))=k. In this case, if Q is obtained by deleting no more than N—k levels
from P, then B(A(Q))=B(A(P)). In particular, if Q is obtained by deleting pre-
cisely N—k levels from P, then A(Q) is Cohen-Macaulay.
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