POLYNOMIAL RINGS OVER A HILBERT RING

William J. Heinzer

The object of the present paper is to clarify the literature surrounding an in-
correct result, Theorem 3.3 of [2], on just when polynomial rings in infinitely
many variables over a Hilbert ring are again Hilbert.

A ring R (commutative with unity) is a Hilbert ring if every prime ideal of R
is an intersection of maximal ideals. The concept of a Hilbert ring (also called
a Jacobson ring) was introduced by Goldman in [4] and Krull in [9], where it
is shown that if R is a Hilbert ring, then the polynomial ring R[X] is again
a Hilbert ring. In particular, the fact that for k a field, the polynomial ring
k[Xi,...,X,]is a Hilbert ring yields a ring-theoretic formulation of the Hilbert
Nullstellensatz. Krull also showed in [9] that a polynomial ring k[{X;};Z;] in a
countably infinite number of variables over a field & is a Hilbert ring if and only
if the field & has uncountable cardinality. For { X, ]},ea an infinite set of inde-
terminates, Gilmer in [2] considers the general question of when the polynomial
ring R[{X,}] is a Hilbert ring. Since a homomorphic image of a Hilbert ring is
again a Hilbert ring, it is clear from Krull’s result that if R[{X;};Z,]=S is a
Hilbert ring, then for each maximal ideal m of R, the field R/m must have un-
countable cardinality (for S/mS=(R/m)[{X;};i=1]). In Theorem 3.3 of [2],
Gilmer asserts that if R is a Hilbert ring and if { X, }, e, is an infinite set of inde-
terminates such that for each maximal ideal m of R, the cardinality of the field
R/m is greater than that of the set A, then S=R[{X,}] is a Hilbert ring. How-
ever, this assertion is incorrect as can be seen, for example, by taking R to be a
1-dimensional Noetherian domain containing an uncountable field and having a
countably infinite number of maximal ideals. For R with this property, (0) is the
intersection of the maximal ideals of R so that R is Hilbert. But for any maximal
ideal m of R, the local ring R,,, is a non-Hilbert ring that is a countably generated
R-algebra, and hence a homomorphic image of the polynomial ring R[{X;};Z,].
Therefore R[{X;};=,] is not Hilbert. A specific example of such a ring R is the
example given in [2, p. 211]. Let C be the field of complex numbers and let R be
the localization of the polynomial ring C[X] at the multiplicative system gen-
erated by { X —a|a € C\Z]}. Contrary to what is asserted in [2] and repeated in
[6, Example 174, p. 145], for this ring R the polynomial ring R[{ X;};~,] is not a
Hilbert ring.

Gilmer informs me that the error in the proof of Theorem 3.3 of [2] occurs on
page 210, 15 lines from the bottom, where it is stated that P, is an ideal. The
above example also shows that the sufficiency assertion in Corollary 3.4 of [2] in
order that S=R[{ X, }] be Hilbert is incorrect; and since Corollary 3.4 is used in
the proof of Theorem 3.5 of [2], the status of this result is in need of clarifica-
tion. A ring R is Hilbert if and only if each finitely generated R-algebra that is a
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field is an integral R-algebra, or equivalently if and only if for each maximal
ideal M of the polynomial ring R[ X'], MNR is a maximal ideal of R. If { X, })ex
is an infinite set of indeterminates over R, then Gilmer in Theorem 3.5 of [2]
observes the equivalence of the following statements:

(1) For each maximal ideal M of S=R[{X)]], the ideal MNR is maximal in

R, and S/M is algebraic over R/(MNR).

(2) For each maximal ideal M of S=R[{ X, }], the residue field S/M is integral

over R/(MNR).

The incorrect Corollary 3.4 is then used to conclude that condition (1) or (2)
implies that S=R[{X)}] is a Hilbert ring. It is correct that (1) or (2) implies S is
Hilbert, and this can be seen as follows. Since { X } is infinite, S is R-isomorphic
to the polynomial ring S[Y']. If S is not Hilbert, then there exists a maximal ideal
M of S[Y] such that M NS is not maximal in S. We then have R/(MNR)C
S/(MNS)CS[Y]/M, where S/(MNS) is not a field. This contradicts condi-
tion (2).

It is stated in Theorem 3.5 of [2] that if S=[{X}] is Hilbert this does not
imply conditions (1) or (2). But, as noted above, in the example given in [2,
p. 311] to show this, the ring S=R[{X;}] is not Hilbert. In fact, for a Noetherian
ring R, or more generally for a ring R that satisfies the descending chain condi-
tion (d.c.c.) on prime ideals, conditions (1) and (2) above are equivalent to the
statement that S=R[{X)]}] is a Hilbert ring. To show this, let us fix some term-
inology. Let |A| denote the cardinality of the infinite set { X, }. We will say that
an R-algebra T is |A|-generated if T can be generated as an R-algebra by a set of
cardinality <|A|. If S=RI[{X)]}] is Hilbert, then for any maximal ideal m of R,
S/mS=(R/m)[{X,}] is Hilbert. By [2, Theorem 2.9], the field R/m has cardi-
nality >|A|. Hence for any proper ideal 7 of R, the ring R/[ has cardinality >|A|.
It follows that if S=R[{X,}] is Hilbert and M is a maximal ideal of S, then the
field L =S/M is algebraic over the quotient field K of D=R/(MNR). Since K
has cardinality >|A|, it follows from [2, Theorem 2.5] that a transcendental field
extension of K cannot be |A|-generated as a K-algebra, and hence, a fortiori, as a
D-algebra. Hence L is algebraic over K. We note also that K is |A|-generated as
a D-algebra since L is |A]-generated as a D-algebra. For if L=DI[{¢,}] and if we
choose @, €D\ (0) such that ¢, is integral over D[ax '], then L is integral over
D[{ay'}] so that D[{ay')] =K.

If R had d.c.c. on prime ideals and D=R/(MNR) is not a field, then D has a
prime ideal P of height one. The following lemma completes a proof that condi-
tions (1) and (2) hold for any ring R satisfying the d.c.c. on prime ideals and such
that R[{ X\ }] is a Hilbert ring.

LEMMA. Let D be an integral domain with quotient field K and assume that K
is |A|-generated as a D-algebra. If D contains a height-one prime ideal P, then
there exists a non-Hilbert ring E between D and K such that E is |A|-generated as
a D-algebra. In fact, E can be constructed so that K is a simple ring extension
of E.

Proof. Since K is JA]-generated as a D-algebra, there exists {#\}yeaCD\(0)
such that K=DI[{¢) '}]. Let a€P, a#0, and let V=Dp, Then V is a 1-dimen-
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sional quasi-local domain, and for each ¢, there exists a positive integer n),
such that @™ €t V. Let E=D[{a™/t\}]. Then ECV, so E#K but E[a"']=
DI[{ty')]=K. Hence a is in every nonzero prime ideal of E. It follows, in
particular, that E£ is not Hilbert. O

For R not satisfying d.c.c. on prime ideals, it can happen that the polynomial
ring R[{X;};~,] is Hilbert and yet R does not satisfy conditions (1) and (2). As
indicated by the argument given above, the existence of an R with this property is
related to the existence of an integral domain D properly contained in its quo-
tient field K such that K is countably generated as a D-algebra, but such that
each ring between D and K that is countably generated as a D-algebra is Hilbert.
Before presenting an example of an integral domain D having this property, we
state and complete the proof for our main positive result.

THEOREM. Let {X)}year be an infinite set of indeterminates. If R is a
Noetherian ring (or, more generally, if Spec R is Noetherian and R satisfies
d.c.c. on prime ideals), then the following are equivalent:

(1) the polynomial ring R[{ X, }] is a Hilbert ring;
(ii) every |A|-generated R-algebra that is a field is an integral R-algebra; and
(iii) for each maximal ideal m of R, the field R/m has cardinality >|A|, and for
each nonmaximal prime p of R, the set of primes q of R such that pC q and
ht g/p=1 has cardinality >|A|.

Proof. Condition (ii) is equivalent to conditions (1) and (2) of Theorem 3.5 of [2]
listed above. Hence, from what we have shown above, (ii) implies (i) for any com-
mutative ring R, and (i) implies (ii) for any R that satisfies d.c.c. on prime ideals.
Also we have observed above that (i) implies R/m has cardinality >|A| for each
maximal ideal 2 of R. Let p be a nonmaximal prime of R and let D=R/p. Since
R has d.c.c. on prime ideals, each nonzero prime ideal of D contains a prime
ideal of D of height one. Hence if {g,} is the set of prime ideals of D of height
one and ¢, €4, t,#0, then D[{7;'}] is the quotient field of D. Condition (ii)
implies that |{g,]}|>|A|. Therefore (i) and (ii) imply (iii) for any ring R having
d.c.c. on prime ideals.

To complete the proof of the theorem, we show that (iii) implies (ii). Let L be a
field that is |A|-generated as an R-algebra, and let D be the canonical homo-
morphic image of R in L. Condition (iii) implies that D has cardinality >|A|.
Hence by [2, Theorem 2.5], L is algebraic over the quotient field K of D. As we
have observed above, K is |A]-generated as a D-algebra since L is |A|-generated
as a D-algebra. But if D#K, then (iii) implies that the set {g,] of height-one
prime ideals of D has cardinality >|A|. Since Spec D is Noetherian, a nonzero
element ¢ of D is contained in only a finite number of the g,. Therefore, D#K
implies that K is not |[A[-generated as a D-algebra. We conclude that D=K, and
therefore that (iii) implies (ii). This completes the proof of the theorem. O

To obtain an example showing the necessity of the d.c.c. hypothesis in the
above theorem, we prove the existence of an integral domain R with the follow-
ing properties:
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(a) R contains a field of uncountable cardinality.

(b) Spec R is Noetherian.

(¢) For each nonzero prime ideal p of R, the residue class ring R/p is finite-
dimensional, and the local ring R, is an infinite dimensional valuation
ring.

(d) For each nonzero nonmaximal prime p of R, there exists an uncountable
number of prime ideals g of R such that pCq and ht g/p=1.

(e) There exists a set {¢;};~, of nonzero nonunits of R such that each nonzero
prime ideal of R contains ¢; for some /.

Condition (e) implies that R[{#;'}{>,] is the quotient field K of R, and hence
that K is a homomorphic image of the polynomial ring S=R[{X;};=;]. There-
fore R and S do not satisfy conditions (1) and (2) of [2, Theorem 3.5], or the
equivalent condition (ii) of the above theorem. But conditions (a)-(d) imply that
S=R[{X;}i=]is a Hilbert ring. To show that S is Hilbert, it suffices to show that
every nonmaximal prime P of S is an intersection of prime ideals of S that
properly contain it ([4, p. 138] or [1, p. 71]). If PNR=p#(0), then S/pS=
(R/p)[{X;]] is Hilbert by the Theorem, so that P is an intersection of maximal
ideals of S in this case. Suppose that PNR=(0), and let T=S/P. If P is not
equal to the intersection of the prime ideals of S that properly contain P, then the
quotient field L of T is a simple ring extension of 7. Hence L is countably gen-
erated as an R-algebra. Condition (a) implies that L is algebraic over K. The fact
that L is a simple ring extension of 7 implies that any valuation ring W such that
TC W <L is contained in a rank one valuation ring U such that TCU< L. Since
L/K is algebraic, UNK =V is a rank one valuation ring on K. But condition (c)
implies that R, =V, where q is the center of V on R. This contradicts the fact that
R, is an infinite dimensional valuation ring. We conclude that conditions (a)-(d)
imply that S=R[{X;};Z,] is a Hilbert ring.

EXAMPLE. It remains to prove the existence of an integral domain R that
satisfies conditions (a)-(e). For this purpose we use an existence theorem due to
Jaffard [7, p. 78]. Jaffard has shown that if G is a lattice-ordered abelian group,
then there is an integral domain R which has G as its group of divisibility. The
construction is carried out using the group ring B(G) of G with respect to an
arbitrary field F. R has the same quotient field as B(G) and F'is contained in R.
By taking the field F to be of uncountable cardinality, we insure that condition
(a) is satisfied. An argument due to J. Ohm presented in [5, p. 1380] shows that
the Jaffard construction actually yields a Bezout domain R. This implies that R,,
is a valuation ring for each prime ideal p of R. Moreover, as observed in [5],
there is a one-to-one inclusion preserving correspondence between the nonzero
prime ideals of R and nonempty subsets J of the set G* of positive elements of G
that have the following properties: 0¢J; a€J and b>a implies b€J; a,bEJ
implies inf{a, b} € J, and G *\J is closed under addition. To obtain R satisfying
conditions (b)-(e), we construct G as follows. Let Z denote the group of integers,
and let A be an uncountable set. Let A,=Z™={f: fis a finitely nonzero func-
tion from A to Z}. Then A4; with componentwise ordering is a lattice-ordered
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abelian group. Let B;=Z®A,;, where B, is partially ordered by defining (b, a) >
(b',a’) in ZAA,if b>b’in Z, or b=b'and a>a’in A;. We identify 4, with
(0, A4,) in B;. Let A,=B{M={f: fis a finitely nonzero function from A to B, }.
Then A, with componentwise ordering is a lattice-ordered abelian group. Let
B,=Z®A,, where B, is partially ordered by defining (b,a)> (b',a’) if b> b/,
or b=>b'and a>a’ in A,. Similarly, we define A,=B*), and B,=Z® A, for
each positive integer n. If R, is a domain obtained using the Jaffard construction
with group of divisibility B,,, then dim R,=n+1, Spec R, is Noetherian, and R,,
has a unique minimal nonzero prime ideal that corresponds to the set of ele-
ments (b,a) in Z@A, =B, such that »>0 in Z. Moreover, for each nonzero
nonmaximal prime ideal p of R,,, there exist uncountably many prime ideals g of
R, such that pCq and htg/p=1. For a fixed A€ A we identify B, _, with the
A-component of A, =BSY). Then B,_, is a lattice-ordered subgroup of 4,,. Also
we identify A, with the subgroup 0@ A, of B, =Z®A, so that A, is a lattice-
ordered subgroup of B,. Let G be the group obtained by taking the directed
union of the B,,. Using the Jaffard construction over an uncountable field, we
construct R with group of divisibility G. Then R=U -, R,, where R,, has group
of divisibility B, C G. Let

J,={g€G:for somea,€A,, g=2(1,a,)ELD®A,CG)}

and let P, denote the prime ideal of R corresponding to J,,. Then P,=(P,NR,)R
and R/P,=R,/(P,NR). Hence R/P, is finite dimensional and Spec(R/P,) is
Noetherian. If ¢ is any nonzero element of R and g is the image of ¢ in G, then
g€ A, for some n. It follows that P,C¢R. In particular, if Q is any nonzero
prime ideal of R, then P, C Q for some n. Therefore R satisfies conditions (b), (d)
and (e). Since P,,; <P, for each n, R also satisfies condition (c), and hence
provides the desired example.
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