ON THE SIMULTANEOUS UNIVALENCE OF f AND f’

R. W. Barnard and T. J. Suffridge

1. Introduction. In [1, p. 142, Problem 647] Clunie poses the following
problem.

Let f € S. Under the additional assumption that f’ is also univalent in |z| <1,
what can be said about max|a,| (#n>2)? The function z(1—z)~! shows that
max|a, | =1 for all n > 2.

We solve this problem for the case n =2 with the additional assumption, f has
real coefficients. We obtain the rather surprising and non-intuitive solution
determined by the extremal function given in (1) below. We first solve the prob-
lem for the case when fand f’ map the unit disk onto convex domains where the
expected function is indeed the solution. We then show how this leads into a
“natural’’ candidate (i.e. a variation on the Koébe function) for the solution to
the original problem. In showing why this candidate does not work we show how
we were motivated to determine the final solution in the real coefficient case.

Denote the class of functions described in Clunie’s problem (i.e. f €S and
/' univalent) by S’. We first show: if f€S’, f(z)=z+a,2*+ -, f'(2)=
1+2a,g(z) and f and g map the disk onto convex domains then |a; | < 4/(3k),
k = 2 with equality if and only if a, = (2/3) e’ and g(z) = z/(1 —ze™) for some
real v.

This result is relatively easy to prove as we shall see in Section 2 of this paper.
The method is to write f'(z) =1+2a,8(2), a, >0 when g(z) =z+ b, 2%+ -+ is
a convex map of the disk and to show a, < 2/3 with equality if and only if g(z) =
z/(1—2z), the usual extremal function for functionals on the class of normalized
convex maps.

By analogy, we are led to suspect that to find f € S’ that maximizes |a,|, we
should consider the values of @> 0 for which the function f,(z) = z+az?*+ - - - is
univalent where f;(z) =1+2az/(1—2z)%. A detailed analysis of f,(|z| =r) and
the normal to this curve shows that f, € S’ifand only if0<a < 2/(w—2) =1.75.
When a=2/(w—2), f, and f; map the unit disk to the regions shown roughly in
Figure 1. For this value of a, the boundary curve f,(|z| =1) is tangent to the real
axis at the point f(i) = —4/(1r—2)(%—log\/§). However, a study of

(1= f,(2)+t(z+bz?), b>0,

t small and positive, shows that f, does not maximize |a@,| in the class S’.
Roughly speaking, this variation has the effect of pulling the boundary curve
away from the real axis at its point of tangency and the varied function remains
in the class S’. The nature of this variation suggests that for the extremal, we
should have Im[ f(e")] =0 on an arc (8, <0< 6;). We therefore ask: For what
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Figure 1

values of 0 can f € S’ satisfy Im f(e”®) = 0? The following argument shows that
if f€S’ is analytic at e (0<0,<7/2) and f has real coefficients with
a, > 0 then Im f(e%) > 0. Assume otherwise, i.e. assume f(e’) = u(0)+ iv(6),
v(8p)=0. Then v’(0y) =0 because f is typically real. Further, f’(e®)=
e O(—iu'(0)+v’(0)) so that Im[f’(e?)] = —(cosfy)u’(8,). Thus we con-
clude u’(6y) < 0 because f” is typically real. Since f is conformal, it follows that
the sector 0y —e<argz<fp+e¢, 0<|z| <1, maps to a region that has nonempty
intersection with the lower half plane when ¢ > 0 is sufficiently small. This con-
tradicts the fact that f is typically real.

The above remarks suggest that we should consider a function f(z)=
Z+ @, 7%+ - -+ € S’ with the properties: Im f(e®) =0, 7/2 < 0 < 7w and Im f’(e) =
0, 0<8< «/2. Thus fand f’ would map the unit disk to regions similar to those
shown in Figure 2. We can construct such a function inferring the properties of
Re[zf”(z)/f’(z)] on |z| =1. The result is that

f(z)= (d+z) eXp[S 1 log 1+iw dw]

(1) (I_Z)z 0 wiw 1—iw
=1+ (3+2/m)z+ .

In this paper, we show that the function f € S’ given by (1) maximizes |a, | over
the subclass of functions in S’ that have real coefficients. We also show that this
function maximizes |a@,| over the class of normalized f (f(0)=0, f’(0)=1)
such that f and f’ are typically real.

2. The convex case. In the convex case, we have the following result.

THEOREM 1. If f(z)=z+ayz*+ -+ and f'(z) =1+2a,g(z) are univalent
Junctions that map the unit disk onto convex regions then |a, | < 2 with equality
if and only if g(z) =z/(1—ze") and a, = 3e".

Proof. Without loss of generality, we may assume a, = @ > 0. We assume g and
f are convex and write
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Sf(z|<1) S(|z[<1)

<

Figure 2

0<Relzf"(z)/f'(z)+1]=Re[2azg’(z)/(1+2ag(z))+1].

This is equivalent to

2azg’(z2) S 2azg’(z)
14+2ag(z) | 14 2ag(2)

or |zg'(z)+2g(z)+1/a| > |zg'(z)|. Since zg’(z)+2g(z)=0 when z=0, and
g'(z)#0, given r, 0 <r <1, there exists z such that |z| =r, zg’(z) +2g(z) <0 and
1/a—|zg’(z) +2g(z)| = |zg’(z)|. Thus l/a—|g(z)||2+zg'(z)/g(2)| = |zg'(z)|.
Since

lg(z)| 2 r/(1+7), |z8"(2)| = r/(1+7r)?
and
Re(zg'(2)/g(z)) 21/(1+7r),
we conclude
1/a—r(3+2r)/(1+r)22r/(1+r)?,
1/az (4r+2r>)/(1+1r)2,  a<(1+nr)?/(4r+2r?).

Letting r — 1, we conclude a < 2. Further, it is clear that if g(z) # z/(1—z) then
|zg’(z)| 2 r(1+8)/(1+r)? for some &> 0 for the z such that zg’(z) +2g(z) <0,
|z|=r, hence a < % The proof is now completed by observing that

4 2

32/(1—2) (3—2)(1+2)

Re| 3% +1]=R [ ]>o
e[1+§z/(1—z) | G+a-2)

when [z| <1 (i.e. a=} is possible). 0O

COROLLARY 1. If f€ S8’ and f and [’ are convex then |a;|< 4/(3k) (where
f(R)=z+a,z2+ - --). This inequality is sharp.

Proof. Write f'(z)=1+2a,z+3a3z%+---=1+2a,g(z). Since the coeffi-
cients of g are bounded by 1, |kay | <|2a,|< % and |a; | < 4/(3k) follows. Sharp-
ness is clearly shown by taking a, = % and g(z)=z/(1—2). ‘ O
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Actually, in Theorem 1 and Corollary 1, one need only assume f is convex and
g is starlike of order 3.

COROLLARY 2. If f(z) =z+a,2%+ - - and f'(z) =1 +2a,8(z) are univalent
in the unit disk, f(|z| <1) is convex and g is starlike of order 3 then |a;|<
4/(3k) with equality if and only if a, = %e"’ and g(z)=z/(1—ze") for some
real v.

Proof. We shall show |g(z)| = |z|/(1+|z|) and |zg’(z)| = |z|/(1 +]|z)?. Since it
is also true that Re[zg’(2)/g(z)] 2 1/(1+|z]|), the proof given for Theorem 1 is
valid here as well.

By the Herglotz representation, zg'(z)/g(z) = {§"1/(1 —ze" ) du(¢) for some
probability measure 4 on [0, 27]. Hence

27

loglg(2)/2]=| ~log(1—ze™) du(1).
0
Since k(2) = élog(l —z) is a convex map (i.e. k(|z]| <1) is convex), log(g(z)/z)
lies in the region k(|z|<1). This clearly implies Re(g(z)/z)>1 so |g(z)| =
|z|/(1+]z|). Now Re[zg’(z)/g(z)]> % and hence

1 gRe(zg (z) )< zg’(z) < |zg’ ()] '
1+|z] g(2) £(2) |2]/(1+]z])
Therefore |zg’(z)| = |z|/(1 +|z|)? and the proof is complete. O

3. The real coefficient case. We now consider the functions f(z)=2z+
a,z%+ -+, a, #0 such that f is typically real and f’(z) =1 +2a,g(z) where g is
typically real. Since f is typically real if and only if the function —f(—z2) is typi-
cally real, we assume throughout this section that a, > 0. Thus, we consider f(z) =
Z+a,z?+ -+ such that a,,a;,... are real, (1/sin@)[sinf@+a,rsin26+---1=0
and (1/sinf)[2a; sinf+3a3rsin260+---]20. We shall prove the following
theorem.

THEOREM 2. If fand f' are typically real, a, >0, then a, < %+ 1/% with equal-
ity if and only if f'(z) is given by (1).
We note that if f(z) =z+a,z%+ - - - has real coefficients and is univalent then

it is typically real. We shall show that f given by (1) (and the condition f(0) =0)
is in the class S’. Hence we have the following result.

THEOREM 3. If f€ S8’ and all coefficients of f are real, a, >0, then a, <
%+1/7r with equality if and only if f is given by (1).

We first assume that f is given by (1) with £(0) =0 and show that f € S’ with
f(z]<1) and f’(Jz| <1) as shown in Figure 2. Set

zf"(z) z 27 1 (l+iz>
= ; log

= + + -
f'(z) 14z 1—-z = 1—iz

F(z)=

and note that
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darg/'(2) _
20 =Re(F(2)),

dlog|f"(z)] _ —Im(¥(z)) and rsze(F(z)).
20 or

We will use the principle of the argument to show that f’ is univalent in the
region |z| <1, Imz > 0 and maps that region into the upper half plane (the inter-
section of the upper half plane with the region given in Figure 2). It will then
follow that f”is univalent in |z| <1 and also typically real. From (1), we see that
J'(x) is the product of increasing functions for real x and takes —1 <z <1 onto
0<w<o. When z=¢, 0 <<=, Im(F(2))>0 so

dlog|f’(z)]
e <0.

Further,
0, 0<O<®w/2

Re(F(ew))={ —1, w/2<0<7

hence arg f’(e") = constant, 0< 8 < w/2 and arg f'(e”?) decreases by =/2 as 0
varies from 7/2 to . By conformality of f’ at —1, we conclude f’(e"),
w/2<0<w is a curve in the upper half plane tangent to the imaginary axis at
0=f'(—1) and that the image of e”®, 0 <8 < n/2 is the part of the negative real
axis from f’(i) (<0) to —oo. Note that f’(z) behaves like A/(1—z)? nearz=1
so that arg f’(z) jumps by 7 as z — 1~ along the positive reals and then starts
around the semicircle. Thus f’ is univalent along the boundary {—1<z<1}U
{z=e?:0<0 < «}. It is now easy to see by the argument principle that f” is uni-
valent and typically real in |z| <1 and that f’(|z| <1) is as shown in Figure 2.

We now apply a similar argument for f(z). Since f'(x) >0, —1<x<1, f(x)=
§5 f'(t) dt maps the segment —1 < x <1 univalently onto the half line f(—1) <w
(here —oo <f(—1)<0 and f(1)=co because f’ behaves like A/(1—z)?
near 1). Write f(e”)=u(0)+iv(0) so that f'(e?)=e~®(v'(0)—iu’(9)). We
know f’(e”)#0, 0<6<=. Further 0> f'(i)=iv’(x/2)—u’(x/2) and hence
v'(7/2)=0. From the mapping f’(e”) we conclude v’(0)=0, n/2<f6<m
(because Re f(e)=—1) so v(8)=v(7)=0 when 7/2<8<m, v'(8)<0, 0<
0<w/2and u’(0)>0, 0<6< «. Using this information, reasoning as before for
f's we conclude f is univalent and typically real.

We now proceed to prove Theorem 2. We require two lemmas.

LEMMA 1. Suppose f(z) =z+ayz*+ --- maximizes a, within the class of
normalized functions that are typically real and have typically real first deriva-
tive. Then f is analytic on the arcz=e", ©/2<0<3x/2 and Im f(e®)=0 on
that arc.

Proof. By Robertson’s representation formula for typically real functions
[2], we have
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Ky

b4
o 1—2zcost+2z?

r@)=| du(t)

and hence
™ l_zz
o (1—2zcost+z?%)?

si@=| dp(1)

where p is a nondecreasing function on [0, 7] such that u(x)—p(0)=1.
Set

u(t), 0<t<w/2
pi(t)=
p(w/2), 7/2<t<w

(1) = p(w/2), 0<t<w/2
PR w), n2<t<x

The lemma will clearly follow if u, (¢) is constant. Since @, =2 | cos t du(t) >0,
pp is not constant (i.e. p; (w/2) > p(0)). If py (7/2) — p1 (0) <1 so that u, is not
constant, then clearly

w/2 z

o 1—2zcost+z?

g(Z)=S dv(t)=z+byz%+ - -

is typically real where

v(t) = t).
D= @ —mo
Further, \
/2 n/2 T
b2=2§ costdv(t)>25 costdu(t)ZZS cos du(t) = a,.
0 0 0

If we can show g’(z) is typically real, we will contradict the maximality of a,,
and the proof of the lemma will be complete. Set

1__22 /2
that ! = k Hdv(t).
(1—2zcos t+z%)? so that  g'(z) So (z,8) dv(1)

We wish to show that Imk(z, ) >0 when z=re?®, 0<r<1, 7/2<0< 7and
0<t<w/2. To that end, consider k(z,¢) on the arcs I, ={e": /2 <0< 7},
I'y={—-1<z<0}and I'; ={ip:0<p <1} with ¢ fixed, 0<t<=w/2.

On Pls

k(z,t)=

sin 20

k(e t)y=— >
Imk(e™ 1) 4(cos §—cos t)? 0,

onI'y, k(—r,t) 20and on I';,

1+p2
(1—2ipcost—p?)?

Imk(ip,t)=1Im 20
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since 1—p2—2ipcost is a point in quadrant 4 of the plane. It follows that
Imk(z,t) 20 when z is a point of quadrant 2 inside the unit disk provided
0<i<7/2.

Since k(—Z, 71— t)=k(Z,t)=k(z,t), we see that Imk(z,7) <0 when z is a
point of quadrant 1 inside the unit disk and 7/2 < ¢ < 7. Hence if 0 < 0 < w/2 we

have
/2 T

OSImf’(re“’)=S Imk(reie,t)dpl(t)+S Im k(re®, t) du, (£)
0 /2

/2 /2
ss Imk(re®, t) du,(t) sg Imk(re®, t)dv(t)=Img’(re®).
0 0

Thus we have proved g’ is typically real and the lemma follows. O

LEMMA 2. If f(z) = Z+ayz*+ -+ and f’ are typically real and if f is analytic
on the arcz=¢e", x/2 < 0<3n/2 and Im[f(e’a)] =0 on that arc then the func-

tion (1+z)[exp( 50 ——1lo (ii;:)dw)]-f’(z) is typically real.

Proof. Set h(z) = (1 +z)exp( o = log lJ"W)afw) and g(z) = h(2)f'(z).
From the mapping properties of (1), we see that

: 0, 0<O0<m/2
0y ’
arg h(e™) = { 0—=n/2, w/2<06< .

Thus, A(e®)>0, 0<0< /2 and 0<argh(z) < n/2 when 0 < argz < w. Since
f(e®)=u(0)<0, n/2<0<m, f'(e?)y=e"P(—iu'(0)), arg f'(e?)=3n/2—0,
/2 <6< so that argg(e”) =, /2 <0< =. It is now clear that all boundary
points of g({|z|<1}N{Imz>0}) lie in the region Imw =0 for if g(z,) con-
verges to a boundary point with z, = e”, 0 < 0 < = either g(z,) = g(e) on the
negative real axis (if 7/2 <0 < 7) or h(z,) = h(e®) on the positive real axis and
JS'(z,) converges to a boundary point of f'({|z|<1)N{Imz>0}). This means
that g assumes every value in the lower half-plane the same number of times as z
varies in the upper half disk. However

O<argg(z)=argh(z)+arg f'(z) < w/2+n=37/2

and it follows that the image of the upper half disk under the map g is contained
in the upper half plane. This completes the proof of the lemma. O

Proof of Theorem 2. Now assume f and f’ are typically real, f(z) =
Z+a,z%+ - - - with @, maximal. By the lemmas

S | 1+4i
g(z)= (1+z)[exp(—50 — log( liix )dw)]f’(z)

is typically real. We have g(0)=1 and g(x) 20, —1 <x <1 (otherwise f'(x) =0
for some x and f would not be typically real). It follows that g(z) is subordinate

to (HZ) =1+4z+ ---. Therefore, 2a,+1—2/7 <4 and Theorem 2 follows.
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Since the extremal function for Theorem 2 is in the class S’, Theorem 3 is also
proved. a

4. Open problems. Our work suggests the following conjectures.

CONJECTURE 1. If f(z)=z+@ayz?+--- €S’, a,>0, then @, <3 +1/7 with
equality if and only if f is given by (1).

CONJECTURE 2. If f(z) = z+a,z%+ - - - and f’(z) are close-to-convex, a, > 0,
and f maximizes @, then f has real coefficients and there exists 6, 7/2<6y <
such that Im f(e®) =0, 6, <6<« and Im f'(e®)=8>0, 0<6<b,.

CONJECTURE 3. If f(z) =z+a,z%+ - - - and f'(z) =1+2a, g(z) where f and
g are starlike (with respect to 0), @, >0 and f maximizes a,, then f has real
coefficients and there exists 8, 7/2 < 0 < 7 such that Im f(e?®)=0, 6, <0<«
and arg g(e”) = constant, 0<0< 0.
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