AN EIGHT-TERM EXACT SEQUENCE ASSOCIATED
WITH A GROUP EXTENSION

C. C. Cheng and Y.C. Wu

Let 1> N— G— @ — 1 be an extension of groups and let A be a G-module.
We shall denote by A" the submodule of A consisting of all N-invariant elements.
Hochschild and Serre [4], using spectral sequences, proved that the sequence

0— H"(QAY)—> H"(G,A) - H"(N,A)°* - H"**(Q,A") » H" " (G,A)

is exact provided H (N,A) = 0for 0 < i < n.In casen = 1, the sequence was extended
(to the right) to three more terms by Huebschmann [6] which includes the exact
sequence

H*(Q,AY) —» H?*(G,A) - XPext(G,N; A) > H?*(Q,A")— H*(G,A)

where XPext(G,N; A) denotes the abelian group of equivalence classes of “crossed
pairs.” In this paper we show that this can be done even when n > 1. More explicitly
we prove that if H*(IV,A) = 0 for 0 < i < n, then the following sequence is exact

0— H"(Q,AY) - H"(G,A) — Sext’ ' (N,A)—> H"*(Q,AY)— H"*'(G,A)
— Sext(N,A) —» H*?(Q,A") —» H"**(G,A)

where Sextyg, (IV,A) denotes the abelian group of equivalence classes of pseudo n-fold
extensions of A by N (see Section 2). Note that no spectral sequences are used
in the proofs contained in this paper.

In Section 1 we recall the definition of pseudo modules and define pseudo
extensions. In Section 2 we derive a long exact sequence of “Sext” in the second
variable (which is natural in the first variable). In Section 3 we derive the sequence
of Huebschmann to show that it is in fact natural in the variable A. In Section
4 we deduce the main result.

1. PSEUDO MODULES AND PSEUDO EXTENSIONS

Let E be a group with normal subgroup X. Let AutyE denote the group of
automorphisms of E which map X onto itself. The subgroup of all automorphisms
that “conjugate” by elements of X (i.e. ¢:E — E such that ¢(e) = xex™* for some
x) will be denoted by ¢(X). If G is a group then a pseudo G-action on E is a
group homomorphism 6: G— Auty E/c(X) for some normal subgroup X of E. For
convenience we write g * e = 0(g)(e), g € G, e € E where 8(g) is a previously chosen
element of the coset 6(g). If f)l (g) is another element of 8(g) theng * e = .1(:@)1 (g)e)x™"
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for some x € X. We shall abbreviate tilis by g*e —j ﬁl(g)(e). Suppose
0,: G— Auty E;/c(X;) is a pseudo G-action on E,, i = 1, 2. Then a group homomor-
phism f: E, — E, is a pseudo G-map if f(X,) C X, and

c(x)fﬁl(g) = Bz(g)f for some x € X,

A pseudo module is a pair (9,0) where 0:E— G is a group homomor-
phism with kernel X such that the image N of 9 is normal in G and where
0:G— AutyE/c(X) is a pseudo G-action on E such that the following diagram
is commutative

a

E -

G [+
(1) el el\

Aut, E - AutyE/c(X) - Aut N.
'

1

Here ci(e)(e’) = ee’e™, cy(g)n) =gng ', e, e’ EE, g € G, n € N, and \ denotes
the canonical projection. Furthermore if f € Auty E then p( f) is the automorphism
that makes the following diagram commutative

a
1o X—>FE—> N -1

! i Le(F)
1 X—-E—> N —>1.
o

Using the abbreviation introduced in the first paragraph one sees that the
commutative diagram (1) is equivalent to the following conditions:

(P1) de) x e’ = ee’e”™  wheree e € E.

(P2) dgre)=gal)g™ ecE ge G

Note that (P2) implies that 8 induces a pseudo G-action G — Aut, X/c(X). Thus
if X is abelian then it has a G-module structure induced by 6. It is easy to see
that if X is central in £ then (9,0) is simply a crossed module. (In this case we
shall denote it by 9.)

We say that the pseudo module (9,6) is extendible if there exists a commutative
diagram of groups with exact rows

l1-FE-> H->Q->1
(2) I
l—)X—)E—a> G- Q-1

where y(h) * e = heh™ ", where e € E and A € H. The group H will be called an

extension of (9,0). Taylor [13, Section 6] reduced the problem in determining
extendibility of a pseudo module to that of an associated crossed module.
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PROPOSITION 1.1. Suppose (9,0) is a pseudo module. Then there exists a
commutative diagram with exact rows

1— X —)E-i> G- Q-1
) i I 1
o
1-XNZE)>E->T - Q-1

where Z(E) is the center of E and T is constructed from the pullback diagram

B8
T — G

aJ, l,e
A
Aut, E — Aut, E/c(X).

Furthermore (3’,a) is a crossed module and it is extendible if and only if (9,0)
is. In this case the extensions are the same. We shall refer to (3',a) as the associated
crossed module of (9,9).

Let G be a group with a normal subgroup N, and let A be a G-module. A

pseudo G-extension of A by N is an exact sequence of groups 0 > A —-E—>N—>1
together with a pseudo G-action 6:G — Aut, E/c(A) such that (iw,0) is a pseudo
module and the given G-module structure on A coincides with the one induced
by 6. (Here i: N — G denotes the inclusion map.) It is not hard to see, using (P1),
that AY = A N Z(E). Two pseudo G-extensions 0> A - E,—» N— 1,i=1, 2, are
equivalent if there exists a commutative diagram

0-A—->E ->N->1

[
0A—>E,»>N->1

where f is a pseudo G-map. It is clear that this gives an equivalence relation
on these pseudo G-extensions. We shall denote the set of equivalence classes by
Sexty(N,A) and show that it can be made into an abelian group in a natural
way.

LEMMA 1.2. Suppose0— A — E— N— 1is apseudo G-extension and suppose
a:A — B is a G-module homomorphism.

(a) There exists a commutative diagram with exact rows

0> ASESNo1
(4) S
B ™’
0> B—->P->N->1

where the bottom row can be made into a pseudo G-extension such that v is a
pseudo G-map.

(b) The left square of diagram (4) has the following “push-out” property: if
there exists group homomorphisms 3':B— X and v':E — X with B'a = vy’ such
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that B’ (m(e)ob) = v (e)B’ (b)y'(e) " for e € E and b € B then there exists a unique
group homomorphism ¢:P— X with o = B’ and éy =~v’.

Proof. (a) It is easy to check that S = {(—aa,La)|a € A} is a normal subgroup
of the semidirect product B X E where the E-action on Bisviaw. Set P=B X E/S
and define w’: P— N by n’ [b,e] = we, b € B, e € E. Then diagram (4) is commuta-
tive with exact rows. Define 8,:G— Aut, P/c(B) by 0,(g) = [0,(g)] where
8,(8)[be] = [g°b,8 (g)(e)],8(2) = [0(£)],gE€ Gand [be] € P. We abbreviate
this by g * [b,e] = [gob,g * e]. Using (P2) of § together with the fact that 8(g)

is a homomorphism it is not hard to see that 8, (g) € Aut, P. Now

6,(£.8,)[be] = [£:8:°D,(8,8,) * €]

= (g,8:0bna(g, * (g * e))(na)™")

= (0,na)(g, 8,00, 8, * (g * €))(0,(na) ")
(aa,1)(£,8,°b,8, * (g, * e))(—aa,l)
0,(8,)0,(g,)

B

and so 0, is a group homomorphism. It remains to show that the bottom sequence
of (4) is a pseudo G-extension. It is easy to see that (iw’,0,) satisfies (P2) since
(iw,0) does. Now

w’ [be] * [b',e'] = wex [b €]

= [weob',me *e’]

[ec b’ (na)ee’e  (na) ']
= [Opna][ecd’ee’e™"] [O,ma™]
[aa,1] [ec b’ ,ee’ e '] [-aa,l]

[ecb’,ee’ e™]

w Il

[5,1] [ec b e’ e '] [—b,1]

=l

[be]l [b',e'][—e tobe ]
[be] [b',e'] [be] ~*

ie. (in’,0,) satisfy (P1). Clearly the G-module structure on B is induced by 0,
and that v is a pseudo G-map.

(b) Define ¢:P— X by ¢ [b,e] = (B'b)(v’ e), [b,e] € P, and the result follows.

LEMMA 1.3. Given a pseudo G-extension 0—> A — E—> N— 1 and a group
homomorphism ¢: G — G with &(N’) C N where N’ is normal in G’ construct
the commutative diagram with exact rows

0> A—> E’ LN'—>1
| 'l PB Lo
0>A—> E > N —>1
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where PB denotes pullback of groups. Then the top row can be made into a pseudo
G'-extension with ¢’ a pseudo G'-map (where the pseudo G’-action on E is via

$).

Proof. We may take E’' = {(e,rl’)hre = ¢n’}, a subgroup of E X N’. Define
0,:G’'—> Aut, E'/c(A) by 0,(g) = [0,(g)] where

8,(g)en’) = (B b(e)e),an'e™),

g € G’ and 0(x) = [0(x)]. Since 8 (x) € Aut, E, one checks that 0,(g) € Aut, E’.
Now
61 (g,8:)(en’) = (é (d)(glgz))(e):glgzn, (g1g2)—1)
= ((na)(B(d(g,)) d(d(g))e) (na™),g,8.n" (8.8.) ")
= (na,1)(8,(g,)8(g:)en)(na™1)

and so 0, is a group homomorphism. Finally (iw’,0,) is a pseudo module since
(P1) and (P2) follow from the following computations:

' (e,n) * (e,,n)) = n’ * (e,,n))
= (0(d(n"))Ne,)n'ni(n’)™)
= (8(we)(e,),n' ni(n’)™")
= ((na)ee;e” " (wa™'),n' ny(n')7")
= (pa,1)(ee;e 0’ ni(n’) " pa,1)
= (na,1)(e,n')e;,n})e,n) " (na,1)”’
' (g« (en’)) = w (B(d(g)e),gn'g™")
=gn'g ' =gu'(en’)g .

Suppose €;:0—»> A — E,-z N—1,i=1,2, are pseudo G-extensions. Construct
the commutative diagram

€, X€6:0>AXA->E XE,»> NXN->1

I T B fa
0> AXAD> P — N —1
vl Po ! [

€ +e:0> A > E —- N -1

where PB denotes pullback of groups, A and V denotes the diagonal and the
addition map respectively, and where PO denotes the pushout construction of Lemma
1.2.Since €, X €,is a pseudo G X G-extension the middle row is a pseudo G-extension
by Lemma 1.3 and so €, + €, is a pseudo G-extension by Lemma 1.2. Define addition
on Sexty (N,A) by [e,] + [e,] = [e, +¢€.].Note that we may let

P = {(e,,e,)|m e, =m,e,}
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and E=A X P/S where S= {(—V(a,b),j(a,b))|a,b € A}. Hence the pseudo
G-action on E is given by g * [a,e,,e,] = [go a,g * e, ,g * e,]. It is straight forward
to show by the usual extension theory arguments that the addition is well-defined.
The identity is represented by the split extension 0 > A —>AX N> N-—1
with the (pseudo) G-action defined by go(a,n) = (goa,gng™"). The inverse of the

element representéd by 0 — A SES N1 is represented by 0 — A SESN-1
where (—p)(a) = a™%, a € A.

Remark. Pseudo G-extensions clearly generalize the notion of G-crossed exten-
sions of [11]. The group Sext;(N,A) is in one-to-one correspondence with
Xpext(G,N;A) of [6]. For one could define ¢:Sexty(N,A)— XPext(G,N;A) as
follows.Lete: 0— A — E— N — 1represent an element of Sexté (N,A) with pseudo
G-action 6. Note that (P1) and (P2) are equivalent to the fact that the image
of 8 lies in Autj E/c(A). Define {j: G— Out, (ey) by $(g) = [0 (g),2)] where
0(g) = [0(g)]. bis well-defined and § (n) = [(C,,e)] = Owhere e € E and C, denotes
conjugation by e. Thus ¥ induces ¥_: @ — Out,, (ey). Define ¢ [e] = [(e,§p.)] and
¢ is bijective. :

2. A LONG EXACT SEQUENCE OF SEXT

Let N be a normal subgroup of G and let A be a G-module. An n-fold pseudo
G-extension (n > 1) of A by N is an exact sequence of groups

0sA>M—..>M,_,—>M,>No1

such that 0> A—>M,—> ... > kerm— 0 is exact as G-modules and that
0— kerm— M,— N— 1 is a pseudo G-extension. Two such extensions e, € are
related if there exists a commutative diagram

€e0A->- M >..->- M, , > M, - N->1

" l“l \l’un—l l"‘n "
€ 0-A->M ->...>- M, _ - M —>N->1

where a; is a G-module homomorphism, 1 =i=n — 1, and «, is a pseudo G-map.
The set of equivalence classes of these extensions determined by the above relation
will be denoted by Sext’;(IV,A). Define an addition on it by [e] + [¢'] = [e + €' ]
where € + €’ is the bottom row of the commutative diagram

eXe: 05> AXA—> MyXM, > ..—> M, , XM, , > M, XM, - NXN—1

vl Ppo ! I ) PB4
e+e:0> A > M > .o M, _ XM, |, - M - N -1

Using Lemmas 1.2 and 1.3 it is easy to see that the addition is well-defined,
associative and commutative. Note that the identity is represented by

0-A=A—->0—->..->N=N->1
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with the obvious (pseudo) G-action on N. Similar to the case n =1 it can be
checkedthat0 — A — M — ...—> M_,— N — lrepresents the inverse of the element
represented by 0 —» A 5 Ml-—> .™ M, - N—> 1.

LEMMA 2.1. Suppose [§] € Sextg(N,A), n > 1. Then [£] =0 if and only if
there exists a commutative diagram

E0A-> M, - M,»>...-> M, _, - M, > N->1

(5) ay T “2T Qp—1 T %n T ”
0> M, > M,->...-> M,_, - M - N->1

where the bottom row is an (n — 1)-fold pseudo G-extension, o, is a pseudo G-map
and o; i1s a G-map, 1 =i =<n — 1. Furthermore M| may be taken to be M, and
a, the identity.

Proof. The sufficiency follows immediately from the following diagram

£0A> M, > M,-»..-M,_,—> M, - N->1

| T ) ) ) |
0-A—> AXM, > M, »>...-> M _,-> M - N->1

[ d 2 ! ! |
0—- A= A - 0 -..-> 0 A N =N->1

where y(a,m) = a + o,(m), a € A, m € M/,. Suppose ‘[£] = 0. Then there exists
a commutative diagram (see added in proof)

£ 0>A> M, > M,>...> M, , > M - N->I1

[ i 1 i i |
0O A->-M - M);—> .- M _, > M - N->1
| 1 ! ! ! I

0DA= A - 0 ... 0 —-> N =N->1

and, therefore, A — M’ splits. Hence 0 - A - M’/ — R— 0 is right split. The
composition of M7 — M, with such a splitting gives a G-map o, : R — M, . Setting
M;=R and M, =M, 1<i=n, we have diagram (5). To see that M’, may be
taken to be M, and «, the identity construct the pushout diagram of G-modules
if n > 2 and according to the pushout construction of Lemma 1.2 if n = 2

“1l« l
M, - P

Then the result follows by taking M, = M,, M, = P.
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PROPOSITION 2.2. Suppose 0— A > B—i C— 0 is an exact sequence of G-
modules. Then the following sequence is exact

Sext™ (N,A) -5 Sext? (N,B) 25 Sext’(N,C)—3 Sext’" (N,A) =5’ Sext™*' (N.B)
for alln = 1.

Proof. For[e,] € Sextl (N,A)definei’ [e,] = [i(e,)] wherei(e,)isthe bottom
row of the commutative diagram

€:0 A > M ->M,—->..> M, 1—>M - N-1

il po | [ I | |
i(e,):0»> B > M >M,»..> M, , > M, > N>1

where PO denotes the construction in Lemma 1.2 if n = 1 and pushout of G-modules
otherwise. The map p is defined similarly via p. For [e.] € Sext%(N,C) define
3, [ec] = [d€c] where 3¢ is the sequence 0 A —->B—->M,—» ...»> M, > N->1
obtained by splicing together the sequences

0>A—->B->C—0 and €c:0->C>M—> ..—»> M, - N-> 1.
It is routine to check that these are well-defined homomorphisms using Lemmas
1.2 and 1.3.

Exactness at Sext7,(N,B). Since pi = 0 we have pi: = 0 using the argument
in the proof of Lemma 2.1. Suppose p [€] = 0. Then, by Lemma 2.1, there exists
a commutative diagram

€e0—-> B - M ->M,—»>..-> M, > N->1
pl PO |p I | I
pe:0—» C - M, > M,—>..—»> M, > N->1

| 7 T |
0 - M, > M,—>..-> M, > N->1
d

unless n = 1, in which case we have a commutative diagram

le:0—> B > M, - N->1

rl 1 I
ple):0—-> C - M, 2@ N->1

where the bottom row has a right splitting pseudo G-map p. In the first case

it is easy to see that [e¢] = [i£] where £:0 > A — M, —>M’ - ..—> M —- N- 1.
As for the latter case £ is the bottom row of the commutative dlagram

0-A->"M, - M|, >1

I T B Tu
0-A—> E —- N —>1.
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Exactness at Sext;(N,C). Let [e] € Sextgs(N,B). Then construct the com-
mutative diagram
€e0»> B> M - M,—>...->M,-> N->1

pl PO | | | I
pE:0—> C » M, ->M,»>..-»M,-> N-> 1.

Hence 3, p [e] = 0 follows from Lemma 2.1 and the following diagram

d3p(e):0>A>B-> M, > M,—»>...->-M,->N->1

I 1 I (I
e0 0->B-> M -M,—»>..->M,> N->1.

Suppose £:0—->C—> M, - M,— ...—» M,— N— 1 represents an element of

Sext';(N,C) with 3,[£] =0. Then by Lemma 2.1 we have the commutative
diagram

3¢):0oA>B-> M, > M, »...- M, > N->1

I ) T 1 |
€: 0->B-> M, > M,>..-» M - N->1

which shows that [p(e)] = [£].

n+l1

Exactness at Sext'y " (N,A). If ¢:0—» C—» M,— ...—» M, ,— N— 1 represents

an element of Sextg (N,C) then i ,,5 [¢] =0 Lemma 2.1 and the following
commutative diagram

d():0—> A ——l> B -M—>..->-M,- N->1

il po | [ ll I
i3(e):0»> B » BXC->M,—»>..-> M, —> N->1
T I [ I

0O » C - M—>..-M,»> N-—>1.

Suppose [¢] € Sexts ™ (N,A) with i*,, [€] = 0. Then, using Lemma 2.1, we have
a commutative diagram

£0-> A - M, - M, >»>..> M, ,A > N->1
il po | | | |

©6) i(0:0> B — M, > M, > .. M,,, > N> 1
I ) ) |

0 - M, > M,—->..> M, 6 —>N->I

Since the first three terms in the first two rows are G-modules it follows from
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the extension theory of modules (see, for example, page 179 of [8]) that there
is induced a homomorphism ¢ such that the following diagram commutes

0> A-> M - M,

liro | I
0> B> M, > M,

I e
cC=C

Let m be the n-fold pseudo G-extension 0 > M| — M,— ... M, ,— N— 1. Then
3 [¢(m)] = [£].

3. AN EXACT SEQUENCE OF HUEBSCHMANN

Let G be a group and let A be a G-module. Then H?(G,A) is isomorphic to
the group of extensions of A by G (see, for example, [3] and [9]). A two-fold
crossed extension of A by G is an exact sequence of groups

) 0sA>MosE—sGo1

where 9 is a crossed module and the G-module structure induced on A coincides
with the given one. If one defines an equivalence relation on these extensions
similar to that of module extensions then the set of equivalence classes becomes
an abelian group which is isomorphic to H>(G,A) (see, for example, [5], [7], [11],
[14]). Note that the definition of this in [14] is incorrectly stated. In the following
we use extensions to represent elements of H?(G,A) and H?(G,A). Recall that
(7) represents zero element of H?(G,A) if and only if 9 is extendible (see, for
example, [4], [13], [14], or [15]).

THEOREM 3.1 (Huebschmann). Suppose 1 —> N - G—p> Q@ — 1 is an exact se-
quence of groups and suppose A is a G-module. Then the following sequence is
exact

P3

H?*(Q,A") S HYGA)S Sextg (N,A) 5 H?(Q,AY)— H?(G,A).
Proof. Define p; [e] = [p, (€)] where p,(e) is the bottom row of

€e:0—> A" 5 E - Q-1

I T e 1
0— A" 5> P -5 G—>1
} o | |

py(€):0—> A - E' - G-1
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Define i [e] = [i(e)] by the following diagram

e:00A—> E :-> G -1

I T pB Ti
i(e):0>A—> E' - N —>1

where the pseudo G-action 6 on E’ is defined by 8(g) = [0(g)], and 8(g)(e’) = ee’ e,

we)=g. For £:05A—>E —a> N — 1, representing an element of Sext (N,A),
define &[£] = [3(§)] where &(f) is the associated crossed module of

0-A— Ei G — @ — 1 (see Section 1). Define p; ([e]) = [p;3(€)] by the diagram

e0>A"5> M- E - Q@ -1
| | T mB T
0-A">M—> L - G -1

| po ] ll |
p3(€):0> A > P> L - G —>1

In the above definition PB denotes pullback of groups and PO the pushout
construction of Lemma 1.2. It is routine to check that these maps are well-defined
homomorphisms.

Exactness at H*(G,A). For [e] € H*(Q,A") construct the commutative dia-
grams with exact rows

€e0> A5 E - Q-1

I T pB 1

I po | Il I A P i
p©:0> A > E - G->1 €:0->A4"> E' 5> N1

I T e 1 | po | I
p,(e):0—> A — E - N1, 0> A —» £ - N—1

We claim that the bottom rows of the above diagrams are equivalent pseudo
G-extensions. Since [¢'] = 0 this implies that [ip,(€)] = 0. The claim follows
from routine diagram chasing involving PO and PB. Suppose i, [£] = 0 where
[£] € H?(G,A). Then we have the following commutative diagram

£0>A—> E, - G-o1

l 7 (E:
i((): 0> A—> AX N2 N> 1.
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Let M be the normalizer of the image of N— A Xi N— E_. Note that the (pseudo)
G-action on A X N is defined by g * (a,n) = e(a,n)e™*, where w(e) =g, e € E,,
g€ G. Since [i(§)] =0 it is also defined by pointwise actions. Hence
(0,gon) f e(0,n)e " where w(e) = g, i.e. (0,gon) = ae(0,n)(ae)™ " for some a € A.

This shows that for every g € G there exists ae € M with w(ae) = g. Hence w| M,
is surjective and it is easy to see that its kernel is A N M, = A". Thus we have
the following commutative diagram with exact rows

£:0-> A 5 E;>G-1

7 (.
0->A">M,—> G—1

) T

N =N.

Construct the commutative diagram

eQ:O—>AN——> E,—» Q-1

| T 1
0>A" s M, - G—1

T T

N =N

where E, = M /N. Then [eo] € H*(Q,A") andp; [eo] = [

Exactness at Sexté (N,A). For each [e] € H?(G,A) construct the commutative
diagrams \ '

€e0>A—> E, - G-o1 e€: 0> A->Ey>G->0->1

| T BT i I T
i(¢:0>A— E, > N->1 8(i(e)):0—-)AN—>EN—> r- @ -—1.

Then we see that €’ is extendible from the commutative diagram

1-Ey—>E;>Q—1

I Lo
0-A—>E,—» G- Q-1

Hence, by proposition 1.1, 3(i(e)) is also extendible and hence it represents zero
in H?(Q,A"). Suppose [¢] € Sextg(N,A) with 8 [£] = 0. Then there exists an exact
sequence 0 - E — M — @— 0 such that the following diagram is commutative
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£:0> A 5 E—> N->1
| |
£:0—-> A—-E-> G->Q—-1
) Il ) l
3(t)i0> AN > E—>T > Q-1

1t
0 b E->M->Q->1

since 3(£) is extendible. Hence we have the following commutative diagram

\ A=A
o

1 E->-M->0-1
ool

1-—>N—l> G->0Q->1

and hence i(e) = £ where €:0 > A - M — G — 1represents an element of H?(G,A).
Exactness at H?(Q,A"). Let €:0— A — E,— N — 1 represent an element of
Sext g (IV,A). Construct the commutative diagram

0> A HS>E,->-G->Q-—>1
() | T
5(e):0— AN—>EN——> P->@->1
I I T e 1
€:0> A5 E,-»P - G->1
| 7 T
00 A" 5 A S5 P5Go1
| po | | |
DP:8(e):0> A > E 5> P->G->1
I | Voo

0 A 5> A >GoCGo1

where P— P’ is induced by PB and E — A by PO. This shows that p35 [(¢)] = 0.

Before we show that Ker p; C Im 3, we note that if F is a free group on G,
we have two exact sequences

1 > R,—»> F—-> Q-1
1 >R, > F—>G->1
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and that R is normal in R, with R,/R; = N. Moreover, every element in H?(G,A)
has a representative of the form 0 > A— E— F— G— 1. It is also easy to see
thatife:0» A" > E— F— @ — 1 represents an element of H* (Q,AN ), the homo-
morphism p: H®*(Q,A") —» H*(G,A") sends [e] to [p(e)] where p(e) is the last
row of the commutative diagram

€05 A" E-> F-5 Q-1

[ I tere?
0 A" E>P->G-1
| T el |
ple):0— AV > E, - F->G-—>1
where the map « is induced by the pullback on the upper right hand corner.
Thus the homomorphism p} : H* (Q,A") — H*(G,A) sends [¢] to [p;(e)] where p;(e)
is given by the diagram
ple):0> AY > E-F->G->1

Vol & || |
ps(e): 0> A —)E’z‘»-—) F- G->1
8

Moreover, if e €E E,, a € A, gle-a)==Fk(e) gla). In the following, all PO
squares will have these properties. With these preparations, we now will prove
that Ker p; C Im 3.

Suppose [p;(e)] = 0. Then in view of F, the sequence 0> A —- E,—> R;—>1
must be a split F-sequence, i.e., R, is a normal subgroup of ‘E,. Consider the
following commutative diagram

0—» AY > E - R,—1
| po | I
(8) 0-—>A——>E’1—->RQ—->1

| T 1
0> A >E,»>R;,—1

where E;, = A X E/{(—a,a)}, E operating on A via F— G, (A" is thus a trivial
E-module). The homomorphisms A— E,, E,—» E— E, give a homomorphism
E,— E, which together with E, — R, yields a homomorphism E,— E,. Thus the
following two extensions are equivalent

0> A—->E,>R;—1

[
0> A—>E,>R;—>1

and we may identify E, by E,. Clearly, R, — E,— E, is normal. Let Ey = E, /R,.
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We have the following diagram

€1 A—->Ey—> N -1
4 3
€:1-A—->E —>R,—>1

T T
1> R;=R;— 1.

The top row ¢’ represents an element in Sext;(N,A). Diagram (8) says that
0> A—> E,—» F— @ — 1 has € as an associated crossed module. Since
0> A-—> E, — G — Q-1

I T
0-A—- E - F->Q-1

is commutative, we have 3 [e'] = [€] and the proof is complete.

4. THE MAIN THEOREM

Throughout let 1 > N 5 G-i @ — 1 be an extension of groups and let A be
a G-module.

PROPOSITION 4.1. Sext'¢(N,J) = 0 forn > 1 where J is an injective G-module.

Proof. let €:0—»J—> M, — ...-> M — N—1 represent an element of
Sext's(N,J).Since n > 1, M, is a G-module and so the sequence 0— J— M,— R— 0
splits as G-modules thus giving the commutative diagram

OdJ->-M,->M,»>... oM —-> N->1

T I
O R->-M,—»..-M,>N->1

where . is a splitting map. By Lemma 2.1 [é] =0,
PROPOSITION 4.2. The following sequence is exact

0— H (Q,H (N,A)) - Sext:(N,A) — H2(N,A).

In case A is a @-module this is done in [11] and [15]. Note that Huebschmann
[6] has established this sequence with Sextg (IV,A) replaced by XPext(G,N;A).
However, we only need a special case of the above proposition. Since [6] contains
no proofs we supply a proof for it in the following.

COROLLARY 4.3. Sext; (N,J) = 0 for any injective G-module J.
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a
Proof. Let €:0— J— E— N — 1 represent an element of Sext.(N,J). Then
it also represents an element of H?(IN,J) = 0 and so must be a split extension,
i.e. E =J X4 N. It remains to show that the pseudo G-action 7:G— Aut, E/c(A)
is the same as the G-action 6: G — Aut E given by

0(g)an) =(g-agng™), a€d, g€QG.
By (P2) of v and 0 one sees that

T(g)e)[6(g)e)] ' =f(ge) EJ

~

where 7(g) = [7(8)], & € G, e € E. It is easy to check that f(g)(n) = f(g,e), where
de=n, gives a homomorphism f(g) € Hom(N,J). Define d,(g) € Der (N,J)
by d,(g)(n)=/f(g)(g 'on). Then, as H'(N,J)= Der (N,J)/Ider (N,J) =0,
d.(g) € Ider (N,J). This, in turn, proves that [7(g)] = 0(g) for g € G, i.e. [¢] =0
as an element of Sext,(N,J) = 0.

THEOREM 4.4. Suppose H(N,A) = 0 for 0 < i <n, n > 1. Then the following
sequence is exact
0> H"(Q,A") - H"(G,A) — Sexty '(NA)— ’H"“(Q,AN)
— H"*'(G,A) = Sext%(N,A) » H""*(QAY) — H"**(G,A).

Proof. Construct an exact sequence 0 > A — J— K — 0 of G-modules where
o is injective. Then, for £ > 0, there is an isomorphism

9) H*(G,K) = H**'(G,A).
Similarly, by using Proposition 2.2, 4.1 and Corollary 4.3, one obtains
(10) Sext% (N,K) = Sextt™ (N,A) for £ > 0.

If H'(N,A) = 0 then 0 > AV 5 gV 5 KN 5 0 is exact as @-modules where J” is
injective. In this case we have

(11) H*(QK")=H*"(Q,A") for 2 > 0.

Suppose H(N,A) =0 for 0 <i <k + 1. Then H'(N,K) =0 for 0 <i< k. Hence,
by using (9), (10), and (11), one sees that the theorem is true for n =% + 1 if
it is true for n = k. When n = 2 the first part of the sequence is simply that
of Theorem 3.1 and the second part follows from it by the above argument.

Remark 1. Since the sequence of Theorem 3.1 is natural in A it is not hard
to prove that the sequence in Theorem 4.4 is also natural in A.

Remark 2. Using (9) and (10) one may restate proposition 4.2 to Say that
the sequence

0— H'(QH"(N,A))— Sexty (N,A)— H**'(N,A)

is exact for n = 1.
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Remark 3. Some assumption on A is necessary in Theorem 4.4 For, given
any group extension 1 - N— F— @ — 1 where F is free, one obtains an exact
sequence from theorem 4.4

H?(Q,A) —> H*(F,A)— Sexti(N,A)— H*(QA)— H*(F,A)

I I
0 0

where A is a @-module. By remark 2, Sext>(N,A) = 0 since N, as a subgroup
of a free, is free. Therefore if there are no restrictions on A then H (@A) =
for all A, i.e. cd @ = 3 which is not true in general.

Remark 4. 1t can be shown that H"*'(N,A)® = Sext%(N,A) if H'(N,A) =0
for 0 < i = n. Thus Theorem 4.4 extends the result of Hochschild and Serre [4].

Added in Proof. The authors would like to thank Dr. Heubschmann for
indicating the need to clarify the proof of Lemma 2.1 at this point. Note that
it suffices to show that the top row exists whenever the rest of the commutative
diagram exists

O->M - E, > ..—> E_1—>En—p>N—->0

n

[ ! l Lo

E0>A-> M > M,—>..—> Mn_l—>Mn1> N—-O0
A l ! l l I

£ 0->A->-M'->-M,—>..—> M _, —>Mn’:; N-0

| ! ) ) [l
0>M/>E' —>..— E_, -»E' 5 N->0

where the top and the bottom rows are (n — 1)-fold pseudo G-extensions and the
middle two are n-fold pseudo G-extensions. To do this one takes E, to be the
pullback of E,” —» M, « M,,. In case n = 2, Ker p = M, and we are done. Otherwise
take E,,_, to be the pullback of M, _, — Ker w « Ker p and E; = M, with the obvious
maps E,—» M,2in — 2.
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