SECTIONAL CURVATURE AND CURVATURE NORMAL FORMS

David L. Johnson

INTRODUCTION

The classical notion of the sectional curvature r(P) of a plane section
P C T,(M, m) of a Riemannian manifold M can be defined as the Gaussian
curvature at m of the surface Exp,, (P) of M obtained by spraying out along all
geodesics tangent to P. This gives r: G(2, T, (M, m)) — R, the sectional curvature
function on the Grassmann manifold of 2-planes in 7', (M,m), which determines
to what extent the local geometry of M differs from that of Euclidean space.
The Riemannian curvature tensor R is then defined by polarization of the quadratic
r. It is this tensor, rather than the more geometric sectional curvature, that has
had the broader application. For example, many strong theorems have been developed
relating R to global topological characteristics of M, in particular the characteristic
algebra and the Betti numbers. As r determines R, in theory at least there is
a strong relationship between properties of r and these topological characteristics.
However, this relationship is obscured as properties of r do not translate easily
into properties of R.

The purpose of this paper is to relate the behavior of r to that of R. The
approach taken is inspired by the similar situation for a symmetric operator T'
on R”, where the eigenvectors and eigenvalues correspond to critical points and
values of the function £(x) = (Tx, x) on the unit sphere. For the Riemannian
curvature tensor, abstracted to a symmetric operator on A*(V), the sectional
curvature r replaces the function ¢ as the critical points and values of r have
clear geometric meaning. The primary question is, to what extent do these
“characteristic” points and values of r determine R?

Definition: Let Z2(n) denote the space of all algebraic curvature tensors on
an n-dimensional real inner product space V, and let & be a subset of % (n).
A curvature tensor R € £ satisfying the first Bianchi identity has a normal
form relative to & if there exists a set {P,} of critical points of the sectional
curvature function ry : G(2,V) — R such that; if R’ € # satisfies the first Bianchi
identity, has {P;} as critical points of the sectional curvature r,, and has
rp.(P;) = rg(P;) for all i, then R’ = R. The collection {(P;,, A,)}, where
A, = rgp(P,), is then called a normal form for R. Explicit reference to # will
be omitted where there is no ambiguity.

Remark. The assumption that R satisfies the first Bianchi identity is essential,
as r does not even determine R algebraically without it.

Unfortunately, not all curvature tensors possess normal forms relative to 4 (n)
in this sense. For that reason, this paper will primarily consider Kahler curvature
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tensors, where the situation becomes more tractable due to the somewhat simplified
algebra.

In [17] Singer and Thorpe show that any Einstein operator in dimension 4
has a normal form relative to all curvature tensors in that dimension. Their result
depends on the existence of a large number of critical points, in a special array,
which follows from the specific algebraic situation. In the case of Kahler operators
more standard techniques will guarantee the existence of sufficient numbers of
critical points. In particular, a generic set of all Kahler curvature tensors have
sectional curvature functions that are essentially Morse functions, which allows
determination of lower bounds on the number of distinct critical points [Theorem
(3.2)]. Algebraic and topological arguments are then applied to yield a normal
form theorem for Kihler operators in dimensions 4 and 6 under the assumption
of positive sectional curvature [Theorem (4.2)].

In [17], Singer and Thorpe conjecture that, if R is in an irreducible invariant \
subspace of the space 4 (n) of all curvature tensors in dimension n, then R has
a normal form relative to that subspace, since operators in irreducible subspaces
ought to be of a simpler type. They establish this for n = 4 and for all but
the space of Weyl tensors in higher dimensions.

A similar decomposition holds for Kahler operators [18]; results analogous
to Singer and Thorp’s are easily obtained in the Kahler case. In addition, many
nonalgebraic properties of the manifold M are reflected in the normal form of
R. As an example, the normal form of a Kahler homogeneous space of low dimension
is explicitly computed.

Remark. Using methods developed in this research, though not specifically
the normal form theorems, the author has recently been able to verify the Hopf
conjecture (nonnegative curvature implies nonnegative Euler characteristic) for
six-dimensional K#dhler manifolds [8].

The results obtained here comprise the major portion of the author’s doctoral
thesis at M.I.T. I would like to express my thanks to my advisor, I. M. Singer,
who guided the work on this paper. I also wish to thank M.LT. for the support
it provided.

1. ALGEBRAIC PRELIMINARIES

Definition 1.1. An algebraic curvature tensor R on a real inner product space
V of dimension n is a symmetric linear operator R on A’(V), where A®(V) is
given the naturally-induced inner product. The space of all such operators is denoted
by % (n).

Z (n) is naturally an inner product space with (R, S) = trace(RS). The induced
inner product on A% (V) is given by (v A w, x A y) = (v,x)(w,y) — (v,¥}{w,x).

Definition 1.2. R € % (n) is proper if R satisfies the first Bianchi identity.
That is, given an orthonormal basis {v,} of V, for

Ry, = (Rlv,av),v,nv), R,, + R, +R,;, =0.
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The Grassmann manifold G(2,n) of oriented 2-planes in V can be identified
with the space of unit-length decomposable bivectors v A w € A*(V) in an obvious
fashion. The sectional curvature function rgx: G(2,n) — R is then defined as
rg(P) = (RP,P). Reference to R will be omitted where no ambiguity should result.

Remark. It goes without saying that these notions correspond with their
geometric antecedents if V = T, (M,m).

Consider now the analogous situation for Kahler manifolds. Let V be a hermitian
complex vector space, of real dimension 2n, with complex structure automorphism
J: V— V. J may be considered as an element of %2(2n) by J(v A w) = Jv A Jw
as the inner product is hermitian.

Definition 1.3. R € H#(2n) is called a Kdahler curvature tensor if
JR = RJ = R. The space of all Kahler curvature operators in dimension 2n forms
a linear subspace 7" (n) of % (2n). Z (n) is then naturally an inner product space
by restriction of the inner product on % (2n).

Remark. Themajorreason,inthe context of this paper, for primarily considering
Kahler manifolds is that the condition simplifies the behavior of r somewhat.

Definition 1.4. An oriented 2-plane P € G(2,2n) is called holomorphic if

+ n—1

J(P) = P. {P | P is holomorphic} = CP*™' X Z, = +CP"™', P € =) C

accordingly as P = (i) v A Ju, v € P any unit vector. The holomorphic sectional
curvature of R € Z(n) is rgj.cpn-1. P is called antiholomorphic if (JP,P) = 0.

Recalling that A*(V) = 0(2n) under the usual identification v A w — T,
where (T,,,%,y) = (v A w, x A y), u(n) C 0(2n) is identified with

{(EeEN* (V) |JE= 8.

Note the sign convention here differs from that of [9]. Definition (1.3) then states
that R € %" (n) if and only if R(o(n)) C u(n). If {v,, Jv, = v,,, Uy, ..., V,,} = {v,}
is any hermitian orthonormal basis of V (such a basis will be called unitary),

the element I € A®*(V) corresponding to J €0 (2n) is given by I = Z U; AU,

i=1
One easily sees that (P,JP) = (P,I)? thus (P,I) = 1 if and only if P is holomorphic,
and (P,I) = 0 if and only if P is antiholomorphic.

For R € #(2n), and xAy € A*(V), define R,, € o(2n) = A*(V) by
(R,z,w) = (R(x A Yy), zA w). Then, following [17], define b: # (n) - % (2n) by
bR),z=R,_z+ R, x+ R,y;, p: Z(n) > Sym(V), the space of symmetric oper-
ators on V, by

1 1
{(p(R)v,w) = ? [trace (u— R, , w) — —2— trace (R(va Jw) o )],

1
and tr: #(n) > Rby tr (R) = —2~ trace (p (R)).
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An easy calculation verifies that, for proper operators, the definitions of p
and tr agree with those of [17].

U(n) acts on A®(V), hence on % (n), by restriction of the action of O(2n). b,
p, and tr above are all easily seen to be equivariant, thus the following subspaces

are U (n)-invariant:
F= ker(b)*' ; = ker(tr)" ; # "= ker(p) N ker(ty);
and

& = ker(p)* N ker(tr).

As in [17] or [10], it can be shown that these subspaces are irreducible and
mutually orthogonal, with ' (n) = Y@® #® 7 ® % # consists of multiples
of the operator R, € 7 (n) corresponding to the curvature tensor of CP" with
the Fubini-Study metric. That is, if (R(v, A vp), v, A0) =R, for o, B, v,
8 € {1, 1%, .., n*}, Rojiniix = L, Rosinyx = 1/2, Ry = Rojwyyx = 1/4, and all
other terms zero except those determined by these values and the symmetries of
R,.. The space #  is the space of Bochner-Weyl tensors, and R is Einstein if
R € #/® % = & which is equivalent to the Ricci tensor p(R) = A(Id). The
following proposition is an easy calculation along the lines of [17] and [18].

PROPOSITION 1.5.
GRes® ¥ ®F =2 if and only if R is proper.
(ii) R € % if and only if the holomorphic sectional curvature vanishes.

(il)) R € # if and only if p(R) = 0 and R is proper, if and only if R is
proper and R(I) = 0.

(iv) R € # @ % if and only if R is proper and R(I) = \L.
vy ReE W ® % if and only if R is proper and (R(I),I) = 0.
The following proposition can be found in [13].

PROPOSITION 1.6. Define. o: Sym(V) —» Z (n) by

o(Mwaw) =1/2n+2) [Torn w+va Tw +JTon Jw +Jvan JTw — 2 <Tv,Jw>J
+ 2 <dJu,w >JT + —=({tr(T)/2(n + 1))(vAn w+ Jva Jw— 2 < v,Jw > J)].

Then
o:Sym(V)—» # ® # and o = Proz )7

Note. J and JT are viewed in context as either operators on V or elements
of A%(V). Also, as above, the signs differ from [13] due to the conventions used.

2. GENERAL FORM OF A CRITICAL POINT

The purpose of this section is to determine algebraic conditions on R(P),
R € Z# (n), equivalent to P being a critical point of r;. In Section 4 these conditions
will be exploited to develop normal form theorems.
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In Section 1 the Grassmannian G = G(2,n) was considered as a submanifold
of A*(V). Previous attempts to analyze R in terms of the critical behavior of
rp viewed G in this context and applied Lagrange multipliers [17], [19]. However,
in dimensions greater than 4 the codimension of G in A?(V) is too large, and
the algebraic conditions become cumbersome. However, G sits naturally as a complex
hypersurface of CP"* [9, pp. 278-282]. In this context, using Lagrange multipliers,
the proper conditions fall out easily.

The embedding ¢: G — CP"' is defined as follows: for P=v A w, {v,w} an
oriented orthonormal basis of P, $(P) = [v + iw], where v + iw € V ®; C
and [ ] denotes the residue in CP*"'. The image of ¢ is evidently the variety

Z (z.)> = O where, for an orthonormal basis {v,} of V, z € V X Cis given by z2, 0, =2

a=1

Note: The usual Einstein summation conventions (with all indices lowered)
will hold throughout. For the bigraded indices af in A% (V) the sum will be taken
over all a < B.

r may now be described in terms of the homogeneous coordinates of CP*™'
restricted to G. If P=v A w = (x,0,) A (g ) =@ U, AUy, foranyz € V® C
such that [z] = $é(P), z = (a, + 1b,)V,, a,; = 2(a, by — agb,)/(z -2). Thus

r(P)=a,a,R.p5=4(a,b; —az b, )a,b;—a,b )R, ./(z- 2)°.

Extend r to all of CP*™' via the same formula, then lift to a function on
C” — {0}, denoting the lifting by # W = w '(G) is the smooth affine variety

2 22 = 0, where = is the canonical projection.

@

PROPOSITION 2.1. r has a critical point at P € G if and only if
dF(z) = 0 for any z € w ' ([2]).

Proof. rg has [2] as a critical point if and only if 7, has z as a critical
point, for any lift z. By Lagrange multipliers, z is critical if and only if

dr(z) = c,(a,da, — b, db,) + c,(b da, + a_, db,)
= ¢,(@,—b) + c,(b, a).
Let g(z) = 4(a,by —azb,)(a,b,—a,b,)R,,. Using the standard induced
inner product on V ® C, for (4,0) = a,da,, etc., (dg(z), (@,0)) =2g(z)

and (dg(2), (b,0)) = 0. Now, at a critical point of 7y, (dF(2), (a,0)) = ¢, |a|’;
however,

(dr(2), (a,0)) = (dg(2}/ (2 2)°, (a,0)) — 47 (2) < (&, D), (@0))/z % = 0;

thus ¢, = 0. Similarly, ¢, = 0.

Now, to obtain an explicit algebraic condition for P to be a critical point of
r, for z € =~ '(P) choose z = (a_,+ ib )v,,wherev=a, v, and w = b_u,,
as above. Then the equation d7 = 0 becomes

PROPOSITION 2.2. A plane P = v A w = (a,v,) A (bgvg) = azu, AU IS
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a critical point of rgp with critical value A = r(P) if and only if, for each
te {1, .., n},

aA= > bya,Rg,

B#ty<d

E / au a«,a Rmt'y& .

o #Ety<d

b,A

If R(P) is considered as a skew-symmetric operator on V, then by extension
to an operator on V® C, R (P) is skew-hermitian. From this point of view, Proposition
(2.2) becomes

COROLLARY 2.3. ry has a critical plane P with critical value A if and only
tf, for P considered as an (equivalence class of) element(s) of V ® C,

R(P)P = —iAP.

Using Lagrange multipliers in A% (V), J. Thorpe has shown that, for R € 4 (n),
P € G(2,n) is a critical point of r, if and only if R(P) = AP + S(P) for some
S € & [19]. In [17] this is specialized to RP = AP + B * P as the Hodge
star spans % * A* (V) > A**(V) is defined in general, given a unit vector
£ € A" (V), by (*xv,n) = (§,v A ). When V is complex, ¢ will always be chosen
tobe v, AU A . AU, A,

In the remainder of this section the special properties of the Kahler case will
be applied to yield more information on R(P) when P is a critical point of rj.
For n = 2, 3 results analogous to Singer and Thorpe’s are obtained. The first
result is well-known [1].

PROPOSITION 24. If R € % (n), any critical plane of rpcp» is a critical
plane of ry.

Not all critical planes are holomorphic, in fact the more interesting critical
planes are nonholomorphic. For a plane P € G — + CP"™', choose a unitary
basis {v,} of V so that P = av, A v, + by, A v,. b # 0 as P is nonholomorphic.
If¢ = (P + JP)/|P + JP|, then £ € u(n), |§ = 1, and, as an operator on V,
rankg (§) = 4 and det; (§ere)r) > 0. Furthermore, any such £ is evidently of
the form (P + JP)/|P + JP|, for some P € G — +CP"™?, as there is a unitary
basis of V so that £ = av, A v, + bv, A Uy, with ¢ > 0, b < 0 and

1
a®+ b*>=1. Setp=ﬁ(\/ av, + V=bu,,)A (Vav,, + V—-bv,).

The following proposition is straightforward.
PROPOSITION 2.5. Definen: (G — = CP*™') =,

U = {&£ € u(n)|rank, (&) = 4, det, (€ |xererr) > 0, and || = 1}
by q(P) = (P + JP)/|P + JP|. Then m is a submersion, and, for P = v A w,

M ' (MP)) = {(cos tv + sin tJv) A (cos tw + sin tJw)} | t € [0,2r]} = S™.
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The Kihler identities imply that, if @ € n ™' (n(P)), then r,(Q) = rp(P) for
R € Z (n). Thus rgg_.cpn-1 projects to rp: & — R. As r and v are both real-analytic,
so is 7. Furthermore, if P is a critical plane of ry, so is any @ € 7 ' (n(P)),
and P is a critical plane if and only if m(P) is a critical point of 7,. Thus r,
is not a Morse function if there are any nonholomorphic critical planes. The proper
analogue of nondegeneracy for these functions will be developed in the next section.

Definition 2.6. Two nonholomorphic planes P, @ will be called distinct if
n(P) # £ n(Q). Two holomorphic planes are distinct if P # + Q.

In low dimensions a critical plane of a Kahler curvature function r, is very
nearly an eigenvector of R, in fact, if R € % (2) and @ is a nonholomorphic
critical zero, then @ € ker(R). This also holds for R € #° C .Z°(3). Of primary
use here and in [8] is the following

THEOREM 2.7. Let R € % (n) be proper, let P be a holomorphic critical plane
of rp with critical value A, and let @ be a nonholomorphic critical plane with
critical value B. Then:

(1) If n = 2, R(P) = AP + A’ P, where A + A’ = (RP,I).
RQ = B(Q +JQ — (Q,1)1), and (RQ,I) = 0.

(2) If n = 3, there are holomorphic planes P’, P” such that P, P’, P” are mutually
orthogonal and R(P) = AP + AP’ + A"P", with A + A’ + A” = (R(P), I).
R(@) = B(Q + JQ — (QI)I,) + (RQI)— ~ @ A JQ/|Q A JQ|), where

Io=1++QAJQ/|Q A JQ|.
Note. Forn=3,—+*QAJQ/|Q rJQ| € + CP% If Q = av, A v,, + by, A U,
(as above), — * @ A JQ/|Q A JOQ| = vy A Uy,

Proof. The first sentence of part (1) follows from [17] and the definition of
I. Proposition (2.2) yields the second sentence in (1) after a short computation.
The first sentence in part (2) is obtained by diagonalizing the skew-hermitian
operator R (P). Corollary (2.3) implies that Pis an eigenvector; the equation follows.
The remainder follows by part (1) and Proposition (2.2).

COROLLARY 28. IfR € & C Z (n) with R(I) = \I, and if

(1) n=2,then R(P) =AP + (\ — A) = P. Also, if \ # 0, @ must be antiholomorphic
with @ + J@ an eigenvector of R, having eigenvalue 2B.

(2) n = 3, then
RQ=B@Q@+JQ —(QI)I,) — A (Q,I)(> QA JQ/|QA JQ|).

3. GENERIC NUMBERS OF CRITICAL POINTS
FOR KAHLER CURVATURE FUNCTIONS

In order to establish a normal form theorem for Kahler curvature tensors,
it is necessary: (1) to establish lower bounds on the number of distinct critical
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points of the sectional curvature r; and (2) to assure that the conditions on R
given by these various critical points determine R, which corresponds to the critical
points being in a general position. The first of these problems is amenable to
standard Morse-theoretic techniques, and will be resolved in this section. The second
is a more specialized construction, and will be handled in Section 4. Both problems
require generiticity assumptions, hence the normal form results obtained will only
hold for a generic class of such operators.

It has been noted that, for R € % (n), ri is not generally a Morse function.
There is, however, a natural analogue of nondegeneracy for this class of functions.

Definition 3.1. For R € % (n), rp will be called nondegenerate if all holomorphic
critical points of r, and all critical points of 7: ¢ — R are nondegenerate. For
brevity, R itself will also be called nondegenerate in this case.

Remark. It is evident that, if r is nondegenerate all critical circles ™" (n(Q)),
for @ a nonholomorphic critical plane, will be nondegenerate critical manifolds

[4].

THEOREM 3.2. The set of all R € % (n) such that rpis nondegenerate contains
an open dense subset of % (n).

Proof. It suffices to show that, for a given holomorphic plane P (respectively,
a given nonholomorphic plane @), there is an R’ € % (n) with P (resp., @) as
a nondegenerate critical point. For then, as ry, ;.- = rgp + rz,, and by the analyticity
of det((rg,.zr)xsx) = det[rges + €rg4], if R has P (resp., @) as a degenerate
critical point, 7, ., will have nonsingular hessian for almost all ¢ near 0. Thus
R may be arbitrarily closely approximated by an operator with P (resp., @) as
a nondegenerate critical point. By recursion, R can be approximated by a nondegen-
erate R”.

Let P = v, A v,,, by an appropriate choice of unitary basis. Then, if R is
given by R, ..;« = 1, all other terms O, r, has P as a nondegenerate critical
point. Similarly, if @ = av, A v, + bv, A v, with a # 0, choose R by
Rijkiie = 0, Ryyuyo = a/b, Rypyp = 1 — (a/b), Rizuiax = (@/0)°, Rijyoos = 1,
and all other terms 0 except those that must be nonzero to satisfy the Kahler
conditions. 7r will have m(§) as a nondegenerate critical point unless ¢ = 0,
in which case R can be chosen by R,,,, = 1, R, 412« = —1, all other terms zero.

Remark. Similarly, the critical values may be assumed to be distinct. Also,
note that a similar statement may be obtained for ¥* = (R € Z(n) | R is
proper}, as the examples are all proper. Similarly {R € % (n) | r,cp.-1 is a Morse
function} contains an open dense subset of 7 (n).

Using Theorem (3.2) lower bounds for the number of distinct critical points
of r may now easily be computed, for » nondegenerate. Consider r as a function
on the unoriented Grassmannian G = G(2,2n)/P = —P. As r(—P) = r(P) this
is well-defined. P € G will be considered as an element of G as well as G in _
the obvious way. Note that r is nondegenerate as a function on G if and only
if it is as a function on G.

Let r be nondegenerate, and let @ be a nonholomorphic critical point of r.
C = v ' (m(®)) is the critical circle of r containing Q. Let
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Jo={PEG|rP)=r@)},Jg={PE G|r(P)<r(@}).

By [4, Theorem 1], the critical groups with coefficient ring Z, (Z, coefficients
" are used throughout this section) are:

22, *—X'-:O, 1

H,(JgN V,d, N V)=H*_A(C)={
0, else

\

where V is a suitable neighborhood of C in G, and X is the index of the hessian
of F at Q.

For a holomorphic critical plane P, let J,, J, be defined as above. Then
Z,, *=N\

H (J,NnV,J, NV)=
0, else

if X\ -is the Morse index of r at P. By [16, Theorem 11.1},

> rank(H, (J,N V,J,; N V) = > rank(H,(G,Z,)),
k

P

where the sum is taken over all distinct critical points of r. The homology of
G is well-known; in the cases under consideration in this paper,

forn =2, 2 rank(H,(G(2,4),Z,)) = 6,
k

forn=38, > rank(H,(G(2,6),2,) =15

k

Now if n = 2, r|cp1 must have at least 2 critical points. If n = 3, rcp. must
have at least 3. This establishes the following

PROPOSITION 3.3. If R € % (n) is nondegenerate, then:

(@) for n = 2, rp must have at least 4 distinct critical planes, at least 2 of
which must be holomorphic,

(ii) for n = 3, rp, must have at least 9 distinct critical planes, at least 3 of
which must be holomorphic.

Remark. Without additional assumptions it is difficult to find lower bounds
on the number of distinct nonholomorphic critical planes, or indeed to ascertain
that any must exist. This can, however, be resolved for n = 2.

PROPOSITION 34. If R € % (2) is proper, and if tr(R) # O, then, for
a={Q € G2,4 — (= CPY) | (QR()) = 0}, Q is a nonholomorphic critical
plane of rp if and only if @ € a and @ is a critical point of ry,, .

Proof. Asin Theorem (2.7), (R(Q),I) = 0 if @ is critical, thus any such critical
points are in a. Let @ be given by @ = av, A v, + bv, A v,, as usual. If @
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is a critical point of r|,, then R(Q) = AQ + B » @ + T, for appropriate A and
B, where T is tangent to G at . T can then be written as

T = cv, AUy + Dy A v + E(@UiA Uy — DU A U,,) + F(Quie A Uy + BUA Uyy)

[17]. As R(@) € u(2) and (R(Q),I) =0, C =D, A = —B, and E = F. w(R(I))
spans the normal space to a at @, where = is the projection onto

T.(G(2,4),Q) = (£ E A*(V) | (QE) = 0,6 A @ =0).

As @ is a critical point of re, ™(R(I)) = AT, which, with the above expression
for T, implies T' = 0 as tr(R) # O.

Remark. From this a standard limiting argument will show that any proper
R € % (2) has at least 2 distinct nonholomorphic critical planes.

In this case where 7 is positive (resp., negative) stronger results may be obtained
on the number of distinct nonholomorphic critical planes. Note that, in the Kahler
case the assumption that r, > 0 is a nontrivial assumption on the behavior of
r, as a general R € % (n) cannot be altered to one with positive curvature by
adding an operator with constant curvature.

Actually, the necessary condition is somewhat weaker than strictly positive
curvature. Let .Z°(n)" = {R € #'(3), R proper | p(Ry) is positive-definite, for
all complex 2-dimensional subspaces W C V}. (# (n)” is defined analogously.)
Note that R € .Z°(2)" if and only if p(R) is positive-definite and R is proper.

Remark. The results obtained below relative to % (n)* may easily be modified
to apply to % (n)” as well.

PROPOSITION 3.5. IfR € % (2)", thenryhas at least 3 distinct nonholomorphic
critical planes, Q,. Moreover, 1 (Q;) are mutually orthogonal, if R is nondegenerate.

Proof. Let m(a) = {m(®) | @ € a}. The conditions of the Proposition imply
that n{a) = S® asn(a) = {€ € u(2) | (§R(I)) = 0, |§| = 1}, since p(R) is positive
definite, so (R(I),£) = O implies that det.(§) > 0. r,,,, being a quadratic on
the subspace generated by m(a), must have at least 3 critical points. That n(®Q,)
are orthonormal follows from Theorem (2.7).

In higher dimensions the picture is somewhat more complicated. Consider now
n = 3. For any nonholomorphic plane @, the 4-vector @ A J@ may be viewed
as a complex 2-dimensional subspace of V. Let G(2,@ A JQ) C G(2,2n) be the
space of planes in @ A J@. Let U C G(2,6) be defined by :

IfR e 73", A C G- (£CP>).

PROPOSITION 3.6. Let R € 2 (3)". Then U is a compact, real-analytic
locally-trivial fibration over CP?, where the projection w: W — CP? is defined by

Q) =—+*QrJQ/|Q A JQ|.

Remark. The fiber A, = {P € G2,Q r JQ) | (RP,I,) = 0} is clearly
diffeomorphic to a above, for B € % (2)".
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Proof. As f: G(2,6) — (£CP?) — R defined by f(Q) = (Q,R(I)). Satisfies
df # 0 on f7'(0) = U, A is analytic. It is evident that s is a submersion by
a direct calculation; the Proposition is easily completed by standard arguments.

Consider q(). w 0 ™" : n(A) — CP? is well-defined as v '(m(Q)) C = ' (w(Q)).
This is also a compact, analytic, locally-trivial fibration, with fiber diffeomorphic
to m(a) = S By an argument paralleling that of Theorem (3.2),

{R € 7 (3)" | rpis nondegenerate}

contains an open dense subset of .7 (3)™.

PROPOSITION 3.7. Let R € %2 (3)". Then, any critical point of Tryy 18 @
nonholomorphic critical plane of rp, and any nonholomorphic critical plane of
rg ison ¥U.

Proof. Theorem (2.7) yields the last clause. Now, let @ be a critical point
of ry. Then @ is a critical point of ry_, so @ is a critical point of r g, o, 0>
applying Proposition (3.4). T, (G(2,6), @) = T (G(2,Q A TQ),Q) + T.(U,Q) (sum
not direct) as the normal space to A at @ is in T, (G(2,Q A J@),Q), and thus
@ must be a critical point of r.

def __
The Z,-cohomology of n () /.__, = A will now yield lower bounds on the number

of distinct nonholomorphic critical planes of r,, R € % (3)". First, as n(¥) is
a 2-sphere bundle over CP? the Serre spectral sequence yields

z,, x=0,6
H*(q®),2,) = 2,X2Z,, « =24
0 x=1, 3, 5.

Then, by [12, p. 145],

O—aHo(ﬁ)eZZ—aHo(ﬂ)—) HA)-»0->H' A)— ...> H° W)
—>H6(§I)—>Zz—> H®)—> 0

is exact. If A, ank (H *(A)), this sequence and Poincaré duality implies that
h,-=h h, sh, =1, hy = h,, and 3 = 2h, — h,. Either h, = 1, h,
or hy, = h, = By an example in the next sectlon the first case holds thus

6—i)

E rank(H,(%,Z,)) = 9. The arguments of Proposition (3.3) then yield

i

PROPOSITION 3.8. If R € % (3)", and if ry, rpy are nondegenerate, then
r has at least 3 distinct holomorphic critical planes, and 9 distinct nonholomorphic
critical planes.

Remark. Asin Theorem (3.2), those R € %7 (3)" satisfying these nondegeneracy
conditions contain an open dense subset of 7 (3)".
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4. A NORMAL FORM THEOREM

The purpose of this section is to establish a normal form theorem for generic
R € #(n)", n =2, 3. The following example clearly illustrates the need to specialize
to Kahler operators in this paper: in the real case the existence of a normal
form is a strong assumption on the operator and would seem to be false for a
general R € #(n), n > 3.

EXAMPLE 4.1. There are R € % (4) that do not have normal forms relative
to % (4).

Define R, with respect to an orthonormal basis {v;} of R* by
Rigiza = —Ryzq = 3, Rigis = —Ropou = 2, Ry = —Ryspy = 1, all other terms
0. This R is in the invariant subspace of trace — 0 operators with zero Weyl
tensor [17], thus R = T A (Id), T = Ricci tensor of R, where T' A (Id) € 2 (n)
is defined by

TAaId)vanwy=Q/(n—-2))Tvrw+vaATw— 1/(n— 1))(trace(T))v A w)

for T € Sym(R*) [10], [17]. Note that each v, is an eigenvector of 7.

Claim. Ifv A w=Pisacritical plane, then v, w may be chosen to be eignevectors
of T.

Proof. Corollary (2.3) and the above decomposition of R imply that Tv, Tw
are in the span of {v,w}. By choosing v,w to diagonalize the restriction of T
to P the claim follows.

Thus {v; A v;} are the only critical planes of R. To see that this P does not
have a normal form, define 7 € 4 (4) with respect to the same basis by
Ko = Kz =1, Ky, = K,yps = —1, all other terms zero. Then R + AK is
proper for all A, and for A near O (as rp is nondegenerate) R + AK will have
only v; A v; as critical planes, with the same critical values.

A similar example has been established by S. Zoltek, using somewhat different
methods [20].

THEOREM 4.2. Ifn = 2, 3, then {R € Z (n)" | R has a normal form relative
to Z°(n)} contains an open dense subset of % (n)".

Remark. By an elementary but complicated argument this result may be
extended considerably in dimension 4. In fact, any R€ % (2) has a normal form
relative to 7 (2) [7]. Note also that these normal forms may not be unique (cf.
Lemma (4.4)).

Proof. For any P € G(2,2n), let M(P): Z(n) - V ® LC be defined by
M(PYR) = R(P)(P) as in Corollary (2.3). Note that M(P)(R) = —iAP if and
only if P is a critical plane of r, with critical value A. Define a linear map
M@P,, ..., P,): ¥ (n) > (V®C)* by

M@, ..., P)R) = M(P)R), ..., M(P,)R)).

If P,, ..., P, is a set of distinct critical planes of R, and if R’ has the same
critical planes and the same critical values, then R — R’ € ker(M(P,, ..., P,)).
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Thus, to show that {(P,A;)},_, .
that M(P,, ..., P,) .. is injective.

» 1s a normal form for R, it suffices to show

The proof of this theorem is a “modeling”. A normal form for an example
is carried over to almost all other R € % (n)*. The theorem will only be verified
in the case n = 3, the case n = 2 is similar except at one point, where the
proper path will be outlined.

LEMMA 4.3. There is an R € % (3)" with precisely 3 distinct holomorphic,
9 distinct nonholomorphic critical planes, achieving the lower bounds in Section
3. Furthermore, R is nondegenerate, and R has a normal form. In fact, R has
2 distinct types of normal form.

Proof. First let S = o(T) (cf. Section 1), where T is positive-definite with
3 distinct eigenvalues A,, A,, A\;. These eigenvalues will be picked to satisfy
generiticity conditions below. Assume for definiteness that \; + A, + A; = 3.
If T = Id, then S, = AR, (section 1), and for this operator the space ¥ (section 3) is
I* N G(2,6). Thus, if each )\, is chosen close enough to 1, A for S will be very
near I* N G. Choose \; so that, if v A w € U, |(v,Jw)| < (1/3).

Let v A w be a critical point of rg, with critical value A. Choose v, w in
v A w so that (Tv,w) = 0 by diagonalizing the restriction of T to v A w. Similarly
to Example (4.1), by Corollary (2.3) and Proposition (1.6) we obtain

Aw=8SvArwv = (1/10)[(Tv,v) — 8/2))w + Tw — 3 (v,Jw) JTv
— (8 (Tv,Jw) + (3/2){v, Jw))Jv],
Av=Swarvyw = (1/12)[(Tw, w) — (3/2)) v + Tv + 3 (v, Jw) JTw
+ (3 (Tv,Jw) + (3/2)(v, Jw))Jw]
Solving for Tv and Tw, as 1 — 9 (v,Jw)> # 0, Tv, Tw € span{v,Jv,w,Jw}. An
eigenvector of the restriction of T to this span is thus an eigenvector of T, hence,

if {v,} is a unitary basis of V consisting of eigenvectors of T with v;, v, the
\;-eigenvectors,

def
VAW E Az(Span{v;, Uinr Ujy Upxe = Az(i:j)

for some i, j. v A w is clearly a critical point of T'Sioanin" If v A w is holomorphic,
it is clear that v = v;, w = v,,. If w # Jv, either

VA w E span{v; A U;, U; A Ujs, UjA Uy, Upe A Ujy )}

orm(v A w) = a,;v; A v, + byv; A vy, with

@ (Siwiix T Sipnyx) + by Sinze + Sjwin) = 0,
determining a,;, b; up to sign. For generic choices of the \;, the critical points
U; A Ui, and any @ so that n(@,) = a;, A v, + b,v;A v, are nondegenerate,
and m(span{v; A v, ..., U;x A U} N G) is a nondegenerate critical circle of 7.
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Now perturb S to R by Rw Sy t €5 Rywge = Syxyx — €4 for & small.
For generic choices of the ¢, the points v; A v;, v; A U;, will be nondegenerate
critical points of r;. To show R is nondegenerate it now suffices to prove there
are no other critical planes. By continuity, the only additional critical planes @
would be such that m(@) is in the critical circle of 7g, as @ must necessarily
lie within a tubular neighborhood of this circle for ¢; sufficiently small, but 7
restricted to a fiber of this neighborhood has critical point only at the intersection
with the circle. However, the only critical points that 7, has on this circle are

M(v; A v;) and n(v; A v;4). Note that these critical planes achieve the bounds claimed.

To show that, for generic choices of \;, this R has a normal form is not difficult.
Consider first the critical points {v; A U, U; A U, U; A Ui} o105 If

K € ker(M (v, , ,3))

for all a, B, and K proper, the first Bianchi identity and Proposition (2.2) easily
yield K = 0. Thus these critical planes and their associated critical values constitute
a normal form for R. Secondly, consider the 9 distinct nonholomorphic planes
{Qy, v: A vy, U A vy ). ker(M(Q,, v; A v;, U A U, ) ) # O only if

Q301305 — byza,30,,=0.

But a generic choice of the A;’s will prevent this.

Now assume that R satisfies the hypotheses of the theorem but does not have
a normal form. It suffices to find R’ arbitrarily near R with a normal form. By
Theorem (3.2), and remarks following that result, we may assume that rg, r Rlgpn=15
and 7g . are each nondegenerate. Note that {R | rp degenerate} contains, as
an open dense subset, {R | r has only one degenerate critical point, with r,,
of nullity 1}. The same remark applies to r,¢cpn-1, 7|, @, - These claims are established
similarly to Theorem (3.2). Let aR°® be a multiple of the operator R° given in
Lemma (4.3), where a > 0 is large enough so that r,z. > rg, which is possible
as rp. > 0. By perturbing R if need be, assume that the path

t— (1 —t)aR° + tR = R,

meets {R | rp (etc.) degenerate} in a finite number of points ¢, j = 1, ..., 4
for which r, has only one degenerate critical point at which rg,, and whlchever
of (r,cpn-1)xx OF (7 o)« applies have nullity one.

LEMMA 4.4. If t, € (0,1) is such that r, is nondegenerate, and if for some
neighborhood (t, — e, t,) R, has a normal form for all but finitely many
t € (t, — ¢, t,) of the form (P,, A,), P, holomorphic for i < a, nonholomorphic
for i = a, then there is a 8 > 0 so that R, has a normal form of the same type
for all but finitely many t € (t, — &, t, + ), with the curves P, real-analytic.

Proof. Let i < a. If P, = P, , as P,, is holomorphic, so is P, for ¢ near
ty, as ry, does not change rank. Let U C G be a real-analytic coordinate neighbor-
hood of P,,, and let : T*(U) — R® be an analytic coordinate trivialization of
T* (U), that is, 7 is the projection onto the fiber. Define ¢: U X I — R® by

&(P,t) = v(dr,(P)), where r, = rg,. By definition of the hessian,
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d(¢|Ux:0)(Pio,to) = (rgo)** (Pio)'

Note that ¢(P,,, ¢,) = 0. The implicit function theorem then implies that there
is a neighborhood V of ¢, and ¢t —» P,, t € V, so that ¢(P,, t) = 0. As ¢ is
real-analytic, so is P, [5]. &(P,,?) = 0 if and only if P, is a critical plane. Note
that P, is holomorphic. A similar argument applies to 7 if P, is nonholomorphic,
and to r,¢cpn-1 (though this necessarily yields the same curve P,).

The normal form statement follows by the analyticity in ¢ of the condition
ker(M ({P;}),,) = 0.

LEMMA 4.5. If there is a t, with r, degenerate, with degenerate critical point
P,,, and if for all but finitely many t € (t, — &, t,) (resp., t € (4, t, + €)),
R, has a normal form {(P,,, A,,)}, then there is an analytic function t = t(s)
(t(0) = t,), s in a neighborhood V of 0 in R, and a regular, analytic curve P;,
so that {(P;, A.), P> Aus) | B # t} is a normal form for all but finitely
many s € V.

Proof. Assume that P,, is holomorphic, with r,, of nullity one. Let
v: R = Z(3) be defined by v(¢) = (1 — ¢, + t?)aR° + (t, — t*) R, reparametriz-
ing R,, t < t, (resp., for the t > t, case, y(t) = (1 — t, — t*)aR° + (¢, — t*)R).
Let U X V C G X Ibe an analytic product neighborhood of (P,,, {,) with coordinate
functions {x,,¢}, and let £ € T*(G X I, (P,,t,)) be chosen transverse to
(Image (r, . (P;,)) + {Adt}, & not orthogonal to dt. Let s: U X V — R be analytic
and such that ds(P,,,t,) = & Using the coordinate system {x,,s} to trivialize
UX V, let . T*(U X V) — R® be the analytic coordinate trivialization of
T*(U X V) (the projection onto the fiber) given by this coordinate system. Define
¢: UX V— R®by

& (P, t) = w (v(dr(P, 1)),
where r(P,t) = Tye—ty) (P) and =, is the linear projection =, (v(ds)) = 0, w (v(dx;))
= 7(dx;). By the choice of a above, the implicit function theorem applies to this

function, yielding the required analytic curves P,. The nonholomorphic case is
similar. The remainder of this lemma proceeds as in the previous lemma.

These two lemmas imply that, for the homotopy H: G X I — R given by
H(P,t) = r/(P), the critical points of H;,, form real-analytic smooth arcs in
G X I (called critical curves). Furthermore, the endpoints of these curves can only
occur on 3(G X I). If those curves beginning at the critical points (P;, 0) of H o,
= r.g- also meet G X {1}, the analyticity in ¢ of the condition

ker(M ({Py})»s) = 0

will imply that, for all but finitely many ¢ € I, R, will have a normal form
of either of the types described in Lemma (4.3), by pushing the normal form
of aR° along these critical curves.

As r, = rg. is nondegenerate and has a minimal number of critical points
for such functions, that the critical curves meet G X {1} follows from

LEMMA 4.6. Let M be a compact Riemannian manifold of dimension greater
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than or equal to 3. Let H:M X I — R be a smooth homotopy with H, , @
Morse function except for finitely many t; # 0, 1 for which H \mx sy has only one
degenerate critical point of nullity one. Assume moreover that the critical curves
of H are smooth, regular curves. If there is a critical curve v of H beginning
at (x,0) such that v does not meet M X {1}, then there is a Morse function
&: M — R with fewer critical points than H . o, -

Proof. As dim(M) = 3, perturb H so that, if m: M X I — M is the product
projection, w(y;) are disjoint smooth curves in M without double points, where
{v;} are the critical curves of H. Let v be as stated, and let V be a tubular
neighborhood of w(y) missing the other m(y;). Note that V is contractible, and
contains two critical points of H, . There is a f, < 1 such that
v C M X [0, t,), so there is a smooth function ¢ = ¢(x), ¢: M — [0,{,] with

(1) by = 0,
(ii) M’ = graph(¢) C M X I is contained in (M — V) X {0} U V X [0, &1,
and (iii) the interior of M’ U M X {0} contains ~.

Construct a vector field X in M using M’. Denote by ~ the duality between
1-forms and vector fields on M; that is, X(Y) = (X,Y) for X, Y vector fields.:
Give M X I the product metric. Define X by X(m) = w,(dH(mn, t(m)). Note that
X v is nowhere zero, as no critical points of H ., are on M’ by construction.
It is now elementary to show that X is closed, hence X is a gradient field as
X is exact, being cohomologous to d(H im0y )- Thus X = dg. g has critical points
only at zeros of X, that is, at all critical points of H , , except the two endpoints
of v. g is still a Morse function as the behavior of g near a critical point not
in V is the same as that of H ;-

Thislemma may be applied directly to rcp.-1 and r o in the case n = 3, completing
the proof of the theorem in that case. In the case n = 2 the statement of the
lemma must be modified to accomodate the situation where H,,,,,, is not Morse,
but has only nondegenerate critical manifolds [4], as dim (CP") = 2. This modifica-
tion is easily accomplished, and the lemma may then be applied to r itself.

The following corollary is similarly verified:

COROLLARY 4.7. Forn = 2, 3, {R € Z (n)" the critical points of ry span
A?(V)} contains an open dense subset of 7 (n)".

Remark. By suitable choice of model, this corollary may be extended to .7 (n)",
n > 3, and to % (n).

5. SPECIAL CASES AND APPLICATIONS

As mentioned in the Introduction, many special properties of the manifold
M, or of the algebraic operator R, can be characterized in terms of the critical
behavior of the sectional curvature. This section describes the critical behavior
of rp if R is in an invariant subspace of 7" (n) (except for the subspace #” when
n = 3) and derives special normal forms for these subspaces if n = 2 or 3. Also,
the critical behavior of the sectional curvature of certain homogeneous spaces
is described, again yielding normal forms of a special type for the Kahler case
in low dimensions.
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This first proposition follows easily from Corollary (2.3) and the characterization
of #7 ® % in Proposition (1.6).

PROPOSITION 5.1. IfR € 4 ® & C % (n), ry has critical points v; A vy,
V; A Uy, and v; A Uy, for all v;, v, in some unitary basis {v,} of V. If n = 2
or 3, these critical points and their critical values are a normal form for R relative

to %7 (n).

ForReE 2 ® ¥ =& C % (2), [17] shows that R has a normal form relative
to Z#Z(4). The normal form is of a quite special type, following from the fact that
rg(x P) = rgx(P). Thus, in the Kahler case, for R € & if P = v; A v, is critical,
then so is P = v, A U,,, with the same critical values. Moreover, v, A v, and
U, A Uy are also critical, for an appropriate choice of {v,}. These points clearly
yield a normal form. There is also a necessary and sufficient condition for
R € % (2) to be Einstein that depends only on the configuration of the holomorphic
critical planes themselves, without reference to the critical values.

THEOREM 5.2. Let R € % (2) be proper.

(i) If R has a normal form {(P;, A;)} where (P,,P,) are holomorphic, with
(P,,P,) =0and A, = A,, then R € & Conversely, if R € &, such a normal
form exists.

(i) R is Einstein if and only if there are holomorphic critical planes P,, P,,
and P, such that (P,, P,) =0, (P,, P;) = 1/2 = (P,, P,).

Proof. (i) is straightforward. For (ii), first assume that P,, P,, P, exist as
above. A unitary basis may be chosen so that P, = v, A v, Py, = U, A Uyy,
and P, = 1/2 (v, + v,) A (U« + Vy,). As P, P, are critical, R,,, = 0 for
a # i*. Proposition (2.2) applied to P; then yields R, ;.4 = Rj54204 s0 that
R € & by (i). To show the converse, choose {v_} so that P, = v, A v, P, = U, A Uy,

U; A U, and v; A U,, are all critical. Then P, = ; (v; + V) A (V4 + U, will

be critical.

If M = G/U is a reductive homogeneous space with a G-invariant metric,
[14] gives an explicit formulation for the Riemannian curvature tensor R of M
in terms of the Lie algebra ; of G. In the realm of pointwise geometry—that
is, the study of algebraic curvature tensors—there is a general problem yet to
be fully answered. As the metric on M is invariant, the curvature tensor lies
in a single orbit of & (n) under 0(n). A natural question to ask is which orbits
in % (n) are the curvature tensors of some homogeneous space. The next result
gives a partial characterization of those orbits in % (n) that can be the curvature
of a homogeneous space M = G/ U, where G is compact and rank (U) = rank (G).
The characterization is in terms of the critical behavior of the sectional curvature.
It should be noted that these are only necessary conditions.

Recall [3, 6] that, under these hypotheses G may be assumed to be semi-simple.
# can be decomposed by ¢ = « + . If A is the set of positive roots of G, then

=1+ 2 #«> Where each ¢, = span {X_, Y_} are the (real) root spaces of G,

aEA

and ¢ is a maximal abelian subalgebra. There is a subset A’ C A such that
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"—-“/'i'zya;

aEA’

A’are called the roots of . A, = A — A’ is the set of complementary roots;

e = 2 Far

aEA,

Any invariant metric on M will lift to an AdU-invsriant positive-definite inner
product on », with (X, Y,) =0and (¢, 2,) = 0 for o, B € A,. These properties
depend on the fact that rank(U) = rank(G).

THEOREM 5.3. Let M = G/ U be a compact homogeneous space with invariant
metric, where G is compact and rank(U) = rank(G). Let R be the curvature tensor
of M at eU.

(1) For each complementary root «, the plane X, A Y, /|X,|? is a critical plane
of rg. Thus there are dim (M)/2 orthonormal critical planes. In each case the
critical value is positive.

(2) R maps span {X, A Yy} into itself, and both of span (X, AY,} and
span{Y AY}mtospan{X ANXy+ Y, Y]

(3) Any critical point of the restriction of ry to

(a) span {X, A X;} N G(2,n)
(b) span {Y, A Y} N G(2,n) or
(c) span {X_ A Y} N G(2,n),

is critical point of rg.

Remark. The spaces (a), (b), and (c) are mutually orthogonal. Also, note that
it is not claimed that all critical planes are of this form.

Proof. Using [14], it is easy to see that the operators B: » X » — » and
L: »n X » — = defined there satisfy B(X_,,Y,) = 0 = B(X_,X ) = B(Y_,Y,),
and similarly with L. By Nomizu’s expression for R in terms of B and L, (1)
follows. (2) may be verified in a similar fashion, and (3) follows from (2) and
Proposition (2.2).

If now M is assumed to have an invariant complex structure, it is well-known
[2] that M supports a Kahler metric (in fact, there are families of such metrics).
Note that, if M is a compact, simply-connected, Kahler homogeneous space, it
is necessarily of this type. It is easily seen that the complex structure tensor
J, lifted to an operator on ., leaves each g, invariant for « € A.. Moreover,
JX, =Y_,JY, = —X_ (by choice of a set of positive roots).

The Kihler condition will imply that (X, ,.;,X..s) = (X,,X,) + (X, X;)
whenever a, B and a + B are complimentary roots. Thisimplies a slight strengthening
of Theorem (5.3); span {X, A Y_} is mapped into itself by R, as is sp:n {X, A Y.}

a afp
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Using this, we may obtain normal form theorems in low dimensions.

THEOREM 5.4. Ifn = 2 or 3, the curvature tensor R of M = G/ U a compact,
simply-connected Kdhler homogeneous space has a normal form relative to % (n).

Proof. (for n = 3). Let v; = X, /|X,| for some ordering {a;} of A,, i = 1,
2, 3. Then v, = Y, /|Y,|. Choose P; = v; A v, and @, ..., Q¢ so that @,,
Q,, and @, are critical points of the restriction of rj to

s?gn {via v} N G(2,6)

and Q,, @;, @, are critical points of the restriction of rj to

sli)zn {v:a v} N G(2,6).

As each of these intersections are 2-spheres, and r, restricted to each is quadratic,
the @, may be chosen to be orthonormal. By Theorem (5.3) and the above discussion,
each of the P, and @, are critical points of r,. Note that @; # v, A y; unless
a = 2B, B = 2a are not complementary roots. A direct calculation shows that
these points and their critical values form a normal form.

Remark. Againusing classical decomposition theorems for the curvature tensor,
it is easy to show that, if M C CP"*' is a complex hypersurface, its curvature
tensor has a normal form relative to %7 (n) consisting of orthonormal planes.
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