THE LOGARITHMIC DERIVATIVE
OF MULTIVALENT FUNCTIONS

W. K. Hayman

1. INTRODUCTION

Suppose that
(1.1) f(e)=a,+a,z+ ...

is mean p — valent in A:|z| <1, where 0 < p <. This means [3, p. 23], that
the area of the image of A by f(z) covers any disk |w| < R at most p times on
the average, with due count of multiplicity. In this paper we investigate the
restriction which this assumption places on the mean square of the logarithmic
derivative f’ (z)/f(2). If p is a positive integer then f(z) is said to be p-valent
if f(z) assumes no value more than p times. Our counter examples will be p-valent
in this case and will show that our estimates are fairly sharp in the narrower
class also.

Since f’ (2) / f (z) = o, wherever f (z) has a zero, we need to exclude neighbourhoods
of zeros from our integrals. We deal with this difficulty as follows. Suppose that
L1 Lo ... L, are the zeros of f(z), so that [3, p. 25], ¢ = p. Set

? -,
(1.2) I (2) = I'[ —1—22—2—;

We write, for 0 =3<1,0<r<1

2

' (2)
f(2)

dxdy,

(1.3) A(r, f,3) = S S

where the integral is taken over all those points of |z| <r, where |II(2)] > 37
If 8 = 0, so that we integrate over the whole disk |z| <r, we write 4 (r,f).

We shall denote by K any absolute constant not necessarily the same each
time, and by K,, K,... particular constants. Constants depending on p, ¢, etc.,
will be denoted by K (p), K(p,q) etc. It is of interest that our basic inequality
requires no normalisation.

THEOREM 1. If f(2) is mean p-valent in A, then with the above notation

1 1
(1.4) A(r,f,8)<21rp{4plog1 +q10g—é—+(p+1)K},0<r<1.

-r
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More generally, for0 = r, <r, <1,

1

(1.5) A(ry,f,8) —A(r,f,8) < 2mp {p log
-r

—-r 1
+ 4plog 1+qlog—8—+(p+1)K}.
—r,
We now set
1 2 ff (reie) 2
(1.6) L f =— _—
2 f' 1N o XO )

and shall deduce from Theorem 1
THEOREM 2. If fis mean p-valent in A, then

*’!.

— 1-r f
1.7) lim——1I, (r, ——) < p?,
r—>11 1 f
0
g 1—-r
i .
(1.8) lim1-—-n1L r,7 < 4p°.
r—l

If p is an integer and f(z) has p zeros in A, we can replace the bound p®

1
by E—pz in (1.7) and 4p* by 2p® in (1.8).

Simple examples will show that the inequalities (1.4), (1.8) are essentially best
possible. In (1.5) at any rate the coefficient of the term log {1/1 — r;} cannot
be reduced. We shall prove

THEOREM 3. Given a positive number p, there exists f,(z), mean p-valent
and nonvanishing in A and p-valent if p is an integer such that, for any € > 0,
there are sequences r,, r, tending to one, with (1 —r,)/(1 — r;) < K (€), while

1
(1.9) A, f)—Ar, f,)> 0 —€) 2mp®log— —.
— I
Thus
- 1—-r f’ ”
(1.10) lim——L\|r,— |>Kp~.
r—»ll 1 f
0
gl—r

1.1. The main difficulties in the proof of Theorem 1 arise from our aim to
obtain results independent of the position of the zeros or any other normalisation,
and also to obtain the sharp coefficient 2wp? of log 1/(1 — r,) in (1.5) and hence
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the bound p? in (1.7) (which is probably still not sharp). The following argument
suggested by the referee, Prof. P. L. Duren, shows what can be achieved by
elementary methods. ‘

Suppose that
f(2)=a,+ a;z+ ..

is univalent and f(z) # 0 in A. Let m = |1nf If(z)|, M= sup | ()|, let D(r) be
the image of |z| < r by f(2) and write f(z) = pe’®. Then

dpd
S S | £/ (2)/ f(2)|]” dxdy = S S B.__Ez_i
=l =r D (r)

Mdp / M
2w — =2 log —.
m P m

A(r,f)

IA

Classical inequalities yield [3, p. 95]

1—-r\? 1+r\
m=|g,||—— ] , M= |a,| ,,
14r 1—-r

1+r 1
so that we obtain A (r,f) = 8 wlog (1 )s 2w {4log1 + 4log2} in this
-r -r

case, which corresponds to (1.4).

Next, since I, (r, f) increases with r, we deduce that, for 0 <r, <r, <1
[’ 2 "2 ! 2  A(r,
I, (rl, — == I, r,f— rdr = — 5 (2.7
f re =7y Jn f re—ry 2w

s
og +log27¢.
rs—r 1-r, g

IA

) -r
If we define r, by r; =lo ] , we obtain, after some calculations
P ~r3
f’ 4 1 1
L lr,—])< log + log " log + 20
f 1—-r 1-r, 1-r,
which yields
- (1-r)
}glg—'T-Iz (rnf'/f)= 4.
log
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However (1.7) shows that the left hand side is at most 1 in this case. Similarly
if f(z) is univalent in A and f(0) = 0, then an elementary method yields

1
A(r,f) <4wlog +0(1)
1—r
and hence
— —-r
lim——— L f'//) = 2
log

1—-r

while Theorem 2, which is based on an improved version of (1.5), shows that
the bound 2 may be replaced by 1/2 in this case.

2. SIMPLE EXAMPLES

We give some examples to test the inequalities (1.4) and (1.8). Consider first

f()_(1+z)2"
2) = — ) -

This function maps |z| < 1 onto the (possibly self-overlapping) sector |arg z| < p .
Thus f(z) is a mean p-valent for any positive p and p-valent if p is an integer.
Also

f'(2  4p
flz) 1-22
We deduce that for z = re‘®
fl(z) 2 16p2
f(2) T 1-—2r%cos20 +rt’
Thus
fl 1 27 fl(reie) 2
L{r=}=—\ |[——
! 27 J, f(re”)
16p% 1 (*" (1-r*)doe 16p?  4p°®
= i 5 r=——-= +0(1).
1—-r"2m })o 1—=2r°cos20 +r 1-r 1-r

Also,
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r f' , (7wt ,. 1+7?
21) A(rn,f)=2w \ L\{t— |tdt=32mp T =8mp~log =
0 f 0ol —1 1-r

Thus (1.8) is sharp and so is the inequality (1.4) apart from a bounded term.
Similarly, if p is a positive integer, f(z) = 2” (1 — 2)”?" is p-valent in A and

'’ 2 2
satisfies I, (r, L) = P + 0(Q).
f 1-r

Thus the sharpened version of (1.8) for functions with p zeros is also best
possible.

Next we show that for small p the term Kp is necessary in (1.4). To see this,
suppose that 0 < @ < 1/2, and set

w=[f(2)=1+ az.

Then f(z) maps A onto the disk |w — 1| < @, which has area wa®. Hence if
R < 1/2, the image of f(z) does not meet |w| < R, while if R > 1/2, the area of
intersection of this image with |w| < R is, at most ma® = wR* a*/R® < 4a®* wR".
Thus f(2) is mean p-valent with p = 4a®. Again

f' (2
f(2)

ThusforO<r<1

wrep
A(r,f,8) = T 0<r<l.

Thus if r is fixed and p tends to zero, (1.4) shows the correct order of magnitude
p for A (r, f, 3).

Finally, consider f (2) = z”, where p is a positive integer. Then f(z) is p-valent

ff( p

and = —,

flz 2
Thus for § < r

2ar r 2
r
A(r, f,d) = g do S p—2tdt=2ﬂp210g§.

o) 3

Hence (1.4) displays the right order of magnitude as 8 — 0 for fixed p and r,
at least when q is a positive integer and p = q.
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The example of Theorem 3 lies considerably deeper and we defer it to the
end of the paper.

3. PROOF OF THEOREM 1

3.1. Preliminaryresults. In order to prove Theorem 1, we need some inequalities
concerning the growth of functions f(z) in the unit disk in terms of the average
number of roots of the equation f(z) = w for varying w. We suppose that f(z),
given by (1.1), is regular in A and has ¢ zeros there, where ¢ is a positive integer.
We define I1(z) by (1.2) and set

3.1) fo (2) = f(2)/11 (2).

Let n (w) be the number of roots of the equation f(z) = w in A and define

1 24 '
(3.2) p(R)=— S n(Re*)déo.
27
Then we have

THEOREM 4. With the above notation, suppose that |z,| <1, |z,| <1 and
set

29 — 2y
r =
1-2z,2,
Then
2 dR 1+r
(3.3) < 2log + K,,
r, BD(R) 1—-r

where R, = |f,(z,)|, R, = K, 7| f,(2,)|, and we assume R, < R,.

We shall deduce Theorem 4 from a similar result of Jenkins and Oikawa [4],
who used a somewhat different normalisation.They proved

LEMMA 1. The inequality (3.3) holds with K, = w° and
R, =sup |f(2)|, R,= sup inf |f(2)}].
|zl =r O=<t<l |z|=¢t

The inequality is stated by the authors with a slightly larger value of R, but
the proof goes through when R, has the form given above. To deduce Theorem
4 from Lemma 1, we need another result.

LEMMA 2. Ifz € A, then

|fo(2)| = (12e)? sup [f(D)]

[Ll<@/3)2+]|z])
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We note that by Cartan’s Lemma [2] we have

IIlz-¢, =7

v=1

outside a set of disks the sum of whose radii is at most 2eA. We choose
h= (8¢,

and deduce that there exists r,, such that 0 < r, < 1/2, and

ﬁ:]n

|z2—¢,1=8e) 7% |z| =r,.
1

Thus

q

[TI(2)} = II

v=1

— =1 +7r)"7B8e) 7= (12e) "% |z| =1,.

v

In view of the invariance of IT(z) under bilinear self maps of A, we deduce that
for any 2z, in A, there exists r,, such that 0 < r, < 1/2 and

-z
ITI (z)| = (12¢) 79, if — 1 =r,.
—Z,z
Also if
z— 2
=r,
1-%,z2 !
we have
ry + |z |2,| +1/2
2| < — < < — (24 |z]).
1+ 2| 1 3
1+—'|21|
2
Thus
(12e)77 | fo ()| = (12¢)77 max | fo (2)]

(z—21)/(1—Z 12)|=r;

< max |f(z)] =  max | £(2)].
z—21)/(1-Z12)|=r 1z]=(1/3)z+ |z}

This proves Lemma 2.
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We can now prove Theorem 4. We assume first z, = 0. Then, since f,(z) # 0
in |z]| <[, and |IT(2)| < 1, we deduce

Iizr,ljtlf(z)l < Iipftlfo ()| <|fo(0)], 0<et<l.
Thus we may choose R, = | f, (0)| in Lemma 1.

1
We next suppose given r, such that 0 <r <1, choose r, = E 2 + r),

and apply Lemma 1, with r, instead of r,

R, = |zS|uP [£(®)].

=r

Then in view of Lemma 2, we have for |z| =r

|fo(2)] < (12€)* max | f(2)| = (12€)*R,.

Thus we may apply (3.3) with r;, instead of r, R, = | f,(0)| and R, = (12¢) 77 | f, (2)].
This gives

B2 dR 1+r, ) 3(1+r) )
< 2log +w°=2log——+=
r, Bp(R) 1—-r, 1-r
1+r R
< 2log +m° + log 36.

1-r

This proves Theorem 4, with K, = w* + log 36, and K, = 12e, when z, = 0.

In the general case we use a bilinear transformation z = /Z (Z) of A onto itself
such that 7 (0) = z,. We set

F(z) =f {7 (2))}

and apply the above argument to F(z). Suppose that Z(Z,) = z, and define F,(z)
in terms of F'(z) as f,(z) was defined in terms of f(z). Thus

|F, (Z,)| = F(Z,)/11 %L

° ZI_ 2/ 1—2:22 ’

where Z (L) = {,. Also
zZ,— /(Z) -2 (L =L
A I e L Y T S D
1-17'2, 1-27() 72 (Z,) 1-2,8

Hence |F,(Z,)| = f,(2,). Also p (R) is clearly the same for f(z) and F(z). Thus
we may apply Theorem 4 with 0, Z,, instead of z,, z,,
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| o (22)| = | Fo(Zo)|, | fo(z)| = | Fo O}, r = |Z,| =

1-2,z,

This completes the proof of Theorem 4.
3.2. An area estimate. We need one other result. This is

LEMMA 3. Suppose that f(z) is a mean p-valent in a domain D, and let
D (R) be defined by (3.2) where n(w) denotes the number of roots of the equation
f(2) =w in D. Then if p,, p, denote the infimum and supremum of |f(z)| in D,
we have

2 P2

f'(2)
f(2)

d , 1
p(c)—gEs 2mp {log-p——+2—}.

(3.4) A= S
D P

dxdy = 27 S

Pl

We divide D into subdomains, D,, such that log f(z) is univalent in each D,
by suitable cuts in D, (see e.g. [3, p. 20]). Then, in each D,, s = g (2) = log f(2)
is well defined and maps D, onto a set in the s plane, whose area is A, say.
Further

2

/() dxdy

f(2)

dxdy = > S

DIJ

= Z S |g’ (2)|* dxdy = 2 A,

v

say. Thus we need to estimate the areas A,.

Let n (w) be the number of roots in D of the equation f(z) = w, and write

1 (* .
P(R)=-2-—S n(Re’*)do.

T Jo

Then [3, p. 19] 2w p(R) is the total variation of arg f(z) on all the level curves
|f(z)] = R in D,, and so the total length of all the intersections with the line
o = log R of all the images of the domains D, by s = g(z). Thus

P2 P2

dR
PR)do=2xw X p(R)E—.

Pl

A=21‘rX

P1

This proves the first identity in (3.4).

We now use the fact that f(z) is mean p-valent. This can be written as
[3, pp. 22, 23]

R
S pp)d(p’) <pR®’ O0<R<o,

0o
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We set p(p) =p + h(p),

R

H(R) = S h{p) d(p®),

0

and deduce that — p R* < H(R) < 0,0 < R < «. Hence

X”z h(R)dR S”z dH(R) H(R,) H(R) r H(R)dR
———— P —_ + e —
R r, 2R 2R: 2R? e, R°
—H(R,) p
s ————— —_—

=

2R? 2"
Thus
2 p(R) dR p °2 h(R) dR 1
A=2'n'S -————=2'rrplog——2—+21r ———<27mp logp—2—+— ,
P1 R pl Py R pl 2

and this proves Lemma 3.

3.3. Completion of proof of Theorem 1. We now suppose that
leosr <r,<l1,
set p, = r3, define £, (z) as in (3.1) and set . = £, (0),

m, = inf |f,(2)], M2='s|up | fo (DI,
2l <'rgy

|zl <rg

7
m, = inf IfO(Z)I’ M1=K3—qll: lslup IfO(z)I’ Where K3=;K2.

Jz| =p, z|=p,

Let n, (w), n, (w) denote the number of roots of f(2) = win |z|<rjandr, <|z| <1
respectively and define

1 (*™ .
p,-(R)=2—S n; (Re”)do, p(R)=p, (R)+ p,(R).

T Jo
We proceed to develop various inequalities relating the above quantities. We have
first

M dR 14+ r K 4R 1+nr
(3.5) < 2log + K,, < 2log + K,.

[

Rp, (R) 1—r, Rp, (R) 1-r,

n my

To see this we apply (3.3) with F(z) = f(r, z) instead of f(2). Let z;, j = 1,2 be
such that |z;| = p, = ri, and
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| fo(z)] =my, |fo(25)| =M, Kj.

Let 2, 2’ be points in |z| < 1, set { = z/r,, {’ = 2z’ /r, and consider

no (28 /(2=
W’Z)_(l—Zc')/(l—zz')'

Then for |z| = r,, |2’| < r%, we have |{| =1, |{’| <r, and so

2

1-Zzz2 1-r 1+r+7r:

1<|d(z,2')] =

=

2
z—2' r,—ry r,

1 1
s—+14+2=3—.
2 2

In view of the maximum modulus principle these inequalities for | ¢ (2,2")| remain
valid for |z| < ry, |2’| < r?. Again, if 1 > |z| > r,, |2’| < r, then

1-2z2'

1< < 3Vs.

z—2z'

Thusif z,, v = 1 to g are the zeros of fin |z|] < 1, and {, = 2, /r,, the corresponding
zeros of F({) = f(r, ), we deduce that for |z’| < rZ, we have

: < 11-7,¢' 7
0=< log * — log+—,<qlog(—).
; 2 15, — ¢’ 2

v=1
Thus for |2’| < r2, ' =2'/r,, we have

1-2z,2'

z,— 2’

7 q
| Fo (C) < |fo (z")] < (;) | Fo (£7)].

Hence if {; = z,/r,, we have
7 -9
K37 | Fo @) = ('2“ K2> |fo (2l = K7 | fy(2a)| = M,

7\
!FO(O)I sSp= Ifo(o)l = (E) |F0(O)|’

and
[ Fo(C)] < |fo(2)] =m,.

Also |¢;] = ry, j = 1,2. We apply Theorem 4 to F(z) in turn with (0,{,) and ({,,0)
instead of z,, z,. This yields
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2 log + K,.

SMI dR 1+r,
—_—<
Rp, (R) 1-r

®

This is the first inequality in (3.5). A second application of Theorem 4 yields

K dR 1+r
— =< 2log + K,,

m, Bp,(R) 1-r,

which is the secon(‘i inequality in (3.5).
Next we note that
-r

(3.6) log M, < log M, + 2 p log ~+K,(p+1),
(3.7) logm, <logm, + 2 plog + K,(p+1).

To prove (3.6), choose z, = r,e’®, so that | f, (z,)| = M,. Then if z, = p,¢’°, we have
| fo(z))] < K M,. We set R, = |fo(2))|, R, = K37 |f,(2,)|, and deduce from (3.3),
and since f is mean p-valent, [3, p.23]

1 R, 1\ (* dR 1+r
—{log——— | < < 2log + K,

P R, 2 r, Bp(R) 1—r
r
where r = — P1
1-ryp,
1+r_(1+r2)(1—p1) _(1+r2)(1+r1)(1—r1) <4(1—r1)
1-r (1-r)1+p,) (1—r,)Q+r2 1—-r,
Thus
1 M. 1 ok log (K, K,)
og— =< log— +¢qlo
gM1 gRl qlog (R, A,
4(1—-r)) 1
< 2plog——+ —+pK, + qlog (K, K,),
1—-r, 2

and this proves (3.6) with K, =K, + 1/2 + 2log4 + log (K, K;). The proof
of (3.7) is similar.

We now write

27p 27p

1 { } 1
I=—— A(r, ,3)—A(r,[,d) (= S
E
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where the integral is taken over the set E of points in r, < |z| < r,, where |I1(2) > 87,
and I1(z) is given by (1.2). Thus f is mean p-valent in E and

myd7 =< If(z)l <M,

there. Thus Lemma 3 yields

1. My dp 1 My my My dp
I\_S D2 (p)— =— S +S +S Pz (p) —
p m28q P p my mos? M; P
1 (™" dp M, m, 1
Py (p) — + logﬁ + log — + qlogg—+ 1.

my P 1 m,

(3.8)

I

b

Next we note that by Schwarz’s inequality

69 (1 M, )2 SMI dR SMI ® dR
: og— | =< (R)—.
S Cam ), YR

T8

Also p, (p) < p(p) — p, (p), and so, using (3.4) again, we have

M M. M
! dp ! dp ! dp
S p(p— =< X p(p)——'g py(p) —
B p [ p jm p

M, 1 M dp
spllog—+—]- P o) —.
o2 " P

We combine this with (3.9) and write ¢ = log (M, /). We deduce

1 (™ dp 1 . Moodp
(3.10) — pp)— st+——t pg
P J. p 2 « PD1(p)

1 p (M dp D 1+r D 1
< — 4+ — < —log + K, —+ —,
2 4 ), ppi(p) 2 1—-r, 4 2
in view of (3.5) and the inequality ¢ — at® < (4a)”?, for a > 0.
Similarly
1 (% w do 1 p (5" dp
(3.11) — S pz(P)_$‘—+—S
p my (Y 2 4 my ppl (p)
1o 1+n p 1
<—plo + —+—
g P81 r "4
Also (3.4) yields .
1 (" dp 1
(3.12) — Do (p)— <log (K;7)+—< K (p+ 1).
D Jr . P 2
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On combining (3.6) to (3.8) and (3.10) to (3.12), we deduce that

+r 1-—r,
+ 4p log

-rn 1-r,

1 1
I=plog +q10g8—+K(p+1),

1
which yields (1.5), if r, = —2-

We next prove (1.4). Suppose that z,, 2, are chosen so that |z,| = r,, |2,| =1,
and

|fo(21)| =my, = |ziiIslfr fo(2), fo(2)| =M, = ]zs|lsllr) |f(2)|

Then an application of Theorem 4 and [3, Lemma 2.1, p. 23] yields

1 M,K;? 1 MK dR 1+r
—jlog|l—— | ——¢ < < 2log + K,,

ma

2,— 2, 2r, 1+r (1+r, ¥
where r = = - Thus = , and we deduce that
1-2,2, 1+r; 1-r \1-r,
M, 1+,
log— < 4plog + K (p+ 1).
m2 1 - r2

Also if E is the subset of |z2| < r,, where |II(z)] > 37, we have m,d? < |f(2)| <M,
in E. Thus Lemma 3 yields

2

f'(2)
f(2)

dxdy < 2 {1 M, 1}
xay < 2w o] + —,
y p gmza,, P

A (ry,f,8) = S

E

and (1.4) follows.

Finally if 0 = r, = —2—, we have

A(ry, [,3) —A(r, [,3) = A (ry, £, 3),

and now (1.5) follows from (1.4).

3.4. Mean p-valent functions with p zeros. If p=q in Theorem 1, we can
sharpen (1.5), but the improved estimate necessarily depends on the position of
the zeros. We prove

THEOREM 5. Suppose that with the hypotheses of Theorem 1, f (2) has p
zeros. Then we have with the notation of Theorem 1
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r,

(3.14) A(r,, 8 —A(r,f,d3) <wp’ {log + 4 log

-r 1—-r,

}+O(1)

asr,— 1, whiler, <r, < 1.

With the hypotheses of Theorem 5, f(2) assumes all sufficiently small values
exactly once in the neighbourhood of each zero. In other words there exists m > 0,
and R < 1, so that for |w| < m, the equation f (z) = w has exactly p roots in |z} <R.
Thus, since f is mean p-valent, this equation can have no other roots in |z] < 1.
In particular | f(z)] >, R < |2| < 1. Hence (3.8) can be sharpened to

1 (™ dp M,
(3.15) I=— P, (p) — + log— + O(1),
D )y P M,
if R<r, <r, <1 We deduce from Lemma 3, that
n dp
Py (p)— < 0.
M (Y

On combining this with (3.6), (3.10) and (3.15), we obtain

I<Eplog—— +2plog —
< —plog + 2plog
2 1—-r, 1-r,

+ 0 (D),

which is Theorem 5.

We give an example to show that the term O (1) in Theorem 5 cannot be bounded

independently of the position of the zeros. To 'see this, suppose that 0 <r <1
and consider

(z+ (1 +r2) z+r z4+r Y
f(2) = 5 - = 1- :
1-2xaQ-n 1+ rz 1+rz
Then f(2) is univalent in |z| < 1, with a zero at 2 = —r. Also
f' 1 r 2 2 2

= + + - + ,asr— L.
f (2 z+r 14+rz 1-—2 1+2z 1-2:z

Thus if p is fixed and r —» 1

1+2)\ 1+ p?
Alp, )= Ap, 1 = 8w log 2

—z 1-p

in view of (2.1). This would contradict (3.14) with a bounded O (1) for varying
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r, since we could take 1 — r, very small compared with 1 — r,. We shall show

at the end of the paper that the constant w in (3.14) cannot be replaced by any
smaller number. .

4. PROOF OF THEOREM 2

1
We note that f(2) has no zeros in some annulus r, < |z| < 1. If r;, = —2~ (1 + ry),

then we deduce that for |2| = r > r, and any zeros {, of f(2)

z— 1,

1-2¢,

r—r
=3

1—-ryr

say. Thus [I[1(z)| = &7, for |z| = r,, and (1.4) yields for r > r,

—r

4.1) 27 S I (t,’]:—) tdt < 8w p’ {log + 0(1)} asr — 1.

1

Suppose now that (1.8) is false. Then we can choose r, so near 1, that we

have forr, <t <1
’ c
L) C
f 1-t¢

where Cr, > 4p°. This yields

—1 -r

r f/ T dt 1
1.[2 t,f—- tdt = Cr, I——— = Cr, logl + 0Q),

r ry

as r — 1, and this contradicts (4.1). Thus (1.8) must hold.

Next, since f'/f is regular for |z| > r,, I, (¢, f'/f) is a convex function of log ¢
for t > r,. Thus I, (¢, f'/f) is either bounded as t— 1, or increases with ¢ for
r, <t < 1, where r, < 1. In the former case (1.7) holds trivially. Thus we may

suppose that I, (¢) is finally increasing. In this case, suppose that 0 < € < 1 and,
given r, near 1, define r, by (1 — r,) =€ (1 — r,). Then (1.5) yields

2 S 212 (t, L) tdt
r f

1

fl
=27mr, (r,—r) I, (rl,—)
v r r 7

=2mr,(1—e1—-ry)l, (rl,%).

"

1
2 wp® {log n + O(l)}

_rl
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Thus, for r, sufficiently near one we have

’ 2 1
I, (rl, [—) < P {log + 0(1)}.
f 1—-—e@—r)r 1-r,

Since € may be chosen as small as we please we deduce (1.7).

If f(2) has p zeros in |z| <1, we may replace (1.5) by (3.14) and this yields
the required improvements in (1.7) and (1.8). This completes the proof of Theorem 2.

5. PROOF OF THEOREM 3; THE FUNDAMENTAL CONFORMAL MAPPING
Let D be the domain in the s plane, s = ¢ + i, defined as follows, where

d, is a sequence of numbers, 0 < d, < 1/2, defined below. D consists of the union
of all sets S_, —w < 7 <, where

v
(6.1) S,={s|—oo<o<oo},|'r|<—2—
(5.2) S.={s||n —o| <d,, forsomeintegern}, |v|=m/2
(5.3) .= {s]o + (1/2) isnotaninteger}, (w/2)<|7| <m.
T
qr._..__
1
s 1 P A — R 1 _ SR
2 B M
| l
| |
0 4 4
n—‘dnl |n+dn
N L
2
—.1T———
D
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The quantities d, are defined as follows. We set
(5.4) do = 1/e,
(5.5) d_,=d,n=1.
Suppose next that

(5.6) 24" < p < 2%

where £ is a positive integer. Then we define

1 2
(5.7 210g;—=2 —n+ k.

n

Thusd, < e ' < 1/2for all n. Clearly (5.1) to (5.7) define D as a simply-connected
domain in the s plane consisting of a central strip given by (5.1) connected to
a series of rectangular boxes, given by (5.3), by the narrow slits defined by (5.2),
subject to (5.4) to (5.6). Evidently D is a symmetrical about the real and imaginary
axes.

We can map A onto D by a function

(5.8) s=g(2),8(0 =0,g"(0)>0.

Then g(z) is real and increasing on the interval (—1,1) and maps this interval
onto the whole real s axis. Given a positive integer p, we define

(6.9) f,(2) = exp{pg(2)}.

We shall show that f,(z) has the properties asserted in Theorem 3. Suppose
first that p = 1. Then f, (2) is clearly univalent since €’ is univalent in the strip
|v| <, which contains A. In the general case f,(2) = {f,(2)}”, and this shows
that f(2) is p-valent if p is a positive integer, and (circumferentially) mean p-valent
if p > 0 [3, p. 94]. Thus we have to prove (1.9). Since

A, f)=p*Ar,f), p>0

it is sufficient to consider the case p = 1.

Pr

1+ 2
The idea of our proof is as follows. We define p, by log = 2% 4+ E. Given

1—p,
e > 0, we shall show that if K, (¢) is sufficiently large, a proportion at least

1
1-— ; ¢ of the area in the boxes (5.3) for

(5.10) 2*-V* _1/2 < |o| < 2¥* — 1/2

will correspond by g(z) to points of A lying in the annulus
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1-p,

5.11
(6.11) K.

<1- 2| <K, €)1 —p,).

The total area of these boxes is

1+p
20 {Zkz - Z(k_l)z} ~ 21 log * ,
1—p,

and (1.9) will follow, with 1 —r, = K, (e) (1 — p,), 1 — i = (1 — p,)/ K, ().

The hyperbolic distance d (s,,s,;D) of two points s,, s, in a simply connected
domain D is defined [5, p. 48] as follows. We map A onto D in such a way
that z = 0, r, correspond to s = s,,s,. If no ambiguity will result we sometimes
write just d(s,,s,). Then

1 1+r
(5.12) d(s,, s;) = ; log

l—r.

In this terminology let E; be the rectangle defined by

1 € T € €
[0‘[&-(1-——), —(1+-—)STS1T(1-—'—).
2 4 2 8 16

v € 2 € 1
Thus E, is a compact subset of D, with area ?)‘— (1 - 4—) >11- 2— 2— Let

E; be the reflection of E; in the real axis and let E, E, be obtained from
E,, E, respectively by a shift of n in the direction of the positive real axis. We
shall prove that if

(5.13) sEE! or s€ E], 2% Y < |n| <2,
then
(5.14) 2 + k—0(1) <2d(0,5;D)< 2" + k + O(1),

where the constant implied by O(1) depends only on €. We recall that the area

1 ’IT
of EforE, is at least |1 — —2—e ? Then it will follow that all points in E

and E,_, where n satisfies (5.13) will correspond in A to points satisfying (5.11),
and this will yield (1.9), with (1 — p,) K, (¢), (1 — p,)/ K, (¢) instead of 1 — r,, 1 — ).
To deduce (1.10), we apply (1.9) with € = 1/2. This yields

r’k fl 1
2 S I, (r, 7) rdr > wp°® log

ry 1_rk

Thus for some r with r, < r < r, we have
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[’ p’ 1 1 1
I, (r,— = — log > Kp?® log
12 f)

> K. p? ! 1 !
0 H
L

which yields (1.10). Unfortunately the constant K, obtained thus will be rather
small, since our estimates for the term O(1) in (5.14) are not good.

6. SOME INEQUALITIES FOR HYPERBOLIC DISTANCE

The remainder of this paper will be devoted to a proof of (5.14). For this,
we need some preliminary estimates concerning hyperbolic distance.

LEMMA 4. Supposethat D is a simply-connected domain with a line of symmetry
L; let w, be a point of D not in L and let 8 be the minimum hyperbolic distance
of w, from L, with respect to D. Then if w,, w, are points on L, and

(6.1) d(w,, w,) <&+ C,
then we have
(6.2) d(w,, w;) +8 —log2 — C<sd(w,,w;)< d(w,, w;) +35 + C.

The second inequality is obvious since hyperbolic distance satisfies the triangle
inequality. The first inequality of (6.2) shows that in the hyperbolic plane Pythagoras’
Theorem asserts that the length of the hypotenuse is “almost” equal to the sum
of the other two sides.

We may suppose without loss of generality, that D is the unit disk A. We
suppose initially that C = 0. In this case we may take the real axis for the line
of symmetry, and write w, = ir,, w, =r; and w, =0, where 0<r, <1,0<r, <1.
Then

1 1+p
(6.3) d(w,, w,) =—log ,
2 1-p
1 1+r 1+r,
d(w,,0) = —log , d(0,w;) = — log ,
2 -r 1-—r,
where
Wy — W, Ww; — w,
p= —
1—w, i, 1—w,w,
Thus
2 Il—'w1w3|2 |w3—wl|2
1—-p" =
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2 .2 2 2
1+riry—ry;—r;

1+r2r2
@ -rda-r)
B 1+ rfri '
Hence
1+p ((1+p)? 1+p*@+rir:
(6.4) - = =2

1-p 1-p° 1-r)@-r3)

Q+p* QX +r3rd) 14r 14r,
A+r)?Q+r) 1—r, 1-—r,

We now write
o (ry, ry) =d(w,, 0) +d (0, wy) — d(w,, w,).
Then if 0 < r; <rj; < 1, we have

¢(r1,r'3) — ¢ (r,r3) = d(O, r3) — d(0, ry) — d(w,, ry) + d(w,,r,)
=d(w,r) +d(r;,ry) —d(w, ry) =0

by the triangle inequality, which holds with equality for 3 points in order along
the real axis. Thus ¢ (r,, r;) increases with r, and similarly with r;. Also in view
of (6.3), (6.4) we have, asr, > 1and r; — 1,

o ) 11 1+nr 11 1+nr, 11 1+p
ry,r3) = —log + —log — —log
VY2 1o, 2 T1l-r, 2 1-p

{ (1+r)(1+r,) } 1l )
= — —log 2.
1+ p@ +rirht? 2 8
Thus
1
(6.5) O0<d(r,r)= ; log2, 0<r,; <1, 0<ry<1l

1
This proves (6.2) if C = 0, with ; log 2 instead of log 2.

In the general case we still write w, = ir,, w, = r,;, so that (6.3) holds. We
also write w, = Fr,. It now follows from (6.1) and (6.5) that

1+r, 1 1+r, 1
+ —log — —1log 2,
1-r, 2 1—-r, 2

1
3+ C=d(w,, wz)a—z—log
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1+r,

1 1
so that d(0,w,) = ; log =C+ —2— log 2. Thus

1-—r,
1
d(w,, w,;) < d(0, w,) + d(0, w,) <d(0, w;) + C+—2~log2
1 1
< d(w,, w3)—8+?log2+C+§—log2,

since (6.2) holds when C = 0, w, = 0, with (1/2) log 2 instead of log 2. This completes
the proof of Lemma 4.

In order to estimate distances in D effectively we shall need a length area
principle. (See e.g. Ahlfors [1, p. 8.]. We include the short proof for completeness.)
This is ‘

LEMMA 5. Suppose that w = f(z) maps an open set D, in the z plane (1,1)
conformally into a set D, in the w plane. Let 0, be the intersection of D, with
the line x = constant, let 0(x) be the length of 0., let /(x) be the length of the
image of 0, in the w plane and let A, be the area of D,. Then

/(%) dx
8(x)

where the integral is taken over the set E of all x for which 6, is not empty.

We note that, by Schwarz’s inequality,

/(x)* = {S If’(x+iy)ldy} < S dyS |/ (x + iy)|°dy.

x

Thus

Z (x)?
0 (x)

S’S |f’(x+iy)|2dy,
65

Z (x)®
S dx < S dxg | f(x+iy)|>dy < A,,
£ 0(x) E o,

as required. We deduce
LEMMA 6. Suppose that D, contains the rectangle

. . ™ m 0
R, = s|s=(r+l'r,|'r|<?,0'1—-2—<0' <02+2— ,

where o, < g,. Then




DERIVATIVE OF MULTIVALENT FUNCTIONS 171
1
(6.6) d(o,,05;D,) s?(0'2—0'1"'7")-

™
Suppose further that the complement of D, contains the points s =co F i—2,
for o, <o <o0,, except possibly for a set F of o having measure £ Then for

1 v
|7, < Y |7o| < Y we have

1
(6.7) d(o, +i7,,0, + i7,; Dy) = -é— (0, —0, =2 —m).

To prove (6.6) we may assume without loss of generality that D is the rectangle
R,, since hyperbolic distance decreases with increasing domain. We then map R,
onto the strip

v
S={|y|<—;—,—00<x<+00},

so that s = o,, g, correspond to z = 0, X.

m
We now apply Lemma 2 to the inverse map of the rectangle 0 < x < X, |y| < —4

onto a subset of R,. In this map 0, corresponds to a curve meeting the segment
o, < o < 0, of the real s axis, and going to the boundary of R, in both directions.

1
Since the segment is distant ? « from this boundary we have

K1}
£ (x) =, 6(x)=;, O0<x<X.

Thus Lemma 5 yields

X/ (x)* dx
2aX < ——— <7 (0, — 0, + ),
o 08(x)

i.e.
X<—(o,— o, +m).

The function

1 1+¢
z=—Ilog
2 1-¢
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1 1+p
maps A onto S, so that { = 0, p, correspond to z =0, X, where X = ; log

1—-p .
Thus

X =d(0,p;A) = d(0,X;S) = d(sy,5;;R,),

and this gives (6.6).

To prove (6.7) we map D, onto the strip S so that s, = o, + i1, 8, = 0, + iT,
correspond to z = 0,X. Then we apply Lemma 2 to this map, taking for D, the
rectangle R, given by

™ 1y ki)
——<x<X+—, |yl<—,
4 4 4

and for D, the inverse image of that part of D, in the s plane which lies in
the rectangle

13
o, <o < o, IT|<"§‘.

Ko
For ¢ not in F the segment |7| < —é- forms a crosscut 6 in D, which separates
s, from s, in D,. Thus the image of 6 is an arc separating 0 from X in the

1
strip |y| <:frr, and so this arc meets the segment 0 < x <X, y = 0. Thus the

k
length of the part of this image which is in R, is at least —2 Thus in this case
/ (0)® T

=
0 (o)
not in F and satisfying o, < o < o, we deduce from Lemma 5

kD
0(c) <, 7 (o) B; for o not in F, and so . Integrating over all o

i T Tr . 1
——(02—01—/)$—(X+—),1.e.XB—(02—0'1—/—*n’).
4 2 2 2
Thus
1
d(s,,s,; D;) = d(0,X;S) =X>;(02—01—/ — ).

which is (6.7). We deduce

LEMMA 7. If D is the domain of section 5 and s; = o; is real for j= 1,2,
then
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1 1
5—(02 —o,— K) <d(s;,s,; D) <;(02 -0,).

1
The second inequality is obvious since D contains the strip |7| <—51r. We also

™
note that the complement of D contains the points s =o F i—z, except when

|o —n| < d,. The total length of these exceptional o is
+ o bt
> 2d,=2d,+2 2d,.
n=-—oo n=1
We write n =2" —p, for 1 <p <2 — 2% and sum over the corresponding
range of values of n. If this sum is denoted by X, then by (5.7)

zkdn < Z e /DR e—u/z)k/(l _ e—u/z))
p=1

Thus

1 3 e—(1/2)

—1/2k _ —
zdns22kdnsl_e_(l/2)2e = (v =K

k=1

and

Thus (6.7) gives
1
d(s,,s,; D) > E— (6, —0, — 2Kz —m),

as required. This completes the proof of Lemma 7.

We also need to estimate hyperbolic distances from points inside the boxes
(5.3) to points on the real axis. We have

LEMMA 8. Let D be the domain of section 5, set s, =n +i{(w+1)/2 and
let 3, be the hyperbolic distance from s, to the real axis, with respect to D. Then

1
(6.8) 3, = log d_ - K,

n
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and

1
(6.9) d(s,,n;D)<log— + K,.

n

We start by proving (6.8). We assume that

n

1
(6.10) 2d, < ” e VI =¢ | say,

since otherwise (6.8) is trivial. Suppose that o, is a point on the real s axis which
is nearest to s,, so that

d(s,, o,;,D)=3,.

Then we can map D onto A by a map z = z(s) so that s = s,,0, correspond to
z=20, p,, where

1 1+op,
= —log .
2 l_pn

The segment [0, p,] in A corresponds to a Jordan arc v, from s, to o, in D,

Ky i
which must cross the line + = —, where |n — o| < d,. Since v, remains in T > —,
2

until it first crosses this line, we see that v, must meet the semicircles

where ¢, = 2d, by (6.10), at points P,, P, say, and v, contains an arc vy, joining
P, to P and lying otherwise in the region

.
s—n+d,—1—
2

™

2dn< <t, T>—.
2

n

Similarly v, contains an arc v/ with end points @,, @,/ on the semicircles

L aw
s—n+d,—i—|=2d,,¢t, T<—
2 2
and lying otherwise in the region
. T
2d,<|s—-n+d,—i1—|<t, v<—.
2 2
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Since v, is a geodesic, hyperbolic distances are additive along v,, and so

(6.11) 5,=d(P,, P,; D) +d(Q,, Q,; D).

We now make a transformation
ctog(o e d,1D) i T
=logls,—n+d,—i—]|—i—=§&+in,
& 2 2

so that D corresponds to a domain D, in the cplane Suppose that P, P,, correspond
to p,, p;, say. Then

=log (2d,) + im,, p,=logt, +in,

K ™
where |7, | < Y n.| < Py and, in view of (6.10), D, contains the rectangle R,

log 2d,) — — < £<]1 " o log—, n] <~
o L) ——<E<logt, + — =log—, <—
g 2 g 2 8y M=y

v
while the boundary segments n = i;, log (2d,) < &£ < log ¢, of R,, lie in the

complement of D,. We now deduce from (6.7) that

1 t
d(P,,P.,;D)=d(p.,p,;D,) =— {log—— — = {.
Prs Py Do 2{ L w}

n

Similarly

d(Q ;D) = 1{ b }
w @ 2 2d, T

™
Now (6.11) yields (6.8) with K, =3 (; + log 2) . We next prove (6.9). We set

i i
¢=n+;w—¢mﬂ=n+;m+¢y

Then
(6.12) d(n,s,;D)<d(n,s};D)+d(s,s.; D)+ d(s",s,; D).

We estimate these quantities in turn. Let D, be the disk |s — n| < w/2. Then
D, contains n and s;, and is contained in D. Thus
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1 2—-d,/«w 1 2w
(6.13) d(n,s,;D)<d(n,s);D,)=—log| —— )| < —log—.
2 d,/ 2 d,
For the function z = — (s — n) maps D, onto A, so that s =n, s/, correspond
™

toz=0,i(1—d,/m).

Similarly since D contains the disk D, given by

.IS—S;,|<E,

we have
1 2-d, 1 2
(6.14) d(s,,s;D)<d(s,, s’ ;D,) =—log <—log—.
2 . 2 T d,
Finally D contains the disk D, given by
o
s—i1—| <d,,
2
and so
1+41/2
(6.15) d(s),s?;D)=<d(s!,s”;D;) =log——— =log 3.
1-1/2

On combining (6.12) to (6.15) we obtain

1 1
d(n,s,;D) < log;— + 2— log (36 ),

n

which yields (6.9) with K, = (1/2) log (36).

7. COMPLETION OF PROOF OF THEOREM 3

We can now put together the results of Lemmas 4, 7, 8 to prove (5.14), thus
completing the proof of Theorem 3. We start by proving that

(7.1) [2d(s,, 0;D) — 2 — k| < K

for n in the range (5.6). We have from Lemma 7
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1 1
—n— K<d(0,n) <—n.
2 2
On combining this with (6.9) and (5.7) we obtain

1 1
d(0,s,)) < d(0,n) + d(n,s,) < —2—n + log—d—- + K

n

11,
=—n+—@"-n+k+K
2 2

1
=—2—(2k2+k)+K.

Next we apply Lemma 4, with s,, n, 0 instead of w,, w,, w,;, 3 = 3,, and the
real s axis instead of L. In view of (6.8), (6.9) we may take C = 2K, in (6.1)
and hence in (6.2) and deduce that

d0,s,) =d(n,0 +3,— 2K, —log2

1 1
2;n+log———K

This yields (7.1).
Next let @ be the rectangle

1 1 v
n——<o<n+— —<7<.
2 2

If s, is defined as in Lemma 8 and s/ is any other point of E, then s, =s, — n
and s, = s/ — n lie in E7,. Also

(7.2) d(s,, s.; D) < d(s,, s,; Q) = d (s, 55, Qo) < K (e),

where the constant K (¢) depends only on the compact subset E; of @,, which
itself depends on e. For we may map @, onto A so that s, corresponds to z=10
and then E, maps onto a compact subset of A, whose points have a bounded hyperbolic
distance from the origin. Further

d(0,s,; D) — d(s,,s.; D) <d(0,s,; D) <d(0,s,; D) + d(s,,s,; D).
On combining this with (7.1) and (7.2) we obtain (5.14) for any point s = s, in

E?, where n > 0. By symmetry the same inequalities hold in E, and also in
E™,, E_,. This completes the proof of (5.14) and of Theorem 3.
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8. NORMALISED p-VALENT FUNCTIONS
We can also show that the improved estimate of Theorem 5 for p-valent functions
with p zeros in A is essentially best possible. Consider first the case p=1. Let

f1(2) be the function which we have just constructed to prove Theorem 3, defined
by (5.9), so that f, (0) = 1, and define

Consider the total area A, of all the E, and E, for n lying in the range (5.13)
and n > 0. If & is large we have

A, > (1 —¢) m2”.

Let A, be the subset of A which corresponds by f, (2) to these E} and E_. Then
by (5.11) there exist numbers r, and r, such that

O<r,<r,<1l, 1-r,<K(e)(1—r})

further

log =2+ k+0(),

1—-r,

and A, lies entirely in the annulus r, < |z| < r;. Thus

dxdy = S lg’ (2)|” dxdy = A,.
A
Also in A, we have
E—1)2 1
log |f, (2)| = Reg(z) > 2%~ V" — 5

Thus in A, we have

f1(2) fi(2)
F,(z)=(1+0(1)) , Fi(z) = ,
1 AT AT
so that
F/ '4
12 _ 1+ 0(1))f1 (z).
F,(2) f1(2)

Hence for large &
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Ay l—rk

Thus the constant w cannot be replaced by any smaller number in Theorem 5,
when p = 1. If p is a general positive integer we obtain the same conclusion by
considering F, (2) = F, (2)".

2

Fi(2)
F, (2)

dxdy > (1 — 2¢) w2 > (1 — 3¢)m log (

I am grateful to the referee for many helpful suggestions and clarifications,
particularly section 1.1.
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