AN EXAMPLE RELATED TO THE AFFINE THEOREM OF
CASTELNUOVO

Jeffrey Lang

In a recent article, Peter Russell [13] proved the following theorem.

(Affine theorem of Castelnuovo): Suppose k is perfect. Let A C k' be a finitely
generated, regular k-algebra of dimension 2 such that k®, A is factorial (k an
algebraic closure of k) and qt(k'®')/qt(A) is a separable extension. Then A = k%,

The question that naturally arises is: Does the conclusion of the theorem still
hold if we drop the condition that qt(k '*')/qt(A) is a separable extension?

We answer in the negative, by considering the surface X,: 2% = x(xy + 1)* + y°
over an algebraically closed field & of characteristic two.

The coordinate ring of X, is isomorphic to A = k& [x% y°x (xy + 1) + ¥*]. Using
methods of P. Samuel we show that A is factorial. All of the other conditions
of the theorem are easily seen to be met except that q¢(2®')/qt(A) is a purely
inseparable extension. Let X be a smooth projective model of gt(A). We show
that the geometric genus p,(X) > 0 which implies that X is not rational, hence
A is not isomorphic to &%,

1. PRELIMINARIES

Let £ be an algebraically closed field of characteristic p >0 and F C A be
a normal affine surface defined by an equation of the form z” = G(x,y) where
G(x,y) € k[x,yI\k[x",¥”]. Then the coordinate ring of F is isomorphic to
B =Ek[x%,y",G]. (In general this is not a k-isomorphism unless the coefficients
of G are in the prime subfield of %).

Let D:k(x,y)—> k(x,y) be the k-derivation defined by D(x)= 0G/ay,
D(y)=—-09G/dx. Let R=D"*(0) N k[x,y].

LEMMA 1.1. R=B.
Proof. We have that Dx # 0 or Dy # 0 since G(x,y) & k [x”, y*]. Thus we have
that 2(x”,y") & qt(B) S qt(R) ;% k(x,y).Since [k(x,y):k(x",y7)] =p® we see that

gt(B) = gt(R). But R is integral over B and B is integrally closed. We conclude
that R = B.

The following are results of P. Samuel given in his Tata notes (see [14], pp.
61-65).

1.2. Let CI(B) denote the divisor class group of B. Then Cl(B) is isomorphic
to .£ the additive group of logarithmic derivatives of D, where
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1.3 There exists a € B such that D” = aD.
1.4. Anelement ¢ € k[x,y] isin .& < D?7'(t) — at = —t”.

LEMMA 1.5. Ift € .%, then deg(¢) = deg(G) — 2.

Proof. Suppose t € .&. Then there exists f € k(x,y) such that Df/f = t. Since
k(x,y) is a purely inseparable extension of g¢(B) of degree p, there exists o; € gt(B),
i=0,1,..,p— 1,such that f= oy + o, x + ... + a,_,x” 7. Combining the o, under
a common denominator we see that we can write f = h/g for some h € k [x,¥],
g € B. Since Dg = 0 we obtain Dh/h = t. We have that

Df
f€ k(x,y) and -f—E k[x,y]}.

deg (Dh) < deg (k) + deg(G) — 2.

From this we conclude that deg(¢) < deg(G) — 2.

Remark. By bounding the degree of any logarithmic derivative we obtain a
method for computing the divisor class:group of any normal surface of the form
2” = G(x,y) over an algebraically closed field of characteristic p > 0. We write
t as a polynomial in x and y of degree = deg(G) — 2 with undetermined coefficients.
We then substitute ¢ into our differential equation (1.4) and compare coefficients.
The number of solutions will be the order of the class group. Since . C %k [x,¥],
each element in the class group will have p-torsion. From this it can be shown
that the class group is a finite p-group of type (p,p,....p) (see [7] and [10]).

2. FACTORIALITY

We now restrict our attention to the case where the characteristic of & is two.

We then are considering normal surfaces of the form 2% = G(x,y). We now
compute a in (1.3).

LEMMA 2.1. a=G,,.

Proof. As usual we can assume G, # 0. Then D(y) = G, and D*(y) = G,G,.
Thus a = D*(y)/D(y) = G,,.

Remark. This implies that in characteristic two that G,, € .. From this we
conclude that for a generic choice of G, the surface 2° = G(x,y) has nontrivial
divisor class group. For if G,, # 0, then .# # 0.

Thus when the characteristic is two our differential equation (1.4) becomes
2.2. Dt + at=t°
We can rewrite this equation as

23. t,G,+tG + G t=1t"
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Differentiating both sides of (2.3) with respect to x(resp.,y) we obtain £, G, = 0
(resp., t., G, = 0).

Xy =y

Therefore, we have that
24. te >t ,=0.

Let us now calculate Cl(A) where A =k [x> y% x(xy + 1)> + »*]. By (1.2)
ClA) =.2. Let t €.% By (1.5) deg(t) =3 and by (2.4) ¢, = 0. Thus ¢ must be
of the form

2.5 = (g + OpoX” + 0 y?) + (g + agox® +a,¥7)x + (@g; +0 g3)°
2
+ 0y, %7 )y
for some o, € k.

Since 9°/9x0y (x(xy + 1)®> + y*) = 0 our equation (2.3) becomes
26 ty +t(xy+1)°=1¢
Substituting the expression for ¢ in (2.5) into equation (2.6) we obtain

2.7. (00 + 0500” + a0 ¥?) Y2 + gy +agsy® Fagpx®)xy +1)°
= a?,o + a§0x4 + (Jncg2y4 + OLfOxQ + aﬁox“ + ()Lf2x2y4 + ()Lzly2 + ()L(zmy6 +0L221x4y2.

Comparing coefficients in (2.7) we see that each o;; = 0. This implies that ¢ = 0.
Hence . = 0. Therefore A is factorial.

3. NON RATIONALITY

It remains to show that A is not isomorphic to 2®'. We will accomplish this
by showing that X, is not rational. We do this in the following steps.

Step 1. We make X, an affine piece of a projective k-scheme X.
Step 2. We define a double differential ¢ on X.

Step 3. We resolve X to obtain a smooth projective surface X, birational to
X,, and show that o lifts to a nonzero regular differential & on X.

It then follows that p,(X) > 0 and that X, is not rational.

Step 1. Let X, be the surface in A2 defined by the equation w® = u®v + w® + v
and X, be the surface defined by the equation ¢*> = r®s + s° + r®s® We then glue
X,, X,, and X, together in the following way.

Let U,,(resp., U,;) be the open subset of X, defined by y = O (resp., x # 0), |
Vo (resp., V,;) be the open subset of X, defined by v # 0 (resp., u # 0),
W,, (resp., W,,;) be the open subset of X, defined by s # 0 (resp., r # 0).
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Let ¢,,:U,,— V,,be the isomorphism defined by x —» © /v,y — 1/v, z— w/v®,
¢y5: Uys > Wy be the isomorphism defined by x> 1/s, y —> r/s, z— t/s?,
$og: Vo3 — Wy, be the isomorphism defined by u — 1/r,v— s/r,w— t/r°.

We glue X,, X,, and X, together via these isomorphisms to obtain a scheme
X. We note that the coordinate ring of X, (resp., X,,X,) is the integral closure
of k [x,y] (resp., & [u,v], k [,s]) in its quotient field. Thus we have a finite morphism
X — P, Since a finite morphism is projective (see [6, p. 113]) and a composition
of projective morphisms is projective, it follows that X is a projective k-scheme.

Step 2. For each i = 1, 2, 3 we define o;, a differential on X, as follows:

dxdz dydz
OnX,, o,=—F—=—5— .
y xy +1
on X dudw dydw
n s T, = = .
2 W ruvt+u? wlu+u®
drdt dsdt
OnX,, o= =—.

r’+s*+r3s?® ris

We check that these differentials agree on the above overlaps.

Under ¢,,, o, becomes

d(1/vyd(w/v?) B (1/v*)dv(1/v*)((vdw + wdv) /v?)
/vy’ /v)® + 1 w?/v*)y +1
dvdw

= ——— =0,.
vu® + v°

Similarly ¢, maps to o, under ¢,, and o, maps to o; under ¢,;.

Thus these differentials glue together to give a differential o on X. We now
resolve X to obtain a smooth projective scheme X and show that o lifts to a
regular differential & on X.

Step 3. G, the lifting of o to X, will be a regular differential on X if we
show that X has only rational singularities (see [8], page 153).

Since X, is smooth, X can only have singularities on X, U X,.

On X,:w”? = u®v + uv® + v® singularities can only occur when v = 0. Otherwise
we would be considering points on X, N X,, which we know is smooth. So we
see that X, has only an isolated singularity at (x,v,w) = (0,0,0).

Similarly, we see that X,:¢2 = rs + s° + r®s® has only an isolated singularity
at (r,s,t) = (0,0,0).

These double point singularities will be rational if we show that they can
be resolved by quadratic transformations alone (see [9, p. 255]).
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J. Lipman has shown that if an isolated singularity on a normal affine surface
has local equation of the form

8.1. 2°=xy"+x%g(x,y),8y)E k[xy]

then the singularity is rational (see [9, p. 266]).

Thus we see immediately that the singularity on X, is rational. This leaves
only the singularity on X,.

We begin by blowing up the origin on X,. Since w is integrally dependent
on the ideal generated by u and v, the blow up of (0,0,0) is covered by two charts
(see [1] page 96). Namely,

F,: w?’=v’v+u'v®+ uw’® and
Fy: w?=u*v®+uw*+o.

F| has only an isolated singularity at the origin which is a rational singularity

by (3.1).

F, is smooth since d/dv = 1. Thus the singularity on X, can be resolved by
quadratic transformations alone and is a rational singularity.

Therefore & is a regular differential on X, which shows that X, is not rational.

CONCLUDING REMARKS

After the circulation of a preliminary version of this paper, M. Miyanishi and
P. Russell have shown that the ring A = k[x?,y”, x(xy + 1)? + y?*'] gives an
example of a regular, factorial, nonrational ring for all primes p > 0 (see [10]).

Also Miyanishi and Russell have observed that a theorem of Ganong [4] yields
a more concise proof that A is not isomorphic to & ',
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