BOUNDED HOLOMORPHIC FUNCTIONS WITH ALL LEVEL SETS OF INFINITE LENGTH

Peter W. Jones

Let $H^{\infty}(\Delta)$ denote the usual space of functions bounded and analytic on the open unit disc. Two recent papers have treated the question of whether a function $F(z) \in H^{\infty}(\Delta)$ can have a level set $E_{\alpha} = \{z \in \Delta : |F(z)| = \alpha\}$ of infinite arclength, $\ell(E_{\alpha}) = \infty$. In [5] an example was constructed of an H^{∞} function having $\ell(E_{\alpha}) = \infty$ for uncountably many values of α . In [1] a Blaschke product was constructed which had one level set of infinite length. The purpose of this paper is to construct the following two examples.

Example 1. There is a function $F(z) \in H^{\infty}(\Delta)$ such that $e^{-1} < |F(z)| < e, z \in \Delta$, and $\ell(E_{\alpha}) = \infty$, $e^{-1} < \alpha < e$.

Example 2. There is a function $G(z) \in H^{\infty}(\Delta)$ such that |G(z)| < 1, $z \in \Delta$, and $\mathscr{E}(E_{\alpha}) = \infty$, $0 < \alpha < 1$.

Example 2 is of some interest because of its connection with the proof of the corona theorem [2], [3]. The "hard" part of the corona theorem is to show that when $f(z) \in H^{\infty}$ and $0 < \varepsilon < ||f||_{\infty}$, there is $\delta = \delta(\varepsilon) > 0$ and $\psi(z)$ such that $0 \le \psi(z) \le 1$, $\psi = 1$ when $|f| > \varepsilon$, $\psi = 0$ when $|f| < \delta$, and such that $|\nabla \psi| dx dy$ is a Carleson measure. (See [2] or [3].) Example 2 shows that for f and ψ as above we cannot make ψ of the form $\psi(z) = \chi_{\{|f| > \delta\}}(z)$.

The difficult part of this paper is the construction of the function F(z) of example 1. Once this is done the function G(z) of example 2 can be constructed from F(z) using standard patching arguments.

To construct F(z) we first study the unimodular function

$$v(\theta) = \exp\left\{i\left(\theta + \sum_{n=1}^{\infty} \frac{\cos \lambda_n \theta}{n}\right)\right\}$$

defined on T, and its harmonic extension to the disc, v(z). The sequence $\{\lambda_n\}$ will be picked by induction, always maintaining the relationships $\lambda_1 \ge 100$,

(1)
$$\lambda_n \text{ divides } \lambda_{n+1}, \quad n \ge 1$$

and

(2)
$$\lambda_{n+1} \ge \lambda_n^{\lambda_n}, \qquad n \ge 1.$$

Received June 6, 1978. Revision received September 11, 1978.

Michigan Math. J. 27 (1980).

This high degree of lacunarity of the sequence $\{\lambda_n\}$ will force v(z) to be a bad function, because it spins around so much. An induction argument allows us to pick the λ_n so that the partial products

$$v_n(\theta) = \exp\left\{i\left(\theta + \sum_{j=1}^n \frac{\cos \lambda_j \theta}{j}\right)\right\}$$

have almost uniform distribution function in the following sense:

(3)
$$|\{\theta : v_n(\theta) \in I\}| \ge |I|/4$$
 for every arc I of \mathbb{T} .

Intuitively we can do this because the high degree of lacunarity of the sequence $\{\lambda_n\}$ causes the functions $\cos \lambda_n \theta$ to be "almost" independent random variables. Because our proof of (3) should be familiar to anyone who has read, for example, chapter VIII of [4], we merely sketch the argument.

First note that $\exp\{i\theta\}$ is evenly distributed. Suppose by induction that $\lambda_1, \lambda_2, ..., \lambda_{n-1}$ have been chosen and that

(4)
$$|\{\theta: v_i(\theta) \in I\}| \ge (1 + 2^{-n+1}) |I|/4, \quad j = 1, 2, ..., n-1,$$

whenever I is an arc of T. Note that $f_n(\theta) = \theta + \sum_{j=1}^{n-1} \frac{\cos \lambda_j \theta}{j}$ is C^{∞} and has first

derivative bounded in modulus by $2\lambda_{n-1}$ when $n \geq 2$, and 1 when n=1. We view $f_n(\theta)$ as a $mod(2\pi)$ valued function. Chop $\mathbb T$ up into $10^4(\lambda_{n-1})^2$ intervals I_j of equal length, and let x_j denote the center of I_j . Since we need only prove (3) for intervals I of length less than $10^{-4}(\lambda_{n-1})^{-3}$, we restrict our attention to an interval $I_{\delta} = [\theta_0 - \delta, \theta_0 + \delta]$ of $\mathbb R \mod(2\pi)$, where θ_0 is arbitrary and

$$\delta < 10^{-4} (\lambda_{n-1})^{-3}$$
.

Consider an interval I_i in the decomposition of \mathbb{T} for which

$$|f_n(x_j) - \theta_0| \le \frac{1}{n} - \frac{1}{1000 n^5}$$
 if $n \ge 2$,

or $|f_n(x_j) - \theta_0| \le 1 - \frac{1}{1000}$ if n = 1. Then if λ_n is very large,

$$\begin{aligned} &\left|\left\{\theta \in I_{j} : f_{n}(\theta) + \frac{\cos\lambda_{n}\theta}{n} \in I_{\delta}\right\}\right| \\ &\geq (1 - 10^{-2n}) \, \frac{\left|I_{j}\right|}{2\pi} . \, \left|\left\{\psi \in [0, 2\pi) : f_{n}(x_{j}) + \frac{\cos\lambda_{n}\psi}{n} \in I_{\delta}\right\}\right| \end{aligned}$$

and the above estimate is independent of θ_0 and δ . Applying the induction hypothesis (4) and condition (5) we see rather easily that

(6)
$$|\{\theta: v_n(\theta) \in I\}| \ge (1 + 2^{-n})|I|/4,$$

whenever I is an arc of T.

Now let $u(\theta) = \text{Re } v(\theta)$ and let $F(\theta) = \exp\{u(\theta) + i\tilde{u}(\theta)\}$. Note that $-1 \le u(\theta) \le 1$ because $v(\theta)$ is unimodular. Also the level set $\{|F(z)| = e^{\alpha}\}$ is the same as the set $H_{\alpha} = \{u(z) = \alpha\}$. Therefore we need only show $\ell(H_{\alpha}) = \infty, -1 < \alpha < 1$. The idea is to show that there is $\delta_{\alpha} > 0$ and $\epsilon > 0$ such that $u(\beta e^{i\theta}) = \alpha$ for more than $\epsilon \lambda_n / n$ values of θ , whenever $\beta \in I_n = \left[1 - \frac{\delta_{\alpha}}{\lambda_n}, 1 - \frac{\delta_{\alpha}}{2\lambda_n}\right]$ and $n \ge n(\alpha)$ is large. For then $\ell(H_{\alpha} \cap \{|z| \in I_n\}) \ge \frac{\epsilon \lambda_n}{n} \cdot \frac{\delta_{\alpha}}{2\lambda} = \frac{\epsilon \delta_{\alpha}}{2n}$ and so

$$\mathscr{I}(H_{\alpha}) \geq \sum_{n \geq n(\alpha)} \frac{\varepsilon \delta_{\alpha}}{2n} = \infty.$$

We now compute $\ell(H_{\alpha})$ for $0 \le \alpha < 1$; the case where $-1 < \alpha < 0$ is treated in exactly the same manner. Let $\delta_{\alpha} = \frac{(1-\alpha)^2}{100}$. We restrict our attention to the annulus $A_n = \{z : |z| \in I_n\}$. Because the λ_n satisfy condition (2), a well known theorem on lacunary series (cf. [6, page 230]) shows

(7)
$$\left| \left\{ \theta : \left| \sum_{j=n+1}^{\infty} \frac{\cos \lambda_{j} \theta}{j} \right| > \gamma \right\} \right| \leq c_{1} \exp \left\{ -c_{2} n \gamma \right\},$$

where c_1 and c_2 are some absolute constants. Because $\sum_{j=n+1}^{\infty} \frac{\cos \lambda_j \theta}{j}$ is periodic of periodic $2\pi/\lambda_{n+1}$, (7) and (2) show

(8)
$$|v(z) - v_n(z)| < \frac{1}{1000 \text{ n}}, \quad z \in A_n, \text{ for n sufficiently large.}$$

Let $\theta_{\alpha} \in (0, \pi/2]$ be that value of θ for which Re $e^{i\theta} = \cos \theta = \alpha$, and let

$$J_{n} = \left\{\theta \colon \left| e^{i\theta_{\alpha}} - v_{n-1}(\theta) \right| \leq \frac{1}{10 \text{ n}} \right\}.$$

By condition (3), $|J_n| \ge \frac{1}{100\,n}$. Fix $\theta_0 \in J_n$. Then since $\frac{\cos\lambda_n\theta}{n}$ has amplitude 1/n and period $2\pi/\lambda_n$, and since by condition (2) $v_{n-1}(\theta)$ is very "flat" with respect to $\cos\lambda_n\theta$, then whenever $|\psi| < \frac{1}{2n}$ there is θ such that

$$|\theta-\theta_0|<\pi/\lambda_n \quad \text{and} \quad v_n(\theta)=e^i(\theta_\alpha+\psi).$$

Standard estimates for the Poisson kernel now show that because $|J_n| \ge \frac{1}{100 \text{ n}}$ and conditions (2), (8), and (9) hold, then if n is large and $\beta \in I_n$,

(10)
$$\{\theta: \text{Re } v(\beta e^{i\theta}) = \alpha\}$$
 contains more than $\frac{1}{200 \text{ n} \pi} \cdot \frac{\lambda_n}{10} = \frac{\lambda_n}{2000 \text{ n} \pi}$ points.

By our previous remarks, condition (10) implies $\ell(H_{\alpha}) = \infty$. Our construction of F(z) is completed.

We now outline the construction of the function G(z) for example 2. Consider the function $V(x) = \exp\left\{i\left(2\pi x + \sum_{n=1}^{\infty} \frac{\cos 2\pi \lambda_n x}{n}\right)\right\}$ defined for $x \in \mathbb{R}$, and let V(w) be its harmonic extension to the upper halfplane \mathbb{R}^2_+ . Let $U(w) = \operatorname{Re} V(w)$. The argument used in the construction of F(z) shows that if α is some real number, $-1 < \alpha < 1$, and I is some interval of the real axis of length one, then

$$\mathscr{I}(\{U(w) = \alpha\} \cap \{I \times (0,1]\}) = \infty.$$

Let $I_n=[10^n,10^n+1],\ n=1,2,...$ and let $W(x)=-\frac{1}{4}\sum_{n=1}^\infty n\chi_{I_n}(x)$. Repetition of the argument used for example 1 shows that whenever $-\infty<\alpha<1$, there is an interval I_α of length one such that

$$\mathscr{L}(\{U(w) + W(w) = \alpha\} \cap \{I_{\alpha} \times (0,1]\}) = \infty.$$

Let $\tau(z) = (-i)\frac{z+1}{z-1}$ be the usual conformal mapping of Δ onto \mathbb{R}^2_+ and set

$$G(z) = \exp\{-1 + U \circ \tau(z) + W \circ \tau(z) + i(\tilde{U} \circ \tau(z) + \tilde{W} \circ \tau(z))\}.$$

Then
$$G(z) \in H^{\infty}(\Delta)$$
, $\|G\|_{\infty} = 1$ and if $0 < \alpha < 1$, $\mathscr{E}(\{|G(z)| = \alpha\}) = \infty$.

The author would like to thank Professor J. Garnett for useful conversations.

REFERENCES

- 1. C. Belna and G. Piranian, A Blaschke Product with a level set of infinite length. Acta Math. Acad. Sci. Hungary, to appear.
- 2. L. Carleson, Interpolations by bounded analytic Functions and the corona problem. Ann. of Math. (2) 76 (1962), 547-559.
- 3. ——, The corona theorem. Proceedings of the Fifteenth Scandinavian Congress (Oslo, 1968), Lecture Notes in Mathematics, Vol. 118, pp. 121-132. Springer, Berlin, 1970.
- 4. W. Feller, An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons, Inc., New York-London-Sydney, 1971.

- 5. G. Piranian and A. Weitsman, Level sets of infinite length. Comment. Math. Helv., 53 (1978), 161-164.
- 6. A. Zygmund, Trigonometric series. 2nd ed. Vol. I. Cambridge University Press, New York,

Bâtiment 425 Université de Paris-Sud Orsay, France

Current address: Department of Mathematics University of Chicago Chicago, Illinois 60637