ON THE RUSSO-DYE THEOREM

Sorin Popa

Let A be a unital C*-algebra and x € A, ||x]] < 1. Denote by n(x,A) the least
natural number n such that x is a convex combination of n unitary elements
of A. The Russo-Dye theorem asserts that n(x, A) is finite. Let n(p;A) denote the
least upper bound of the numbers n(x,A), where x € A, ||lx]| =p, 0<p <1 It is
known that n(27';A) =4 and it is shown (see [3]) that if A is the C*-algebra
of continuous functions on the unit disk and f € A is the identity function, then

(*) nipf,A)=2(1—p~ " for 0<p<l,

which shows that sup n(p;A) is infinite.
O<p<1

In a seminar on operator algebras at the Math. Dept. of INCREST, A. Ocneanu
raised the question of whether n(p;A) is finite for p < 1. In this paper we answer
affirmatively this question, namely we prove that

(x%) n(p;A) = 2n(1 +p)1 —p) ' + 2.

To do this we follow Harris’ proof of the Russo-Dye theorem ([1]). We also
exhibit another class of C*-algebras for which the inequality (*) holds, namely
if a C*-algebra A contains a nonunitary isometry v, then n(pv,A) =21 —p) 7,
O0<p<l1. '

This shows that in certain C*-algebras the estimate (**) is best possible, in
the sense that only the constant 27 may be improved.

First we recall some definitions.

Let H be a Hilbert space and B(H) the space of bounded linear operators
on H; consider a contraction x € B(H), [x| <1; denote by D, = (1 — x*x)'/?
D..=(1—xx*)"% For A € C, |\| < 1/|lx], let

ex(x) = 'Dx‘(]' - Ax*) —I(A. - x)_D;1 = —Xx + 2 A"Dx‘x*n—le

n=1

be the characteristic function of the contraction x (see [2, Chapter VI}). Then
08.(\) is analytic for [\| < 1/|lx|| and it takes unitary values for |A| = 1. Also by
the Cauchy integral formula we have —x = 0_(0) = SéBx(ez““)dt.

Thus, to obtain x as a convex combination of n unitaries, with n as small
as possible, we need a good estimate for the norm of (d/d\6,)(A\). An easy
computation shows that (d/d\ 6,)(\) = D,.(1 — \x*)"?D,.
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In the particular case of a constant operator x =p € C, we obtain

d 1-|p|? 1-—|p|? 1+ |p
(— ﬂp)()\)=—-—-|—| and sup L T = ol .
N 5 =1L = X[ 1 - |pl

In the following lemma we prove a similar fact for a general operator x € B(H),
Il < 1.

LEMMA. For |\| =1 and h € H we have

(0. )oon
dx *

and {[(d/dX 6, )M = (1 + [lxl) / (1 — [lx[p).
Proof. For |\|, || < 1/|x]l and A € H, we have the formula

=D, (1 —xx)""(1 —Ax*)"'D,h|

IAI? = (8, (N A0, (w)A) = (1 — AL)((1 — \x*) "*D,h, (1 — px*)"'D,h)

(Cf. Sz.-Nagy and Foiag [2, Chapter VI, 1.4]).

Since 0_(a) is :mitary for |a| = 1, this gives for |A| = 1, p = 1 the equalities

[0.(N A —8.(1)A|* = [8,(NA|*+[6,(1)]* — 2Re (8, (N2, 0,(1) k)
= 2Re (|h[|> — (8, (\) A,0, (1) A))
= 2Re (1 — \){((1 = \x*)"'D,h,(1 — x*) "' D,h)
= 2Re (1 — A) Re ((1 —Ax*) "Dk, (1 — x*) "' D_h)
—2Im (1 — A) Im ((1 — )\x*)‘lD,h, 1 - x*)‘lD,h)
= |1 = A®*Re (D, (1 —x)"*(1 — \x*) "'D_h,h)
—iN—=NIm (D (1 -x""(1—-Ax*)""D,h,h)

1 _
=5 11— N* (D, [A—%)""A = x*)""+ 1A —-Xx)'@A - x*) '] D,h,h)
1 _
Y N=MD, [A-2)7"A-rx*) "'~ Q=)' @ — x*) "] D, A&).

Consequently we obtain for ||(d/d\ 6_)(1) A| the following formula

d i 8.(\) — 6,.(1)A|*
(—e,)(l)h i 10N = 0.V
dX\ A I\ — 1]

= (D,(1—x)""(1 —x*) "'D_h,h)
—(D,1-x)""A—-x*"'y@ —x) A - x*)"'D.h,h),

where
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y =lim & (X =N x*x— (1 —=N)x*+ 1 —N)x) = 2x*x — x — x*.
A1 2|\ —1)*
Finally we get

(0. )oom
dx

2

=(D,(1—-x)""A-x*)"A+x*x—x—x*—y)

‘(1 =x)""(1 - x*)"'D.h,h)
= (D.(1—x)" (1 —x%"'D3(1 — x) '(1 — x*) "'D_h,k)
= ID.(1 = x)~*(1 — x*) "' D,A|%.

Since (d/dX6,)(\) = Dx.(z . n()\x*)""l)Dx, we have

(d 0 )(x )=D (A (px)*)"'D —(d 0 )(x)
d)\ x W)= x‘zn nx x d)\ nx ’

n=1

so that (d/d\ 0,)(n) = (d/dN6,,)(1) and we obtain that for |\| = 1,

(d 0 )()\)h (d 0 )(l)h
dn - dn

To prove the second part of the lemma we have to show that

=|D,(1 —Xx) *(1 —xx*)"'D,h

1+ [l
L — x|

D.(1-xx)"'(1—N*)"'D, =<

This inequality is equivalent to (1 — Ax*)(1 — Ax) =1 — ||x||/1 + ||lx|| D2, that is
(@ = Ax*)(1 = Xx)h,h)= (1 — |z[) /(A + |x]p(D2h,k), for all hE H, ||| =1, or
equivalently

1 — [« oy _ 1Al + [lxA]
(5l* — xh)*) = —————

A = |l (iall = llxklD, IRl = 1.
1+ x| 1+«

1 - Xx)n)®=

This last inequality holds, since
(1 — Xx) BY* = (1]l — AxhlD* = @ — D(A] — |lxhl),

and 1 = (||| + [lxAl) /(1 + [lx]}), for ||R|| = 1.

THEOREM. If A is an arbitrary unital C*-algebra and x € A, |x| < 1, then
n(x, A) = 2w (1 + [lx]) /@ — [« + 2.

Proof. If we denote by y, = — §5/70_(e*™ ¢+ D/"My gy 1 < k=< n, then by the
Cauchy integral formula we have x = 2 y,. By the preceding lemma, for

k=1
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n>m (14l /(1 - [lxf) we get

yk+le (e21ri(k—(l/2))/n)
n

1/n
S (ex(e2-rri(t+((k-l)/n))) _ex(e2ﬂi(k—(1/2))/n)) di

V]
d
—9 22'rrit

Since —0, (e ) are all unitaries, this implies that y, are invertible,
1 < k < n. Consequently if we let a, be the modulus of y,, a, = (y*y,)'’?, then
a,are alsoinvertible, 1 < % < n, and u, = y, a, ' are unitaryelementsof A,1 < & =< n.

Moreover we have ||a,|| = ||y, = §5/ |8, (€*™“ " *2/"M)|dt = 1/n, so that |na,| =< 1.

1 7
= —— Ssup
n n 0=t=1

w 14|« 1

T n?l1-|x n

2witk—(1/2)/n

If we denote by

. 2 2
u, = na,+ivV1i-n’a;, 1=k=n,
. 2 .2
u:=na,—iV1-n’a;, 1=k=n,

then u;, u; are unitary elements of A and

x=iyk=2ukak=2514—uk(u;+uf).
k=1 k=1 k n

n
=1

Now suppose A is a von Neumann algebra. If x € A and |x]| = 1, then by the
polar decomposition we have x = ua, with a = (x*x)*/? and u a partial isometry;
moreover if A is finite, # may be chosen to be unitary, so that

1 _—
x=;u((a+i\/1—a2)+(a—i\/1—02)),

which means that n(x, A) = 2. In the case of an infinite von Neumann algebra
this is no longer true, the obstruction being the existence of nonunitary isometries.
More precisely we have the following.

PROPOSITION. Let A be a unital C*-algebra and v a nonunitary isometry
or coisometry in A. Then n(pv,A)= 2(1 —p) ", for0<p<1.

Moreover, if A is a von Neumann algebra and (1 — p)~' is integer, then
n(pv,A) =2(1—p) .

Proof. Since n(pv, A) = n(pv*,A) we may suppose v is an isometry. Let

n .
pY = E \;u; for some unitary elements u, € A and positive scalars A\,
i=1

2 A; = 1. Remarking that vy} is still a nonunitary isometry, we have
i=1

p+ N = |pvuf — Nl = lpov — Nyl = = 2)\,.= 1-X\;,, 1=j=n.

i#j

2 A u;

i£f
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Thus 1/n <= max \; < (1 — p)/2, so that n = 2(1 — p) L.
J

Suppose now that A is a von Neumann algebra and denote e, =1 — vv*,
e, =U"e,0*", n= 1. It will be sufficient to consider only the case when

Zen=1.

n=0

Thus there exists a subalgebra B C A, v € B, such that B is isomorphic to some
B(H) and such that identifying B with B(H) there exists an orthonormal
basis h,, h,, Ry, ... in H for which v is the unilateral shift, i.e. vh,=h,,,, n =0.
If p=(1-p) ' € N, define the elements u,, u,, ..., u,, € B(H) by

(h,, for m==%k

Usp—1 P = Y Pueyprnsrrs fOXm=np+k, n=z=1

\h,,,1, fOr ms# np-+k

(—h,, for m==k

Uosph,, =\ —Rp-ppirs1y for m=np+k n=1

\h,.,, for m# np+Ek.

By inspecting the above formulae we see that u,, u,, ..., u,, are unitary elements
2,
of B(H) and that (1 — 1/p)v = (1/2p) >, u,.
j=1
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