POLYNOMIAL RINGS OVER A HILBERT RING ## William J. Heinzer The object of the present paper is to clarify the literature surrounding an incorrect result, Theorem 3.3 of [2], on just when polynomial rings in infinitely many variables over a Hilbert ring are again Hilbert. A ring R (commutative with unity) is a Hilbert ring if every prime ideal of R is an intersection of maximal ideals. The concept of a Hilbert ring (also called a Jacobson ring) was introduced by Goldman in [4] and Krull in [9], where it is shown that if R is a Hilbert ring, then the polynomial ring R[X] is again a Hilbert ring. In particular, the fact that for k a field, the polynomial ring $k[X_1, \ldots, X_n]$ is a Hilbert ring yields a ring-theoretic formulation of the Hilbert Nullstellensatz. Krull also showed in [9] that a polynomial ring $k[\{X_i\}_{i=1}^{\infty}]$ in a countably infinite number of variables over a field k is a Hilbert ring if and only if the field k has uncountable cardinality. For $\{X_{\lambda}\}_{{\lambda} \in {\Lambda}}$ an infinite set of indeterminates, Gilmer in [2] considers the general question of when the polynomial ring $R[\{X_{\lambda}\}]$ is a Hilbert ring. Since a homomorphic image of a Hilbert ring is again a Hilbert ring, it is clear from Krull's result that if $R[\{X_i\}_{i=1}^{\infty}] = S$ is a Hilbert ring, then for each maximal ideal m of R, the field R/m must have uncountable cardinality (for $S/mS \cong (R/m)[\{X_i\}_{i=1}^{\infty}]$). In Theorem 3.3 of [2], Gilmer asserts that if R is a Hilbert ring and if $\{X_{\lambda}\}_{{\lambda} \in {\Lambda}}$ is an infinite set of indeterminates such that for each maximal ideal m of R, the cardinality of the field R/m is greater than that of the set Λ , then $S=R[\{X_{\lambda}\}]$ is a Hilbert ring. However, this assertion is incorrect as can be seen, for example, by taking R to be a 1-dimensional Noetherian domain containing an uncountable field and having a countably infinite number of maximal ideals. For R with this property, (0) is the intersection of the maximal ideals of R so that R is Hilbert. But for any maximal ideal m of R, the local ring R_m is a non-Hilbert ring that is a countably generated R-algebra, and hence a homomorphic image of the polynomial ring $R[\{X_i\}_{i=1}^{\infty}]$. Therefore $R[\{X_i\}_{i=1}^{\infty}]$ is not Hilbert. A specific example of such a ring R is the example given in [2, p. 211]. Let C be the field of complex numbers and let R be the localization of the polynomial ring C[X] at the multiplicative system generated by $\{X - \alpha \mid \alpha \in \mathbb{C} \setminus \mathbb{Z}\}$. Contrary to what is asserted in [2] and repeated in [6, Example 174, p. 145], for this ring R the polynomial ring $R[\{X_i\}_{i=1}^{\infty}]$ is not a Hilbert ring. Gilmer informs me that the error in the proof of Theorem 3.3 of [2] occurs on page 210, 15 lines from the bottom, where it is stated that P_{σ} is an ideal. The above example also shows that the sufficiency assertion in Corollary 3.4 of [2] in order that $S = R[\{X_{\lambda}\}]$ be Hilbert is incorrect; and since Corollary 3.4 is used in the proof of Theorem 3.5 of [2], the status of this result is in need of clarification. A ring R is Hilbert if and only if each finitely generated R-algebra that is a Received June 16, 1983. Revision received January 16, 1984. Michigan Math. J. 31 (1984). field is an integral R-algebra, or equivalently if and only if for each maximal ideal M of the polynomial ring R[X], $M \cap R$ is a maximal ideal of R. If $\{X_{\lambda}\}_{{\lambda} \in \Lambda}$ is an infinite set of indeterminates over R, then Gilmer in Theorem 3.5 of [2] observes the equivalence of the following statements: - (1) For each maximal ideal M of $S = R[\{X_{\lambda}\}]$, the ideal $M \cap R$ is maximal in R, and S/M is algebraic over $R/(M \cap R)$. - (2) For each maximal ideal M of $S = R[\{X_{\lambda}\}]$, the residue field S/M is integral over $R/(M \cap R)$. The incorrect Corollary 3.4 is then used to conclude that condition (1) or (2) implies that $S = R[\{X_{\lambda}\}]$ is a Hilbert ring. It is correct that (1) or (2) implies S is Hilbert, and this can be seen as follows. Since $\{X_{\lambda}\}$ is infinite, S is R-isomorphic to the polynomial ring S[Y]. If S is not Hilbert, then there exists a maximal ideal M of S[Y] such that $M \cap S$ is not maximal in S. We then have $R/(M \cap R) \subset S/(M \cap S) \subset S[Y]/M$, where $S/(M \cap S)$ is not a field. This contradicts condition (2). It is stated in Theorem 3.5 of [2] that if $S = \{X_{\lambda}\}$ is Hilbert this does not imply conditions (1) or (2). But, as noted above, in the example given in [2, p. 311] to show this, the ring $S = R[\{X_i\}]$ is not Hilbert. In fact, for a Noetherian ring R, or more generally for a ring R that satisfies the descending chain condition (d.c.c.) on prime ideals, conditions (1) and (2) above are equivalent to the statement that $S = R[\{X_{\lambda}\}]$ is a Hilbert ring. To show this, let us fix some terminology. Let $|\Lambda|$ denote the cardinality of the infinite set $\{X_{\lambda}\}$. We will say that an R-algebra T is $|\Lambda|$ -generated if T can be generated as an R-algebra by a set of cardinality $\leq |\Lambda|$. If $S = R[\{X_{\lambda}\}]$ is Hilbert, then for any maximal ideal m of R, $S/mS \cong (R/m)[\{X_{\lambda}\}]$ is Hilbert. By [2, Theorem 2.9], the field R/m has cardinality $> |\Lambda|$. Hence for any proper ideal I of R, the ring R/I has cardinality $> |\Lambda|$. It follows that if $S = R[\{X_{\lambda}\}]$ is Hilbert and M is a maximal ideal of S, then the field L = S/M is algebraic over the quotient field K of $D = R/(M \cap R)$. Since K has cardinality $> |\Lambda|$, it follows from [2, Theorem 2.5] that a transcendental field extension of K cannot be $|\Lambda|$ -generated as a K-algebra, and hence, a fortiori, as a D-algebra. Hence L is algebraic over K. We note also that K is $|\Lambda|$ -generated as a D-algebra since L is $|\Lambda|$ -generated as a D-algebra. For if $L = D[\{t_{\lambda}\}]$ and if we choose $a_{\lambda} \in D \setminus (0)$ such that t_{λ} is integral over $D[a_{\lambda}^{-1}]$, then L is integral over $D[\{a_{\lambda}^{-1}\}]$ so that $D[\{a_{\lambda}^{-1}\}] = K$. If R had d.c.c. on prime ideals and $D=R/(M\cap R)$ is not a field, then D has a prime ideal P of height one. The following lemma completes a proof that conditions (1) and (2) hold for any ring R satisfying the d.c.c. on prime ideals and such that $R[\{X_{\lambda}\}]$ is a Hilbert ring. LEMMA. Let D be an integral domain with quotient field K and assume that K is $|\Lambda|$ -generated as a D-algebra. If D contains a height-one prime ideal P, then there exists a non-Hilbert ring E between D and K such that E is $|\Lambda|$ -generated as a D-algebra. In fact, E can be constructed so that K is a simple ring extension of E. *Proof.* Since K is $|\Lambda|$ -generated as a D-algebra, there exists $\{t_{\lambda}\}_{{\lambda} \in \Lambda} \subset D \setminus \{0\}$ such that $K = D[\{t_{\lambda}^{-1}\}]$. Let $a \in P$, $a \neq 0$, and let $V = D_P$. Then V is a 1-dimen- sional quasi-local domain, and for each t_{λ} there exists a positive integer n_{λ} such that $a^{n_{\lambda}} \in t_{\lambda} V$. Let $E = D[\{a^{n_{\lambda}}/t_{\lambda}\}]$. Then $E \subset V$, so $E \neq K$ but $E[a^{-1}] = D[\{t_{\lambda}^{-1}\}] = K$. Hence a is in every nonzero prime ideal of E. It follows, in particular, that E is not Hilbert. For R not satisfying d.c.c. on prime ideals, it can happen that the polynomial ring $R[\{X_i\}_{i=1}^{\infty}]$ is Hilbert and yet R does not satisfy conditions (1) and (2). As indicated by the argument given above, the existence of an R with this property is related to the existence of an integral domain D properly contained in its quotient field K such that K is countably generated as a D-algebra, but such that each ring between D and K that is countably generated as a D-algebra is Hilbert. Before presenting an example of an integral domain D having this property, we state and complete the proof for our main positive result. THEOREM. Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be an infinite set of indeterminates. If R is a Noetherian ring (or, more generally, if Spec R is Noetherian and R satisfies d.c.c. on prime ideals), then the following are equivalent: - (i) the polynomial ring $R[\{X_{\lambda}\}]$ is a Hilbert ring; - (ii) every $|\Lambda|$ -generated R-algebra that is a field is an integral R-algebra; and - (iii) for each maximal ideal m of R, the field R/m has cardinality $> |\Lambda|$, and for each nonmaximal prime p of R, the set of primes q of R such that $p \subset q$ and ht q/p=1 has cardinality $> |\Lambda|$. *Proof.* Condition (ii) is equivalent to conditions (1) and (2) of Theorem 3.5 of [2] listed above. Hence, from what we have shown above, (ii) implies (i) for any commutative ring R, and (i) implies (ii) for any R that satisfies d.c.c. on prime ideals. Also we have observed above that (i) implies R/m has cardinality $> |\Lambda|$ for each maximal ideal m of R. Let p be a nonmaximal prime of R and let D = R/p. Since R has d.c.c. on prime ideals, each nonzero prime ideal of P contains a prime ideal of P of height one. Hence if $\{\bar{q}_{\alpha}\}$ is the set of prime ideals of P of height one and P of height one ideals. Therefore (i) and (ii) imply (iii) for any ring P having d.c.c. on prime ideals. To complete the proof of the theorem, we show that (iii) implies (ii). Let L be a field that is $|\Lambda|$ -generated as an R-algebra, and let D be the canonical homomorphic image of R in L. Condition (iii) implies that D has cardinality $> |\Lambda|$. Hence by [2, Theorem 2.5], L is algebraic over the quotient field K of D. As we have observed above, K is $|\Lambda|$ -generated as a D-algebra since L is $|\Lambda|$ -generated as a D-algebra. But if $D \neq K$, then (iii) implies that the set $\{q_{\alpha}\}$ of height-one prime ideals of D has cardinality $> |\Lambda|$. Since Spec D is Noetherian, a nonzero element t of D is contained in only a finite number of the \bar{q}_{α} . Therefore, $D \neq K$ implies that K is not $|\Lambda|$ -generated as a D-algebra. We conclude that D = K, and therefore that (iii) implies (ii). This completes the proof of the theorem. \square To obtain an example showing the necessity of the d.c.c. hypothesis in the above theorem, we prove the existence of an integral domain R with the following properties: - (a) R contains a field of uncountable cardinality. - (b) Spec R is Noetherian. - (c) For each nonzero prime ideal p of R, the residue class ring R/p is finite-dimensional, and the local ring R_p is an infinite dimensional valuation ring. - (d) For each nonzero nonmaximal prime p of R, there exists an uncountable number of prime ideals q of R such that $p \subset q$ and ht q/p = 1. - (e) There exists a set $\{t_i\}_{i=1}^{\infty}$ of nonzero nonunits of R such that each nonzero prime ideal of R contains t_i for some i. Condition (e) implies that $R[\{t_i^{-1}\}_{i=1}^{\infty}]$ is the quotient field K of R, and hence that K is a homomorphic image of the polynomial ring $S = R[\{X_i\}_{i=1}^{\infty}]$. Therefore R and S do not satisfy conditions (1) and (2) of [2, Theorem 3.5], or the equivalent condition (ii) of the above theorem. But conditions (a)-(d) imply that $S = R[\{X_i\}_{i=1}^{\infty}]$ is a Hilbert ring. To show that S is Hilbert, it suffices to show that every nonmaximal prime P of S is an intersection of prime ideals of S that properly contain it ([4, p. 138] or [1, p. 71]). If $P \cap R = p \neq (0)$, then $S/pS \cong$ $(R/p)[\{X_i\}]$ is Hilbert by the Theorem, so that P is an intersection of maximal ideals of S in this case. Suppose that $P \cap R = (0)$, and let T = S/P. If P is not equal to the intersection of the prime ideals of S that properly contain P, then the quotient field L of T is a simple ring extension of T. Hence L is countably generated as an R-algebra. Condition (a) implies that L is algebraic over K. The fact that L is a simple ring extension of T implies that any valuation ring W such that $T \subset W < L$ is contained in a rank one valuation ring U such that $T \subset U < L$. Since L/K is algebraic, $U \cap K = V$ is a rank one valuation ring on K. But condition (c) implies that $R_q = V$, where q is the center of V on R. This contradicts the fact that R_q is an infinite dimensional valuation ring. We conclude that conditions (a)-(d) imply that $S = R[\{X_i\}_{i=1}^{\infty}]$ is a Hilbert ring. EXAMPLE. It remains to prove the existence of an integral domain R that satisfies conditions (a)-(e). For this purpose we use an existence theorem due to Jaffard [7, p. 78]. Jaffard has shown that if G is a lattice-ordered abelian group, then there is an integral domain R which has G as its group of divisibility. The construction is carried out using the group ring B(G) of G with respect to an arbitrary field F. R has the same quotient field as B(G) and F is contained in R. By taking the field F to be of uncountable cardinality, we insure that condition (a) is satisfied. An argument due to J. Ohm presented in [5, p. 1380] shows that the Jaffard construction actually yields a Bezout domain R. This implies that R_n is a valuation ring for each prime ideal p of R. Moreover, as observed in [5], there is a one-to-one inclusion preserving correspondence between the nonzero prime ideals of R and nonempty subsets J of the set G^+ of positive elements of G that have the following properties: $0 \notin J$; $a \in J$ and b > a implies $b \in J$; $a, b \in J$ implies $\inf\{a,b\} \in J$, and $G^+ \setminus J$ is closed under addition. To obtain R satisfying conditions (b)-(e), we construct G as follows. Let \mathbb{Z} denote the group of integers, and let Λ be an uncountable set. Let $A_1 = \mathbf{Z}^{(\Lambda)} = \{f : f \text{ is a finitely nonzero func-} \}$ tion from Λ to \mathbb{Z} . Then A_1 with componentwise ordering is a lattice-ordered abelian group. Let $B_1 = \mathbb{Z} \oplus A_1$, where B_1 is partially ordered by defining (b, a) > a(b', a') in $\mathbb{Z} \oplus A_1$ if b > b' in \mathbb{Z} , or b = b' and a > a' in A_1 . We identify A_1 with $(0, A_1)$ in B_1 . Let $A_2 = B_1^{(\Lambda)} = \{f : f \text{ is a finitely nonzero function from } \Lambda \text{ to } B_1\}$. Then A_2 with componentwise ordering is a lattice-ordered abelian group. Let $B_2 = \mathbb{Z} \oplus A_2$, where B_2 is partially ordered by defining (b, a) > (b', a') if b > b', or b=b' and a>a' in A_2 . Similarly, we define $A_n=B_{n-1}^{(\Lambda)}$, and $B_n=\mathbb{Z}\oplus A_n$ for each positive integer n. If R_n is a domain obtained using the Jaffard construction with group of divisibility B_n , then dim $R_n = n + 1$, Spec R_n is Noetherian, and R_n has a unique minimal nonzero prime ideal that corresponds to the set of elements (b, a) in $\mathbb{Z} \oplus A_n = B_n$ such that b > 0 in \mathbb{Z} . Moreover, for each nonzero nonmaximal prime ideal p of R_n , there exist uncountably many prime ideals q of R_n such that $p \subset q$ and ht q/p=1. For a fixed $\lambda \in \Lambda$ we identify B_{n-1} with the λ -component of $A_n = B_{n-1}^{(\Lambda)}$. Then B_{n-1} is a lattice-ordered subgroup of A_n . Also we identify A_n with the subgroup $0 \oplus A_n$ of $B_n = \mathbb{Z} \oplus A_n$ so that A_n is a latticeordered subgroup of B_n . Let G be the group obtained by taking the directed union of the B_n . Using the Jaffard construction over an uncountable field, we construct R with group of divisibility G. Then $R = \bigcup_{n=1}^{\infty} R_n$, where R_n has group of divisibility $B_n \subset G$. Let $$J_n = \{g \in G : \text{ for some } a_n \in A_n, g \ge (1, a_n) \in \mathbb{Z} \oplus A_n \subset G\}$$ and let P_n denote the prime ideal of R corresponding to J_n . Then $P_n = (P_n \cap R_n)R$ and $R/P_n \cong R_n/(P_n \cap R)$. Hence R/P_n is finite dimensional and $\operatorname{Spec}(R/P_n)$ is Noetherian. If t is any nonzero element of R and g is the image of t in G, then $g \in A_n$ for some n. It follows that $P_n \subset tR$. In particular, if Q is any nonzero prime ideal of R, then $P_n \subset Q$ for some n. Therefore R satisfies conditions (b), (d) and (e). Since $P_{n+1} < P_n$ for each n, R also satisfies condition (c), and hence provides the desired example. ## **REFERENCES** - 1. M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley, Reading, Mass., 1969. - 2. R. Gilmer, On polynomial rings over a Hilbert ring, Michigan Math. J. 18 (1971), 205-212. - 3. ——, Multiplicative ideal theory, Dekker, New York, 1972. - 4. O. Goldman, *Hilbert rings and the Hilbert Nullstellensatz*, Math. Z. 54 (1951), 136-140. - 5. W. Heinzer, *J-noetherian integral domains with* 1 *in the stable range*, Proc. Amer. Math. Soc. 19 (1968), 1369-1372. - 6. H. Hutchins, Examples of commutative rings, Polygonal Pub. House, Passaic, N.J., 1981. - 7. P. Jaffard, Les systemes d'idéaux, Dunod, Paris, 1960. - 8. I. Kaplansky, Commutative rings, Allyn & Bacon, Boston, Mass., 1970. 9. W. Krull, *Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimensionstheorie,* Math. Z. 54 (1951), 354–387. Department of Mathematics Purdue University West Lafayette, Indiana 47907