MAPPINGS WITH DENSE DEFICIENCY SET

John J. Walsh

1. INTRODUCTION

There are easily constructed examples of maps between compact, orientable
manifolds which have deficient points; that is, there are points y in the image
for which #f'(y) < |deg(f)| (3 = cardinality). If fis a d-to-1 (d = 2) covering
map of the 1-sphere, then the suspension 3f:8%— S has two deficient points
while further suspensions 377'f:S8?7— S? yield a map whose deficient points
comprise a (g — 2)-sphere. Let A, denote the set of deficient points of a map f
between orientable manifolds. For maps between 1-manifolds A= &, and it is
a consequence of a result of Hopf [4] that for maps between 2-manifolds A, is
discrete. In dimensions ¢ = 3, Honkapohja [2] showed that the non-deficient points
are dense and, therefore, dim A, < g — 1; and Church and Timourian [1] showed
that each compact subset of A, has dimension at most g — 2.

The question was posed to the author by P. T. Church whether the deficient
points could be dense; the examples constructed in this paper have this property.
Specifically, for each pair of integers ¢ = 3 and d = 2 an example is constructed
of a monotone map f:S?— 87 such that |deg(f)| = d, A;is a (¢ — 3)-dimensional
dense subset, and f“l(Af) is a dense subset. Since each f~'(y) is connected, the
restriction of f is a homeomorphism from f 'I(Af) to A,.

The above situation contrasts sharply with that which occurs for discrete maps,
in which case dim A, =< g — 2 [1], and for light maps, in which case dim A,=g—1

[1].

The techniques used to produce the examples are taken from those developed
in [8]. The techniques developed in the latter paper are more systematic and
“controlled” that their predecessors used in [9], [10] and [6].

A map is monotone provided each point-inverse is compact and connected. We
define st(a,B) = a U {b € B:bN a# @) and, recursively, st’ (a,B) = st(st' ' (a,B).

2. PRELIMINARIES

The basic approach which will be used to construct the examples is that developed
in [8]. The machinery described there is more complicated than what is needed
for our current purposes. In order to have a self contained description, the necessary
components with proofs will be reproduced.

The barycentric subdivision of a triangulation L is denoted BL and the nth-bary-
centric subdivision is defined by the recursive formula "L = (8" 'L). Geometric
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barycenters are used so that the diameters of the simplices of the 8" L’s are converging
to zero.

A collection P is a stratified partition of a closed PL manifold M? provided:
(1) P is a cover of M consisting of g-dimensional PL submanifolds;

(2) for 2=<i=qg+1, if p[l],...,p[i] are distinct elements of P with
pl1l] N ... N p[i] # @D, then the intersection is a (¢ — i + 1)-dimensional PL sub-
manifold of the boundary of p[l] N ...Np[j—-1] Np[j+1] N ...N p[i]
forl=j=<i.

For 1=si=q+1, let S, ,,,={p[1] N ...N p[i]: the distinct elements
p[l],...,p[i] of P have nonempty intersection}; the elements of the collection
S,_;+, are called the (g — i + 1)-dimensional strata of P.

q
Remark. Let L be a triangulation of a PL manifold M? and, for n = 0, let
J, = {st(v,""'L):vis a vertex of "L} where B°L = L. Each collection J, is a
stratified partition of M whose i-dimensional strata consist of i-cells.

THEOREM 2.1. Let M? and N? be closed PL manifolds, let L be a triangulation
of N, and let {T,: P,— J,}._, be a sequence of triples satisfying:

(1) J, = {st(v,8""'L):vis a vertex of B"L};
(2) P, is a stratified partition of M;

(3) T, is a bijection and, given elements p[i] € P,, N p[i] # @ if and only
if N T, (plt]) # D;

(4) for pn € Pn and pn+1 € Pn+1' Tn (pn) n Tn+l(pn+1) ?é @ if and Only ‘if
Int(p, N p,a) # D

Then there is a continuous function A from M onto N satisfying

oo

RNy = N st(p,,P,)

n=1

for any choice of p, € P, withy € T,(p,,).

Proof. 1t is worth noting that the symmetric version of condition (4) is valid
since it is easy to verify that elements j, € J, and j,,, € J,,, meet if and only

if Int(j, N j,.,) # D.

It is an easy exercise to show that st®(j,,J,,,) C Int(st(j,,J,)) forj, € J, and,
therefore, that, forj, € J, and j,,, € J,, ..,

(*) if joNJjpa#D  then st(j,1,.) C Intlst(,.J,)).

Conditions (3) and (4) combine with (*) to yield the property that, for p, € P,
and pn+1 E Pn+l’

%)) . if p,Np,..#D then st(p,,.,P,.,) C Int(st(p,,P,)).

Verifying that A is a function from M onto N proceeds as follows. First, using
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(*), (1), and (3) we deduce that if p, € P, is chosen so that y € T, (p,), then
both N st(p,,P,) and N st(T,(p,),J,) are nested intersections and, in particular
are nonempty. Second, an elementx € M iscontainedin 2" (y) where yis determined
by choosing p, € P, with x € p, and letting {y} = N st(T,(p,),J,). Finally, if
y,y' € N and y# y’, then, for some k, st®(y,J,) N st>(y’ J,) =D and, therefore,
choosing j, j’ € J, with y € jand ¥y’ € j’, we have the containment

Ry N AT (y') C st(T3 (1), Py) N st(T, (7)), Py)

and the latter intersection is readily seen to be empty using condition (3).
A consequence of () is that if x € p € P,, then h(x) € stz(Tn(p),J,H_l). In
addition, if p’ € P, and p N p’ # @, then

h(p’) C st* (T, (p")J, 1) C st (st(T, (D), ), s1)

and, therefore, we conclude that & (st (p,P,)) C st (st (T, ( D), ), . ). The continuity
of h at x follows since the sets st®(st(T,(p),J,),J,,,) form a neighborhood basis
for A(x) and x € Int(st(p,J,)).

Remark. If the elements of each stratified partition P, are connected, then
the map A is easily seen to be monotone. The examples construction in Section
5 are monotone for precisely this reason, however, in addition, the connectivity
of the elements of P, plays an important role in the inductive construction of
P, ., (see the Main Proposition).

3. DETECTING CELLULAR POINT-INVERSES

We find it convenient to call a sequence of triples {7',: P, — J,},_, which satisfies
conditions (1)-{4) of Theorem 2.1 a defining sequence and to call h the associated
map. A first attempt at producing functions with many cellular point-inverses
might be to produce defining sequences for which the P,’s contain many cells.
However, since the point-inverses of the associated map are intersections of
st(p,,,P,)’s, it is not immediately evident that such an approach can work. This
section consists of showing that such a program can be successful. For the remainder
of this section, let {7,: P,— J,} be a defining sequence with associated map A
(the underlying spaces being PL manifolds M? and N¥).

For n = 1, each element j € J, is assigned an index, denoted Index(;j), which
is equal to the dimension of o where j = st(v,”**L) and v is the barycenter of
o € B L. In practice (e.g. Section 5), L may not be a barycentric subdivision
itself in which case the elements of J, cannot be assigned an index. The next
lemma in concerned with relationships between the J.’s; the proof is left as an
exercise for the reader.

LEMMA 3.1. For n=1, let J* be the collection of elements of J, with index
equal to s.

(1) For n = 1, the elements of J are a maximal pairwise disjoint subcollection
of J,.

(2) Forn=0,j € J® | if and only if j intersects exactly s + 1 elements of .
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Figure 1

(3) Forn=0,j€d,,and i= 1, st(j,J,,;) C Int(st(j, J,, ;_,).

If y€ j€ dJ,, then A7'(y) may not be contained in 7';'(j); in fact, even
if y € Int(j), 27'(y) may not be contained in T, (j). The problem is that al-
though if j, €J, and j,,, €J,,; with j,,, CInt(j,) and j,,, €J,,, with
Jniz N Jnsr # D, then j, ., C Int(j,), the analogous statement for the P,’s
need not be true. For example, if j,,, C Int(j,,., U Jj.,,) C Int(j, UJ]), then
in general the best we can expect is that T',1,(j,.,) C Int(T;*(j,) U T'(GL));
see Figure 1.

LEMMA 3.2. Ifj € J, andy € Int(j), then h™*(y) C Int(st (T (j),P,..)).

Proof. We need the following consequence of condition (4) (of Theorem 2.1)
which defining sequences satisfy: if A C J; and B C J,,, with '

U{b € B} C Int(U {a € A4}),

then U{T;},(b):b € B} C Int(U (T, (a) :a € A}).

Since y € Int(j), there is an integer % and a j,,, € J,,, with y € j,,, and
8t(Jpoansnin) C st(j,J,,z). In turn we have that

A7 (y) C Int(st(T ;54U naa)sPoss)) C U{T i(@):a €J,,, and a Nj# D).

The observation made in the preceding paragraph combines with condition (3)
of Lemma 3.1 to show that, for2 =i =<4,
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U{T;},(@):a€ J,,;, and a N j#@}
CU{T i}, ,@:a€J,,, ., and aNj#Q}.
Finally, these containments yield that
h™'(y) C Int(U {T;il(a):a €d,,, and anNj#QP}
Condition (3) (of Theorem 2.1) which defining sequences satisfy shows that this

is in fact the sought after containment.

We now determine those points of IV which are “purely of index ¢” (with respect
to the J’s) in the sense described in part (3) of the next lemma. For each n = 1,

define a sequence of closed subsets of Nby F, = (M} [N — U{Int(j):j € J2}].
LEMMA 3.3. Adopting the preceding notation,
1) dimF,<q - 1;
(2) N— U F, is dense in N;
(3) ify € N — U F,, then for infinitely many i thereisa j € J® with y € Int(j).

Proof. Condition (3) follows easily from the definitions of the F,’s and (2)
follows from (1) since the Sum theorem [5; p. 30] yields that dim U F, = ¢g — 1.
In order to verify condition (1), observe that for each { = 1,

N — U{Int(j):j € J?} = st(D, B L)

where D, is the dual (g — 1)-skeleton of B* 'L (8°L = L). Given € > 0 and integer
n, if { = n is chosen sufficiently large, then N — U {Int(j): J € J} e-maps to D,
and the map restricts to produce an e-map of F, to D,; therefore, dim F, < ¢ — 1.

PROPOSITION 3.4. Let{T,:P,— J,}._, be a defining sequence with associat-
ed map h:M?— N? and suppose that for each j € J9 (n= 1), there is a g-cell
Q such that st(T;'(j),P,,,) C Int @ C st(T';"(j),P,). Then the points y € N for
which h™'(y) is cellular form a dense subset of N.

Proof. A closed subset of M is cellular provided it is the nested intersection
of open g-cells. Let the F,’s be the closed subsets of N from Lemma 3.3; we show
that, for eachy € N — UF,, h™'(y) is cellular. Let j, € J, with y € j_; condition
(3) of Lemma 3.3 implies that, for infinitely many n, y € Int(j,) and j, € J2.
On the one hand

St(T, 51 Jnsr)sPory) C Int(st(T;*(j,),P,)) and A'(y) =N st(T;'(,),P,);
on the other hand, for infinitely many n, there is a g-cell @ with
st (T 31 Uns1)Pass) C (T (), Poyy) CInt @ C st(T 2 (J,), P,).

Therefore, A~'(y) is cellular.
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4. SHRINKING COUNTABLY MANY CELLULAR POINT-INVERSES

The material of this section involves an elementary application of standard
techniques used in the study of cellular decompositions.

PROPOSITION 4.1. Let h:M?— Y be a map from a compact qg-manifold to
a compact metric space and let y,, y,, ... be a sequence of points in Y such that
h™*(y;) is a cellular subset of M?. Then h can be approximated arbitrarily closely
by a map g with each g7*(y,) a point.

Proof. The map g is constructed as the limit of maps 6, where 0, (y,) is
apointfori=1, ..., k.

Since 7' (y,) is cellular, the quotient map w: M— M/h ™" (y,) can be uniform-
ly approximated by homeomorphisms. Let o be such a homeomorphism and let
8, = homw ‘oa. Then 67 (y,) is a point and, if 2~ "(y) is a point for some y, then
07" (¥) remains a point. Furthermore, the restriction of o o is a homeomorphism
from M — h™'(h,) to M —0;"(y,), and, therefore, each 87 (y,) = a Tow (A" (y,))
is cellular.

The process is repeated starting with 6, and a map 0, is obtained which
approximates 0, with 0;'(y;) a point for i =1, 2. Continuing in this manner,
the sequence of 8,’s is obtained and, if they are chosen to converge fast enough,
then g = lim 8, approximates & and each g~ '(y,) is a point.

Remark. A map g constructed as above has the property that, for eachy € Y,
h™'(y) and g '(y) have the same shape; a discussion of this can be found in
[7]. In particular, if A is monotone, then g is also monotone.

5. THE EXAMPLES

The next proposition presents an inductive procedure which is combined with
the material of Sections 2, 3, and 4 in order to produce the promised examples.

MAIN PROPOSITION. Let M? and N? be PL manifolds with q = 3, let L
be a triangulation of N, and let T: P— J be a triple satisfying:

(a) J = {st(v,8'L):v is a vertex of L};
(b) P is a stratified partition of M with each element of P connected;

(¢) T is a bijection and, for elements p[i] € P, N p[i] # @ if and only if
N T(p [i]) # P.

Then there is a triple T: P— J satisfying:
(1) J = {st(v,B%L): v is a vertex of B*L};

(2) P is a stratified !Jartition of M with each element of P connected and with
T~(j) a g-cell for j € J'9;
) T is a bijection and, for elements p[i] € P, N p[i] # @ if and only if
T(p[i]) # P;

(4) forp € Pandp € P, T(p) N T(p) # @ if and only if Int (p N p) # P;
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(5) if L itself is a barycentric subdivision, then given neighborhoods

ULl of T7'()

for j € J9, it can be arranged that st(T " (j),P) C U [J].

Proof. The collection o is a stratified partition of N; in fact, Jf is a standard
handlebody decomposition of M associated with the triangulation L. There is a
“natural” bijection between the elements of J and the strata of J; each i-dimensional
stratum of J is the dual cell of a (¢ — i)-dimensional simplex o of L and the
associated element of of is st(5,8°L) where & is the barycenter of o. The collection
P is obtained in two steps with the first producing a collection P in a manner
analogous to the preceding description of J.

The collection P. Let K be a triangulation of M such that each stratum of
P is a full subcomplex. For each stratum s of P, let

c(s)=U{o:c isasimplexof BK and o C s — ds}.

The set c¢(s) can be thought of as the core of s and plays the same role that the
barycenter & played in the description of J. Let H = {st(v,8°K):vis a vertex of B K }
be the handlebody decomposition of M associated with K. The elements of P are
in one-to-one correspondence with the strata of P with a stratum s determining
the element

p.= U{stw,B*’K)E H:vE c(s)}.

Since the cores of the strata of P are pairwise disjoint, each element of H is
contained in at most one element of P and it is easy to check that each ele-
ment of H is contained in at least one element of P. It follows from the fact
that any “amalgamation” of a handlebody decomposition is a stratified partition
that P is a stratified partition; details of an inductive argument can be found
in [8]. A function T:P— J is determined as follows: given a stratum s of P,
say s = N p[i] for elements p[i] € P, T'(p,) =j where j € J is associated with
the stratum N T'(p [i]) of J. It is clear that the triple 7: P— J satisfies condi-
tion (1) and condition (4) follows from the definition of 7' together with the fact
that an element 2 € H meets an element p € P if and only if Int(h N p) # @.
If K is chosen so that the diameters of the elements of H are small, then condition
(5) holds. It remains to verify condition (3). Condition (c¢) and the fact that each
collection of elements p[i] € P with N p[i] # @ determines a unique stratum
s=Np[i] of P allow T to be extended to a bijection of the strata of P and
the strata of J by letting T'(s) = N T'(p [i]). Since T( p,) = j where j is determined
by the stratum 7'(s), Tis a bijection and the second part of condition (3) follows
since, given elements p,;, € b,

NPy #PoNs[l#Do N TEN#AD < T(p,y) #D

The Collection P. Let S,, S,, ..., S, denote the strata of P and notice that
S, = P (a fact which is used several times in the following). An element p, € p
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is connected if and only if the associated stratum s is connected. Each stratum
in S, is connected (condition (b)) and, hence, for each s € S,, p, is connected
(p, being equal to s with an open regular neighborhood of s removed).

If p € Pand p is associated with the stratum N p[i] of P, then each component
of p intersects the connected element p, € P where s € S, is equal to any one
of the p[i}’s. For an element p € P which is not connected choose an element
s €S, as just described with the additional provision that, if possible, choose
sEJ & . (In particular, if L is not a barycentric subdivision, then the last provision
is to be ignored.) Let X, be a set consisting of a single point from the intersection
of each component of p with p, chosen so that X, C Int(p U p,). Since ¢ = 3,
the cone on X, say C(X,), PL embeds in p, with C(X )N a(p,)=X,.Let N, C D,
be a “tubular” nelghborhood of C(X,). The ch01ces for different elements of P
are to be made so that the N,’s are pairwise disjoint. The collection P is obtained
by replacing each p € P whlch is not connected by p U N, and each p’ € P which
is connected by Cl(p’ — U{N, C p’}). Finally, T is the functlon induced by T.
The elements of P are connected and if j € J9, then p = T7'(j) is associat-
ed with a stratum s € S,; that is, p is a regular neighborhood of a finite set
of points. The element p is a finite union of pairwise disjoint g-cells and
T7'(j)=p U N, is a g-cell.

If p € P, then there is at most one element s € S, N {T7'(j):j € J°} with
p N p,# @ and, in this case, if p is not connected, thenp U N, C p U p,. It follows
that if j € J9, then st(T* (j),P) = st(T"' (j),P) and that condition (5) continues
to hold.

MAIN THEOREM. For each pair of integers q =3 and d =2, there is a
monotone map g:S?— S? and there are closed sets A |, A,, ... such that |deg(g)| = d
dimA;,=q — 3, U A, is dense, and g is one-to-one over U A,.

Proof. First, the task is reduced to handling the case ¢ = 3: suppose that
g:8%— 8? is the sought after map where the collection of A/s form a count-
able dense subset of S?; then suspending (g — 3) times produces the desired map
327%:87— S7 and the desired closed sets £ A4,.

Using Proposition 4.1, the problem further reduces to constructing a map
h:8° - S® with |deg(h)| = d for which there is a dense set of points y € S* with
h~'(y) being cellular.

The mapping h arises as the map associated with a defining sequence satisfying
the additional hypothesis of Proposition 3.4.

‘Suppose that T': P — Jis a triple satisfying the hypothesis of the Main Proposition.
Repeated applications of the proposition produce an appropriate defining sequence
provided that, for n =1, each U|[j] C st(T.'()), P,) is chosen to be a regular
neighborhood of T','(j) for j € J (and the trlangulatlon L in the hypothesis
is replaced by the appropriate barycentric subdivision of L for each application).

It remains to produce the triple T: P— J and to do it in such a way that
the mapping A ultimately produced has degree d.

The Triple T:P — J. Leta:S'— S' be a d-to-1 covering map and let K* and
K be triangulations of S* so that « is a simplicial map from K* to K. Let Z°K*
and 3° K be triangulations of S® (= 3?S') where each is obtained by introducing
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four additional vertices—these being the suspension points. The map A = 3%«
is simplicial and has degree d. Choose barycenters for B(2®> K*) and B(Z*K)
so that A remains simplicial. Let J = {st(v,8 (S*>K)):v is a vertex of 3°K}, let
P={A7'(j):j € J}, and let T be defined by T(A7*(j)) =j. An alternate descrip-
tion of P and T'is that

T stwBE*K))) = U {stw,BE K*):w € A7 (v)}.

The triple T:P— J only has one defect—the elements of P are not connected.
The four elements of P corresponding to the suspension points are g-cells but
each of the other elements is the disjoint union of d g-cells. However, each component
of each of the latter elements intersects each of the four connected elements.
The triple T': P— o is obtained by modifying the elements of P as was done in
the proof of the Main Proposition in order to obtain P.

It remains to show that the map A obtained has degree d; this is done in
the next section by showing that 2~ and A are homotopic.

6. INDUCED MAPS AND HOMOTOPIES
Let P be a stratified partition of a PL manifold M?, let
J= {st,B'L):v isavertexof L}

for some triangulation L of a PL manifold N9 and let 7: P— J be a bijection
such that for elements p[i] € P, N pli] # P = N T(p[i]) # @. In the discussion
at the beginning of the proof of the Main Proposition, it was observed that T
extends to a bijection, also denoted by 7T, between the strata of P and the strata
of J and that each stratum of J is the dual cell of a simplex of L. Also, given
a triangulation K of M with each stratum of P a full subcomplex, a core of each
stratum s was defined by

¢(s) = U{o:0 isasimplexof BK and o C s— ds}.

Define f:M— N by defining f(c(s)) to be equal to the barycenter of ¢ where
T'(s) is the dual cell of ¢ and by extending linearly. The map f is simplicial from
K to B'L and is called an induced map (for T: P— J). Although the map f depends
on the triangulation K, f(p) = T'(p) for each p € P and it is easily deduced from
(+*), which is stated in the next paragraph, that any two induced maps are homotopic.

The following is well known; the proof is not difficult and is omitted.

(**) Let % be a finite closed cover of a space X such that each element
of % is an absolute retract and such that each nonempty intersection
of elements of % is an absolute retract. Then for any space Y, each
pair of maps f, g: Y — X which are %-close are homotopic.

LEMMA 6.1. If{T,.P,— J,} is a defining sequence with induced maps { f,},
then each f, is homotopic to f, ., and h = lim f,, is the associated map.
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Proof. 1t is easy to verify that f, and f, ., are %-close where
U = {st(j,J,..):JE J,}

and (x*) applies to produce the homotopy. The second conclusion follows easily
by comparing definitions and its verification is left to the reader.

The final step in the proof of the Main Theorem will be completed provided
we show that the map A is homotopic to an induced map f for T:P— J and
that f is homotopic to an induced map f for T: P— J. Since A and f are J-close,
they are homotopic by (**). It is convenient to assume that the same triangulation
R of S® was used to specify the induced maps f and f. Since the collections P
and P differ only on a finite union of 3-cells (these being tubular neighborhoods
of cones on d points), f and f are equal off of a regular neighborhood of this
union. If @ denotes one of these 3-cells and Q@ = st(Q,BR), then f = fon FrQ".
We are assured a homotopy of f | 5+ to f| o+ relative to Fr @ provided (@ *) U f(@™)
misses a point of S%; but the only suspension point in f(Q") U f(Q") is the
one contained in the element of P which contains . These homotopies piece together
to produce a homotopy of f and f.

7. A FINAL REFINEMENT

Each of the monotone maps g:S>— S® produced by the Main Theorem has
the property that there is a dense subset D C S such that the restriction of
g is a homeomorphism from g~* (D) onto D; the following adjustments are sufficient
in order to insure that g~'(D) is also a dense subset. First, the main result in
[7] yields a monotone open map k approximating g with 27" (y) a cellular subset
for each y € D. Second, incorporate the modifications described next into the process
used in the proof of Proposition 4.1 to “shrink” the sets A7 (y;).

(1) Choose6,sothat®,(y;) =0,_,(y;) for1 < i= k — 1(this amounts to choosing
a homeomorphism o which agrees with w on the complement of a neighborhood

of 0.2, (¥,)).

(2) Choose a countable basis U,, U,, ... for M? and (reordering the y/s as
necessary) choose y, so that 8;2,(y,) N U, # @ (since h is open, each of the 6,s
is open so that such a choice is possible).

(8) If8;2, (»,) is a single point, then let 6, = 6, _, and notice that 8, '(y,) € U,.
Otherwise, choose the homeomorphism « so that 6;'(y,) € U,. The above process
will produce a map g which is one-to-one over an infinite subset of the original
y/s. Let y,, y,, ... denote this subset. Since g '(y;) € U, for each i, the collection
{g7"(y,):i=1,2,...} forms a dense subset of M? and, therefore, {y,,,,...} also
forms a dense subset of Y.
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