THE FAILURE OF L? ESTIMATES FOR
HARMONIC MEASURE IN CHORD-ARC DOMAINS

David Jerison

Let D be a bounded domain in the complex plane whose boundary dD is the
image of a simple closed rectifiable curve. For ¢, {'€ dD, denote by ¢(dD; ¢, {’)
the length of the shorter arc of dD with endpoints { and ¢’. D is said to be a
chord-arc domain if there is a constant C such that for every ¢, {'€adD,

o(aD; &, ) <Cle—¢|.

For each p> 0, the Hardy class H” is the collection of analytic functions F on the
unit disc in the complex plane satisfying

1 2% ‘ '
sup .U-p(r,F) <oo, where ptp(r,F)z S S IF(re'o)lde.
r<l1 27 0

Our purpose is to comment on a theorem of Lavrentiev [8], namely

THEOREM 1. For any constant C, there exists p>0 such that if f is a con-
formal mapping of the unit disc onto D and D is a chord-arc domain with con-
stant C, then 1/f'€ H?.

This result has received considerable attention recently ([1], [4], [6], [9]) by
virtue of its link to real-variable lemmas of John-Nirenberg type and to the
boundedness of the Cauchy integral on curves. In the closely related special case
in which aD is given locally as the graph of a Lipschitz function, the correspond-
ing conformal mapping f satisfies 1/f'€ H' independent of the Lipschitz con-
stant. The same is true of another simple example, a logarithmic spiral. For these
reasons, Jerison and Kenig [6] and Baernstein [1] asked if Theorem 1 is valid
with some exponent p independent of C, and in particular for p=1. We will show
here that it is not.

THEOREM 2. For any p>0, there exists a chord-arc domain D for which
1/f’€ H? for any conformal mapping f of the unit disc onto D.

Jones and Zinsmeister have independently given another proof of this theorem
[71.

Background and notation. We will reformulate Theorem 2 in terms of har-
monic measure and state some standard results needed in the proof.
A well known consequence of Jensen’s inequality is that

(1) pp(r, F) is an increasing function of r for r<1 [10: p. 273].
If FE€ HP, then F(e®) = lim, _, ; F( re'®) exists for almost every § € [0, 27) and
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Sup,<; up(r, F)=p,(1,F) <oo.ltis also well known that a conformal mapping f
o_f the unit disc A={z€C: |z|<1] onto D extends to a homeomorphism of A to
D [10: p. 290]. By theorems of Privalov and F. and M. Riesz [10: p. 293], f'€H!
and
’ sup py (r, ') = 0(3D) /27 < oo;
r<l

do($)=|f(e"®)| dd, where ¢=f(e”).

Here ¢ denotes arc length measure on 3D, and do denotes the arc length element
on dD. We will also use the notations ¢ and do for length on curves other than
aD.

The harmonic measure for D at z is the measure w*(D; ) on dD such that for
any continuous function 2 on 8D, {;p h({) dw®(D; §) is the value at z of the har-
monic function in D with boundary values A. If zy=£(0), then w*(D; E)=
(1/27) [s-1(g) db for any measurable £CadD. Hence, the density of harmonic
measure with respect to arc length measure exists. In fact, let k. (D, {)=
(172m)| f(e”)| 7', where {=f(e”), then k. (D,.) €L (do) and dw?(D; {)=
keo(D, §) do().

For almost every {€9dD,
wi(D,I)

o(l)
as the arc I shrinks to {. Therefore, when it exists, k,(D,{) is a positive

harmonic function. We state here versions of the maximum principle and
Harnack’s inequality.

(2) If DCD’, then for almost every {€3dDNAJD’ and every z€D, k,(D’,{) 2
k.(D, ).

(3) Suppose that r>0 and DD zy+2rA. For any 2,7’ €20+ rA and almost every
feaD’ lo_lkZ(D! K‘) <kz,"(l), g') glOkz(D, .(.)'

(For a set £ we will use the notations rE = {rz:z€E} and 2o+ E =
{zo+z:2€E]}.) As a result, because D is connected, for any z;, 2, €D there is a
constant C depending on z;, Z, and D such that

4) C“kz] (D, ) <k, (D; ) <Cky (D, ) for almost every {€dD.

k(D {)=1lim

The domain D is said to have the Smirnov property if
27

log f(re®)=|  P,(6—x)log f(e™) dx,
0
where P,(0) = (1/27)(1—r?)/(1—2r cos 0+ r?) is the Poisson kernel. (In other
words, log f”is the Poisson integral of its boundary values.) Because the Poisson
formula extends to the boundary, a conformal mapping f of A onto a Smirnov
domain satisfies an improvement of (1).

pp(r,1/f") is an increasing function of r for r<1.
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A change of variable implies that

pp(1, 1/f7)= <2vr)"§aD keo(D, )7 do(5).

This equality and the preceding remarks yield

PROPOSITION 1. Fix p>0. Suppose that 0D is a rectifiable Jordan curve and
that f is a conformal mapping of A onto D. If 1/f'€HP, then k;(D,.)€
L'*?(do). Conversely, if D has the Smirnov property and kz,(D,.) EL!*P(do),
then 1/f'€ HP,

PROPOSITION 2. Suppose that oD is rectifiable and 1/f'€ H? for some p >0,
then D has the Smirnov property.

Proof. Since 1/f'€ H” and f'€ H',

sup pg(r, log|f’)) <o for any g<oo.
r<l
It follows from M. Riesz’ theorem that the harmonic conjugate arg f’(z) satis-
fies sup,<; p,(r,arg f') <. Hence log f’€ H? for any g and the Smirnov
property follows using [10: p. 258, pp. 149-150].
The purpose for which Lavrentiev obtained Theorem 1 was the following
corollary to Theorem 1 and Proposition 2.

COROLLARY. Every chord-arc domain is a Smirnov domain.

The example we will construct is based on the following theorem of Keldysh
and Lavrentiev [5].

THEOREM 3. There exists a domain (with rectifiable boundary) that is not a
Smirnov domain.

In light of Proposition 1 and the Corollary above, Theorem 2 is equivalent to

THEOREM 2’. For any p> 0 there exists a chord-arc domain D such that

| kD, 0y dos) = .
aD

The construction. The construction proceeds in two steps. The first step is to
use Theorem 3 to obtain a piecewise linear domain Q for which the density of
harmonic measure has large L' *#(do) norm. The second step is to build D out of
the union of affine linear transformations of {2 by an iterative procedure.

LEMMA. For any p>0 and any B <o there is a bounded domain QC C with
boundary given by the union of {z:Imz=2, —2<Rez<2}, {2:0<Imz<2,
Re z= =2}, and a piecewise linear simple curve I' : [ —2,2] — C satisfying
(@) o(I'(—2,2)) <1o0.

(b) T(s)=sfor —2<s<—land1<s<2, T'(—1,1)C{z: ; <|z|<1,Imz<0]}.
© Ir-1n ko(Q, $)'*Pda(§) 2 B.
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Proof. By Theorem 3 there is a domain @, that does not have the Smirnov
property. By an affine linear transformation we can assume that there exists s> 0
such that 3sAC ©,C1072A and ¢(89,) <1. Let f; be the conformal mapping of A
onto Q; such that f;(0)=0. By Proposition 2, sup,« u,(r,1/f{)=00. Since
up(r, 1/f1) is increasing for r <1, there exists rq sufficiently close to 1 for which
J1(roA)D2sA and p,(rg, 1/f1) 2B’. The constant B’ will be chosen later depend-
ing only on s and B. Notice also that

o(afi(rod)) =2mp (ro, f1) <27p (1, f1) =0(8%)) < L.

Choose a region 2, with boundary a piecewise linear simple closed curve suffi-
ciently close to afj(rpA) that SACQ,C (1/50)4A, 0(0%,) <2, and

) up(1,1/f§) 2 BY10,

where f, is a conformal mapping of A onto £, such that f,(0) =0. We can rewrite
(5) as

2w)PB’
[ ko, 0rrdocs > 22
aQ, 10
Choose a sub arc vy of 32, of length s/10 such that
27)PB’s
1+p (
©) | kotta, 671+ dot6) > ===

Let L be an isometry of C sending the origin to the point —i/2 and such that

Imz<—i/2 forall z€L(vy).
Let
Ri={z:0<Imz<2 and —2<Rez<2}

Ry={z: —1<Imz<0 and —1<Rez<l}.

Define Q=R;UR,UL(Q,). As the union of regions with piecewise linear boun-
dary, Q clearly has a piecewise linear boundary. The integral in (6) is unchanged
by an isometry, hence by the maximum principle (2)

2w)P B’
| kin@ o rdoz| k@@, 0 do(s)> mBs
L(v) L(v) 100

The region {2 contains the unions of the discs %A and —i/2+sA. Therefore, by
Harnack’s inequality (4) there exists >0 depending only on s such that

| k@ rdorza | ki@ 0"t do(s).

L(v) L(y)
If we choose B’ sufficiently large that (27 )?B’sy'?/100> B, then the proof of
the lemma is complete. O

In preparation for the iteration, here are two remarks concerning k (D, {).
First, let L(z) =az+ zy, where @ and 2z, are complex numbers, be an affine linear
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mapping of the z-plane. Harmonic measure is preserved by any such mapping,
i.e., I (L(D); L(E))=w*(D; E) for any measurable EC3D. Also, o(L(E))=
|a|o(E). Hence,

7 ki (L(D),L({)=|a| 'k (D, ).

Second, there is an absolute constant A such that if {€dD and ({+2rA)NaD
consists of a single line segment, then

®) A7k (D, §) <ky(D, ") <Ak (D, )

for ¢, {”€0DN (¢ +rA), ZED\({+ %rA). (For {’on an open line segment of D,
k,(D, {’) has a unique representative that is continuous in ¢{”.) In order to prove
(8), note that for the regions

S;=[(z:|z|<2 and Imz>0}, S,={z:|z|>2 or Imz>0)

harmonic measure can be calculated explicitly. In fact, S; is the image under
linear fractional transformation of a right-angle sector, and S, is the image of the
complement of a right-angle sector. In particular, there is an absolute constant A
such that k,(S,, ') <A k;(S;, {”) whenever ¢, "€ [—1,1] and |z|=3, Imz>
0. The hypothesis on D implies that there exists an affine linear mapping
L(z)=az+ ¢ such that |a|=r and L(S;)CDCL(S,). It follows from the maxi-
mum principle that (8) is valid for z€DNa({+ %rA). Moreover, if |{'—{|<r
and {'€4D, then for zED\({+3rA),

kD, &)= kAD, ') do*(D\¢ + 2rd; 2').
DN3(E+(3/2)rh)
Therefore, (8) is valid in full.
Denote E,={{€l'(—1,1): {+ 10'°%/AN3Q consists of a single line segment }.
As t tends to 0, E; increases to I'(—1, 1) minus the (finite) set of endpoints of the
segments of I'(—1,1). Hence for sufficiently small >0,

B
| k@ orrdo> .
E, 10
Choose a finite collection of intervals I;= (z;+fA)NT'(—-1,1), j=1,..., M, such
that z; EE;, UM, (z;+ 10%7) DE, and |z; — z;| > 10°¢, whenever j # k. Then remark
(8) implies that

w"(ﬂ,lj):S ko(Q, §) do(§) 2 A7 suplko(Q, §): F € (z;+10%2A)N 3R} o (1)).
1
Hence,

M
9) X

j=1

( (2 1))

1+p g (1 ) l
o)) ) o(1;)2107°A SE, ko(Q, O'TP do($)

=107°4-U+P g,

The chord-arc domain D is constructed as follows.
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Let D;=Q. Let Q;=L;(2), where L;(z)=a;z+z; is an affine linear mapping
such that |a;| =10¢ and L;(I'(—1, 1)) is exterior to D,. This specifies L; uniquely.
Denote I={z:z is real and —1/10<z<1/10}. Notice that I;=L;(I). Let D,=
D\UUM, ;. We define by induction L;,...j,=L;°Lj,...j,_, where j,=1,...,Mand
a=1,...,/. Denote &, ... j,=Lj,...;,(Q?) and inductively D, ,=D;U U}, .. j, Q... j
Let Iy...j;=Ljy...j(I) and ... j;=L;,...;,(0). Finally, let D=UJZ, D;.

Because the points z; are at distances greater than 10°¢ from each other, M <
(10°¢)'e(I'(=1,1)) <10™*#~L. Furthermore, o(L;(T'(—1,1))) <100¢. Hence,
0(dD,) —o(dD,) < M(100¢) <1072, Similarly, ¢(dD;;,)—d(8D;) <10~%. Thus,
(D) <o(dD)) + X2, 1072/ is finite. Because z; €E,, the same reasoning ap-
plies to any segment of d{2. Consequently, ¢(3dD; ¢, {') <200(99; ¢, ¢’) for any
pair of points ¢ and {’ belonging to dDNa2. The region Q=D is a chord-arc
domain because its boundary consists of finitely many segments. In order to
prove that D is a chord-arc domain we consider three cases. '

Case 1. { and {' belong to DN AD,. If C is the chord-arc constant for € then
0(aD; §, {) <200(09; {, §') <20C|¢—¢|.

Case 2. {€(0D;)NAD and {'€ (6D,\aD,)NaD.

(@) {'€0Q; and {€09%;. This reduces by an dffine linear transformation to
Case 1.

(b) ¢€(0D))\0Q; and {'€L;(I'(—1,1). Then |§—§’|>10‘20(69j). We also
have |z;— {|<10|¢—{’|. By the method of Case 1,

o(dD; ¢, {') <20(0(39)) +0(39; z;, {)).
Hence, o(3D; ¢, {') < 104C| §—¢’|, where C is the chord-arc constant for 2.

Case 3. {€(0D;)NAD and '€ (dD; . \oDy)NaD for some k 22. The proof
here is essentially the same as in Case 2(b).

Because z; € E;, the shorter arc of dD between any two points of D can be
transformed by an affine linear mapping to a configuration like one of the three
preceding cases.

wO(D,;Ijl,_,j,)=S w¥(Dy; I,...j,) dw’(Dy_; 2)

oD;_,
> eqDil.. ) (D)

iy =

1
?l—wzf]..-jl—l(Dl;Ijl._.jl)5 dwO(D,_l;z)

0 J1---di-1

1 o
2E‘-’-’zjl"'”_l(le...j,_pljl...jl)wo(Dl—l;Ijl...j;_l),

by Harnack’s inequality (3) and the maximum principle (2). Therefore, using (9)
and (7)
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. O .7\ \ltp
E (w (D[,Ij].--fi) ) G(Ijl..-fl)

=1 a(lj...j,)

M Zj i . . o T. .
>10—(1+p’( g WA g D)

Ji=1 G(Ijljl)

2107 PoD, L, ) P107%A 1P B(104)~PY D

1+p
wO(DI—-l;Ij]...jl_l)) o(Z;...;)

0 1+
_ 9 4 o (Di_i; i o) NP
=10 (1+p) 9A (l+p)Bo(I)p< U(IIjl .;1 )fl | ) O(Ijlu-fl—l)‘
1eeeJ1-1

Choose B so that 10~ (1*”P=94-(+PB5-P> 10, Then repeating the inequality
above for /—1, [—2, etc. we find that

g (w"(Dz;L-,...,-,)
Jpeedy=1 o(Lj...j;)
Let J={z:z is real and 1<z<6/5}. Denote Jj,...j,=Lj,...j,(J). Notice that
Jj,...j;CaD. The same proof as above shows that

M ] . 1+p 0 . 7. . I+p
WO(D; ;.. WDi_i; L. i)
E( (D Ji “)) a(ﬁl...j,)zlo( Dt L. ) oLy j_,)-

1+p
) a(Z;,...;) 210"

Ji=1 U(le...j1) G(Ijl...j[_l)

Hence,

M 0 1+

D;J . p
E (Cd ( j]..._}'[) ) O'(J“”)?/lol.
Jieedy=1 (Jjy...Jj)

Let E;=Uj,...j, Jj,...j,- By Hoélder’s inequality {g, ko(D, {)! "7 do(§) 210
Since / can be arbitrarily large, the proof is complete. O

Final remarks. When p=1, the domain © can be constructed easily without
recourse to Theorem 3. We need only make use of the exterior of a very narrow
sector of the plane. For instance, for x >0, define

g(x)=—1/4—x/4e, 0<x<e
=—1/2—e+x, e<x<1/2+¢
=0, 1/24+e<x,

and define g(x)=g(—x) for x<0. Let @={z€C: —2<Rez<2 and g(Rez) <
Im z<2}. Then Q satisfies the lemma when ¢ is sufficiently small. Thus, in this
case the construction is very explicit.

As a result of the scale invariance of the chord-arc condition, Lavrentiev was
able to localize his theorem as follows. For some p>0, the inequality

1 Lip 1/(1+p) | 7
(10) (—S k($) dam) <A——| k(t)do
oD % o) ©
holds for any arc I of dD with a constant 4 independent of I. This condition is
the same as the condition that arc length measure do belongs to the Muckenhoupt
class A, with respect to harmonic measure kdo, in which 1/(p+1)+1/g=1 [3].
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This stronger form of Lavrentiev’s theorem is the one that is important to the
Cauchy integral on curves.

In the first proof of bounds for the Cauchy integral on Lipschitz curves, A. P.
Calderon [2] makes use of the L™ bound on arg f’(z) in order to prove (10) with
p=1. This technique also appears in Lavrentiev’s work and [10: p. 295, Exam-
ple 1]. It would be interesting to understand better the interplay between the
chord-arc condition and bounds on arg f’(z) in their contribution to the validity
of (10).
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