AN EXAMPLE RELATED TO THE AFFINE THEOREM OF CASTELNUOVO

Jeffrey Lang

In a recent article, Peter Russell [13] proved the following theorem.

(Affine theorem of Castelnuovo): Suppose k is perfect. Let $A \subset k^{[2]}$ be a finitely generated, regular k-algebra of dimension 2 such that $\bar{k} \otimes_k A$ is factorial (\bar{k} an algebraic closure of k) and $qt(k^{[2]})/qt(A)$ is a separable extension. Then $A \simeq k^{[2]}$.

The question that naturally arises is: Does the conclusion of the theorem still hold if we drop the condition that $qt(k^{[2]})/qt(A)$ is a separable extension?

We answer in the negative, by considering the surface $X_1: z^2 = x(xy+1)^2 + y^3$ over an algebraically closed field k of characteristic two.

The coordinate ring of X_1 is isomorphic to $A=k\left[x^2,y^2,x\left(xy+1\right)^2+y^3\right]$. Using methods of P. Samuel we show that A is factorial. All of the other conditions of the theorem are easily seen to be met except that $qt(k^{\lfloor 2\rfloor})/qt(A)$ is a purely inseparable extension. Let \tilde{X} be a smooth projective model of qt(A). We show that the geometric genus $p_g(\tilde{X})>0$ which implies that \tilde{X} is not rational, hence A is not isomorphic to $k^{\lfloor 2\rfloor}$.

1. PRELIMINARIES

Let k be an algebraically closed field of characteristic p > 0 and $F \subseteq A_k^3$ be a normal affine surface defined by an equation of the form $z^p = G(x,y)$ where $G(x,y) \in k[x,y] \setminus k[x^p,y^p]$. Then the coordinate ring of F is isomorphic to $B = k[x^p,y^p,G]$. (In general this is not a k-isomorphism unless the coefficients of G are in the prime subfield of k).

Let $D: k(x, y) \to k(x, y)$ be the k-derivation defined by $D(x) = \partial G/\partial y$, $D(y) = -\partial G/\partial x$. Let $R = D^{-1}(0) \cap k[x, y]$.

LEMMA 1.1. R = B.

Proof. We have that $Dx \neq 0$ or $Dy \neq 0$ since $G(x,y) \notin k[x^p, y^p]$. Thus we have that $k(x^p, y^p) \subsetneq qt(B) \subsetneq qt(R) \subsetneq k(x,y)$. Since $[k(x,y), k(x^p, y^p)] = p^2$ we see that qt(B) = qt(R). But R is integral over B and B is integrally closed. We conclude that R = B.

The following are results of P. Samuel given in his Tata notes (see [14], pp. 61-65).

1.2. Let Cl(B) denote the divisor class group of B. Then Cl(B) is isomorphic to \mathcal{L} , the additive group of logarithmic derivatives of D, where

Received April 1, 1981.

Michigan Math. J. 28 (1981),

$$\mathscr{L} = \left\{ \frac{Df}{f} \middle| f \in k(x, y) \text{ and } \frac{Df}{f} \in k[x, y] \right\}.$$

- 1.3 There exists $a \in B$ such that $D^p = aD$.
- 1.4. An element $t \in k[x, y]$ is in $\mathscr{L} \Leftrightarrow D^{p-1}(t) at = -t^p$.

LEMMA 1.5. If $t \in \mathcal{L}$, then $\deg(t) \leq \deg(G) - 2$.

Proof. Suppose $t \in \mathcal{L}$. Then there exists $f \in k(x,y)$ such that Df/f = t. Since k(x,y) is a purely inseparable extension of qt(B) of degree p, there exists $\alpha_i \in qt(B)$, i=0,1,...,p-1, such that $f=\alpha_0+\alpha_1x+...+\alpha_{p-1}x^{p-1}$. Combining the α_i under a common denominator we see that we can write f=h/g for some $h \in k[x,y]$, $g \in B$. Since Dg=0 we obtain Dh/h=t. We have that

$$\deg(Dh) \le \deg(h) + \deg(G) - 2.$$

From this we conclude that $deg(t) \leq deg(G) - 2$.

Remark. By bounding the degree of any logarithmic derivative we obtain a method for computing the divisor class group of any normal surface of the form $z^p = G(x,y)$ over an algebraically closed field of characteristic p > 0. We write t as a polynomial in x and y of degree $= \deg(G) - 2$ with undetermined coefficients. We then substitute t into our differential equation (1.4) and compare coefficients. The number of solutions will be the order of the class group. Since $\mathscr{L} \subseteq k[x,y]$, each element in the class group will have p-torsion. From this it can be shown that the class group is a finite p-group of type (p,p,...,p) (see [7] and [10]).

2. FACTORIALITY

We now restrict our attention to the case where the characteristic of k is two.

We then are considering normal surfaces of the form $z^2 = G(x, y)$. We now compute a in (1.3).

LEMMA 2.1.
$$a = G_{ry}$$
.

Proof. As usual we can assume $G_x \neq 0$. Then $D(y) = G_x$ and $D^2(y) = G_{xy}G_x$. Thus $a = D^2(y)/D(y) = G_{xy}$.

Remark. This implies that in characteristic two that $G_{xy} \in \mathcal{L}$. From this we conclude that for a generic choice of G, the surface $z^2 = G(x, y)$ has nontrivial divisor class group. For if $G_{xy} \neq 0$, then $\mathcal{L} \neq 0$.

Thus when the characteristic is two our differential equation (1.4) becomes

2.2.
$$Dt + at = t^2$$
.

We can rewrite this equation as

2.3.
$$t_x G_y + t_y G_x + G_{xy} t = t^2$$
.

Differentiating both sides of (2.3) with respect to x(resp., y) we obtain $t_{xy}G_x = 0$ (resp., $t_{xy}G_y = 0$).

Therefore, we have that

2.4.
$$t \in \mathcal{L} \Rightarrow t_{xy} = 0$$
.

Let us now calculate Cl(A) where $A = k [x^2, y^2, x(xy+1)^2 + y^3]$. By (1.2) Cl(A) $\cong \mathcal{L}$. Let $t \in \mathcal{L}$. By (1.5) deg(t) ≤ 3 and by (2.4) $t_{xy} = 0$. Thus t must be of the form

2.5
$$t = (\alpha_{00} + \alpha_{20}x^2 + \alpha_{02}y^2) + (\alpha_{10} + \alpha_{30}x^2 + \alpha_{12}y^2)x + (\alpha_{01} + \alpha_{03}y^2 + \alpha_{21}x^2)y$$

for some $\alpha_{ii} \in k$.

Since $\frac{\partial^2}{\partial x \partial y} (x(xy+1)^2 + y^3) = 0$ our equation (2.3) becomes

2.6
$$t_x y^2 + t_y (xy + 1)^2 = t^2$$
.

Substituting the expression for t in (2.5) into equation (2.6) we obtain

2.7.
$$(\alpha_{10} + \alpha_{30}x^2 + \alpha_{12}y^2)y^2 + (\alpha_{01} + \alpha_{03}y^2 + \alpha_{22}x^2)(xy + 1)^2$$

= $\alpha_{00}^2 + \alpha_{20}^2x^4 + \alpha_{02}^2y^4 + \alpha_{10}^2x^2 + \alpha_{30}^2x^6 + \alpha_{12}^2x^2y^4 + \alpha_{01}^2y^2 + \alpha_{03}^2y^6 + \alpha_{21}^2x^4y^2$.

Comparing coefficients in (2.7) we see that each $\alpha_{ij} = 0$. This implies that t = 0. Hence $\mathscr{L} = 0$. Therefore A is factorial.

3. NON RATIONALITY

It remains to show that A is not isomorphic to $k^{[2]}$. We will accomplish this by showing that X_1 is not rational. We do this in the following steps.

- Step 1. We make X_1 an affine piece of a projective k-scheme X.
- Step 2. We define a double differential σ on X.
- Step 3. We resolve X to obtain a smooth projective surface \tilde{X} , birational to X_1 , and show that σ lifts to a nonzero regular differential $\tilde{\sigma}$ on \tilde{X} .

It then follows that $p_{_{\mathcal{B}}}(\tilde{X}) > 0$ and that X_1 is not rational.

- Step 1. Let X_2 be the surface in A_k^3 defined by the equation $w^2 = u^3v + uv^5 + v^3$ and X_3 be the surface defined by the equation $t^2 = r^2s + s^5 + r^3s^3$. We then glue X_1, X_2 , and X_3 together in the following way.
 - Let U_{12} (resp., U_{13}) be the open subset of X_1 defined by y = 0 (resp., $x \neq 0$), V_{12} (resp., V_{23}) be the open subset of X_2 defined by $v \neq 0$ (resp., $u \neq 0$), W_{13} (resp., W_{23}) be the open subset of X_3 defined by $s \neq 0$ (resp., $r \neq 0$).

Let $\phi_{12}: U_{12} \to V_{12}$ be the isomorphism defined by $x \to u/v$, $y \to 1/v$, $z \to w/v^3$, $\phi_{13}: U_{13} \to W_{13}$ be the isomorphism defined by $x \to 1/s$, $y \to r/s$, $z \to t/s^3$, $\phi_{23}: V_{23} \to W_{23}$ be the isomorphism defined by $u \to 1/r$, $v \to s/r$, $w \to t/r^3$.

We glue X_1 , X_2 , and X_3 together via these isomorphisms to obtain a scheme X. We note that the coordinate ring of X_1 (resp., X_2, X_3) is the integral closure of k[x,y] (resp., k[u,v], k[r,s]) in its quotient field. Thus we have a finite morphism $X \to \mathbf{P}^2$. Since a finite morphism is projective (see [6, p. 113]) and a composition of projective morphisms is projective, it follows that X is a projective k-scheme.

Step 2. For each i = 1, 2, 3 we define σ_i , a differential on X_i as follows:

On
$$X_1$$
, $\sigma_1 = \frac{dxdz}{y^2} = \frac{dydz}{x^2y^2 + 1}$.
On X_2 , $\sigma_2 = \frac{dudw}{u^3 + uv^4 + v^2} = \frac{dydw}{u^2v + v^5}$.
On X_3 , $\sigma_3 = \frac{drdt}{r^2 + s^4 + r^3s^2} = \frac{dsdt}{r^2s^3}$.

We check that these differentials agree on the above overlaps.

Under ϕ_{12} , σ_1 becomes

$$\frac{d(1/v)d(w/v^{3})}{(u/v)^{2}(1/v)^{2}+1} = \frac{(1/v^{2})dv(1/v^{2})((vdw+wdv)/v^{2})}{(u^{2}/v^{4})+1}$$
$$= \frac{dvdw}{vu^{2}+v^{5}} = \sigma_{2}.$$

Similarly σ_2 maps to σ_3 under ϕ_{23} and σ_1 maps to σ_3 under ϕ_{13} .

Thus these differentials glue together to give a differential σ on X. We now resolve X to obtain a smooth projective scheme \tilde{X} and show that σ lifts to a regular differential $\tilde{\sigma}$ on \tilde{X} .

Step 3. $\tilde{\sigma}$, the lifting of σ to \tilde{X} , will be a regular differential on \tilde{X} if we show that X has only rational singularities (see [8], page 153).

Since X_1 is smooth, X can only have singularities on $X_2 \cup X_3$.

On X_2 : $w^2 = u^3v + uv^5 + v^3$ singularities can only occur when v = 0. Otherwise we would be considering points on $X_1 \cap X_2$, which we know is smooth. So we see that X_2 has only an isolated singularity at (u,v,w) = (0,0,0).

Similarly, we see that $X_3: t^2 = r^2 s + s^5 + r^3 s^3$ has only an isolated singularity at (r,s,t) = (0,0,0).

These double point singularities will be rational if we show that they can be resolved by quadratic transformations alone (see [9, p. 255]).

J. Lipman has shown that if an isolated singularity on a normal affine surface has local equation of the form

3.1.
$$z^2 = xy^2 + x^2g(x, y), g(x, y) \in k[x, y]$$

then the singularity is rational (see [9, p. 266]).

Thus we see immediately that the singularity on X_3 is rational. This leaves only the singularity on X_2 .

We begin by blowing up the origin on X_2 . Since w is integrally dependent on the ideal generated by u and v, the blow up of (0,0,0) is covered by two charts (see [1] page 96). Namely,

$$F_1$$
: $w^2 = u^2v + u^4v^5 + uv^3$ and

$$F_2$$
: $w^2 = u^3v^2 + uv^4 + v$.

 F_1 has only an isolated singularity at the origin which is a rational singularity by (3.1).

 F_2 is smooth since $\partial/\partial v = 1$. Thus the singularity on X_2 can be resolved by quadratic transformations alone and is a rational singularity.

Therefore $\tilde{\sigma}$ is a regular differential on \tilde{X} , which shows that X_1 is not rational.

CONCLUDING REMARKS

After the circulation of a preliminary version of this paper, M. Miyanishi and P. Russell have shown that the ring $A = k[x^p, y^p, x(xy+1)^p + y^{p+1}]$ gives an example of a regular, factorial, nonrational ring for all primes p > 0 (see [10]).

Also Miyanishi and Russell have observed that a theorem of Ganong [4] yields a more concise proof that A is not isomorphic to $k^{[2]}$.

ACKNOWLEDGEMENTS

I wish to thank Piotr Blass for introducing me to the study of Zariski surfaces and for his assistance in this study.

REFERENCES

- 1. P. Blass, Zariski Surfaces. Dissertationes Mathematicae, to appear.
- 2. R. Fossum, The divisor class group of a Krull domain, Springer, New York, 1973.
- 3. T. Fujita, On Zariski problem. Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106-110.
- 4. R. Ganong, Plane Frobenius sandwiches, to appear.

- 5. ——, On plane curves with one place at infinity. J. Reine Angew. Math. 307 (1979), 173-193.
- 6. A. Grothendieck, Eléments de géométrie algébrique. II. Inst. Hautes Études Sci. Publ. Math. No. 8, 1961.
- 7. J. Lang, Ph.D. Thesis, to appear.
- 8. J. Lipman, Desingularization of two dimensional schemes. Ann. Math. (2) 107 (1978), no. 1, 151-207.
- 9. ——, Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math., No. 36, 1969.
- 10. M. Miyanishi and P. Russell, Purely inseparable coverings of the affine plane of exponent one, to appear.
- 11. M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20 (1980), no. 1, 11-42.
- 12. P. Russell, Hamburger-Noether expansion and approximate roots of polynomials. Manuscripta Math. 31 (1980), no. 1-3, 25-95.
- 13. ——, Affine ruled surfaces, Math. Ann., to appear.
- 14. P. Samuel, Lectures on unique factorization domains, Tata Inst. of Fundamental Research, Bombay, 1964.
- 15. O. Zariski, On the Castelnuovo's criterion of rationality $p_a = P_2 = 0$ of an algebraic surface. Illinois J. Math. 2 (1958), 303-315.

Department of Mathematics Purdue University West Lafayette, IN 47907.