A NOTE ON TURAN’S METHOD

S. M. Gonek

1. STATEMENT OF RESULTS

N
Let s, = 2 b,z., where the b, and the 2, are complex numbers, and

n=1
v =0, 1, 2, .... A question of current interest is the size of |s,| in the special
case that b, > 0 and |z,| = 1 for all n. In this connection, Leenman and Tijdeman
[4] have shown that

s
(1) max |s,| = —

lsvs=2N oV N )

On the other hand, by Dirichlet’s theorem on uniform approximation there is
arg z

n

=—for 1 = n = N. For this v we have
2% 6

av,1=<v =< 6" such that ||v

K
Re 2} = cos (v arg z,) = cos -3— = -2—, so that

2) %
max |s | =—.
( 15v56N| 4 2

It is easy to see that we may have s, = 0 for 1 = v = N — 1 (take 2z, = e(n/N),
b, = 1 for 1 = n = N), so the range of v in (1) is essentially as short as one
may consider. Furthermore, |s,| = s, for all v, so we cannot hope to improve
on (2) by more than a constant if we consider longer ranges of v. Thus the two
estimates (1) and (2) represent the extreme situations. In what follows we obtain
(1) and (2) by a unified method which gives good lower bounds for ranges
1 = v = K of intermediate length as well.

N
THEOREM 1. Lets, = Y b,2, where b, > 0 and |z,| = 1 for all n. For
n=1

agivenr,r=1, 2,3, ..., we have

N+r—-1 —1/2r
3 max |s,| =s, | 2 )
15v:sZ(N+r_l) r

From this we deduce
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COROLLARY 1. In the above notation, if r < N then

/ r
4) max |s,|=s, .
1sv=(12N/n" 12N

If r = 1 in (4) then we have (1); if r = N then we obtain (2); we ignore constants
here.

N 1/2
By Cauchy’s inequality we see that s, < N'/? (2 b,":) , 50 one might wish
n=1

to sharpen (4) by showing that

N 1/2
(5) max |s,|= er'/? (2 bf) .
Isvss(12N/n)"

n=1

This coincides with (4) in the important special case b, = 1, 1 = n < N, and
is true when r = 1 (see (8) of the Lemma below), but (5) is false in general.
For example, if b, = n™2 then |s,| < {(2) for all v, while the right-hand side
of (5) grows with r.

As a special case of Corollary 1, we have the following result of H. L. Montgomery
[5; p. 22].

N
COROLLARY 2. (Montgomery). Let s, = 2 z,, where |z,| = 1 for all n. Let
n=1

r be an integer, 1 =< r < N. Then

rN
(6) max |s,|= \/ —.
1=vs(12N/r)" 12

To get an idea of the strength of the bounds in (4) and (6) we may compare
(6) with a result of Erdos and Rényi [2]. They showed that there exist z, with
~ N

|z,] = 1 for 1 < n < N, such that s, = E 2!, satisfies |s,| = (6N log (v + 1))'/?

n=1
for v = 1, 2, 3, .... For these 2z, it follows that the left-hand side of (6) is
12N
less than or equal to 12r N log .
r

We may also apply our method to improve a recent result of G. Halasz [3]
for long v ranges. Halasz’s inequality, of which we consider only a special instance,
is a long range version of Turan’s first main theorem [6; Satz VII}. Let

N

s, = 2 b,z,, where the b, and z, are complex, and |z,| = 1 for all n. If

n=1

K = N, then

nl

- EX
(7) g’as}),{( Isvl - K1/2e4N2/K *
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For K = N, the lower bound in (7) is greater than or equal to |s,|/e®”, which
is roughly the estimate given by Turan’s first main theorem. If K = 4N? the
lower bound is substantially increased to |s,|/(2eN). But we cannot improve on
this (except for the constant) by considering larger K. We remedy this with the
following theorem and its corollary

THEOREM 2. Let s, Z b,z., where the b, and z, are complex, and
n==1

|z,] = 1for1=n =< N. Foragivenr,r =1, 2,3, ..., we have

N+r—1\\"
max Is, | = |so] | 2e .
(N+r—1)2 r
lsv=<4 :

COROLLARY 3. In the notation of Theorem 2, if r < N, then

max _|s, |= |s,]| .
1svs (12N/r)% 30N

The author would like to thank Prof. H. L. Méntgomery for bringing to his
attention the problem solved by Theorem 1 and for helping him in the preparation
of this paper.

2. PROOFS

We could obtain Theorem 1 with a slightly weaker lower bound in (3) from
(1). Instead we derive it from the following Lemma which is more general than
(1) but no more difficult to prove. This result is implicitly contained in a paper
of Cassels [1] (also see Montgomery [5; p. 20]).

LEMMA (Cassels). Let s, be as in Theorem 1. Then

K-NUX

8 2 2
(8) max |s,|* = 2 b2,
Alternatively,
- N
) max |s,|*> = So
1svsK KN

Proof. Let z, = e(8,). Then

v
(1 )ISI2
K+1

K
b,,me(
=1 p=1

— max |s,|* =
2 1=v=K

3

) cos 2mwv (B, —0,,).

Mz

3
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The sum over v is equal to K/2 if 6, = 0,,, and is always greater than or equal
to —1/2, by the nonnegativity of Féjer’s kernel. Thus we find that

2
5 max s,|* = —;bi—;Z ;bb Z : so,
n#m

1
that is, max |s,|* = z b2 — E s2. By Cauchy’s inequality s> < NZ b2, so the

l=sv<=K

above gives max |s,|* =

1=sv=K

Cauchy’s inequality to this.

N+r-1
Proof of Theorem 1. We apply (9) of the Lemma with K = 2( )

r
to the sum
r!
t=s,= > ———— b7 b e(e, 8, + .. + eyBy))
el+ -+eN=r el . e eN-
e;=0

say. Note that for each é, we have b(¢é) > 0 and |2(¢)|] = 1, and that the sum
N+r—-1
has 2 1= ( ) terms. Thus

r

. s N+r—1\\1
max [t "=t 2
15v52(N+r_1) r

Replacing ¢, by s and £, by s;, and then taking 2r™ roots gives Theorem 1.
Proof of Corollary 1. Since k! = (k/e)* for all k£ = 1, we find that

(0)=3=()

k) kB \r/)

2(N+r—1) '2(e(N+r))’ (6(N+r) ) (12N )
r B r o r a r ’

N+r—1\\"* r 1/2
as r = N. Hence (2( )) = ( ) . The result now follows
r 12N

ey+...-+ey=r
e;=0

Thus

easily from Theorem 1.
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Proof of Corollary 2. Replace s, by N in Corollary 1.

Proof of Theorem 2. The proof is analogous to the proof of Theorem 1 but

N+r—-1\?

is based on (7) rather than the Lemma; we take K = 4 ( ) .
r

Proof of Corollary 3. Similar to the proof of Corollary 1.
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