ON THE SINGULARITY SET OF COMPLEX FUNCTIONS SATISFYING THE CAUCHY-RIEMANN EQUATIONS

M. J. Pelling

1. INTRODUCTION

Let f(z) = u(x,y) + iv(x,y) be a finite valued complex function defined on a domain D and satisfying the Cauchy-Riemann equations everywhere in D; i.e. at every point u and v possess finite first order partials satisfying $u_x = v_y$, $u_y = -v_x$. Under the additional restriction that f be continuous, or even only locally bounded, it is known that f must be analytic in D: theorems of Looman-Menchoff [3], [5] and Tolstov [4] respectively. With no supplementary restriction f need not be analytic everywhere in D (consider e.g. $f(z) = e^{-1/z^4}$), but Trokhimchuk ([5, p. 109f]) proved that the singularity set B is a closed totally disconnected set whose projections on the coordinate axes are closed nowhere dense linear sets (a result whose proof required Tolstov's theorem) and asked whether it was possible for B to contain a (perfect) nucleus. It will be shown here that (section 2) B can be non-denumerable and even of positive Lebesgue measure with f satisfying certain additional imposed conditions. Some further questions are raised in section 3.

2. LARGE SINGULARITY SETS

Definition. A complex function f(z) = u + iv has a directional derivative f'(a;z) in the direction $a = e^{i\theta}$ at z if $\lim_{h\to 0^+} (f(z+ah)-f(z))/ah$ exists finitely and equals f'(a;z). In particular if $f'(\pm 1;z)$, $f'(\pm i;z)$ all exist and are equal then f is said to satisfy CR at z which is equivalent to u,v having first order partials at z obeying the Cauchy-Riemann equations.

LEMMA 1. Let $\{a_1, a_2, ...\}$ be a countable set of directions, $|a_i| = 1$, and let D be the unit disc $|z| \leq 1$. Then there exists a countable isolated subset $A = \{b_1, b_2, ...\}$ of D and disjoint open discs N_i centred on b_i , $i \geq 1$, such that if p_i is the orthogonal projection on the tangent L_i to D at a_i then for each $i \geq 1$ the sets $p_i \bar{N}_j \subseteq L_i$ are disjoint for $j \geq i$. Furthermore A can be chosen so that $K = \bar{A} \setminus A$ (which is closed as A is isolated) has planar measure mK > 0 and $p_i K \cap p_i \bar{N}_j = \emptyset$ for $1 \leq i \leq j$.

Proof. Take a closed nowhere dense linear subset K_i of the line segment $p_i D \cap L_i$ such that $m(D \cap p_i^{-1} K_i) > \pi - 2^{-i}$ and let $K = \bigcap_{i=1}^{\infty} p_i^{-1} K_i \cap D$ so that

Received February 20, 1978.

Michigan Math. J. 26 (1979).

K is closed and mK > 0. Let $J = \bigcap_{i=1}^{\infty} p_i^{-1}(L_i \setminus K_i) \cap D$ which by Baire's theorem

is dense in D, and let $(q_r)_1^{\infty}$ be a sequence of points in K such that every point of K is the limit of a subsequence.

Suppose $b_1,b_2,...,b_n\in J$ and disjoint open discs N_i centred on $b_i,\,1\leq i\leq n$, have been defined and satisfy (i) $p_i\bar{N}_j$ are disjoint for $i\leq j\leq n$ and each $i,\,1\leq i< n;$ (ii) $K_i\cap p_i\bar{N}_j=\emptyset,\,1\leq i\leq j\leq n;$ (iii) $\bar{N}_i\cap K=\emptyset,\,1\leq i\leq n;$ (iv) $|b_i-q_i|<2^{-i},\,1\leq i\leq n.$ We shall define b_{n+1},N_{n+1} so that conditions (i)-(iv) continue to hold for n+1.

Certainly there exists $b_{n+1} \in J$ and an open disc N_{n+1} centred on b_{n+1} such that $|b_{n+1} - q_{n+1}| < 2^{-(n+1)}$, $\bar{N}_{n+1} \cap K = \emptyset$, $N_{n+1} \cap N_i = \emptyset$ for $1 \le i \le n$; also we can ensure, by taking b_{n+1} sufficiently close to q_{n+1} and radius N_{n+1} sufficiently small, that $p_i \bar{N}_{n+1} \cap p_i \bar{N}_j = \emptyset$, $1 \le i \le j \le n$ (note that $p_i (q_{n+1}) \in K_i$ which is closed and disjoint from $p_i \bar{N}_j$) and that $p_i \bar{N}_{n+1} \cap K_i = \emptyset$, $1 \le i \le n+1$ (note that $p_i (b_{n+1}) \in L_i \setminus K_i$ which is open in L_i).

Continuing this inductive construction the set A and discs N_i are constructed and, since $p_i K \subseteq K_i$, do, with K, satisfy the requirements of the lemma.

COROLLARY. If $z \in K$ and Z_i is the line (not ray) passing through z in the direction a_i then Z_i does not meet \bar{N}_i for $j \geq i$. Hence there exists $\delta > 0$ such

that
$$z + a_i h \notin \bigcup_{j=1}^{\infty} \bar{N}_j$$
 for $-\delta \le h \le +\delta$.

THEOREM 1. There is a complex function f(z) = u + iv defined on the plane which satisfies CR everywhere and has the following properties:

- (i) f has equal directional derivatives in all directions of a countable set $W = \{a_1, a_2, ...\}$ of directions at every point;
 - (ii) f has a bounded singularity set B of planar measure mB > 0;
- (iii) at every point u and v possess partial derivatives of all orders and types with respect to x, y and $u_{xx} + u_{yy} = v_{xx} + v_{yy} = 0$;

(iv) (cf. Vitushkin [1]) for every closed contour C disjoint from B,
$$\int_C f(z) dz = 0$$
.

Proof. Let W be arbitrary at present and let $A = \{b_1, b_2, ...\}$, N_i , $K = \bar{A} \setminus A$ with mK > 0 satisfy the hypotheses of Lemma 1. For $k \ge 1$ let $g_k(z)$ be a function analytic everywhere except for an isolated singularity at b_k and such that for z, z' outside N_k and $|z|, |z'| \le k, |g_k(z)| < 2^{-k}$ and $|g_k(z) - g_k(z')| < 2^{-k}|z - z'|$.

Define $f(z) = \sum_{k=1}^{\infty} g_k(z)$ so that f will be defined on the plane and will have singularity set $B = K \cup A$.

By the corollary to Lemma 1 $f'(a_i;z)$ exists for $z \in K$, $a_i \in W$ and

$$f'(a_i;z) = \sum_{k=1}^{\infty} g'_k(z).$$

Further if we take $g_k(z) = c_k g(z - b_k)$ for suitable constants c_k where $g(z) = e^{-1/z^4}$, g(0) = 0, and if W is chosen with $\pm 1, \pm i \in W$ and all

$$\arg(a_i) \in \bigcup_{m=0}^{3} ((4m-1)\pi/8, (4m+1)\pi/8)$$

then CR holds everywhere and conditions (i) and (ii) of the theorem are satisfied. Provided $c_k \to 0$ sufficiently rapidly (iii) will also hold, by elementary properties of the function g(z).

Finally let C be a closed contour of length l disjoint from B and let c_k have been chosen with $\sum |c_k| < \infty$. Since B and C are compact the distance d(B,C) = d > 0. Let M be the upper bound of |g(z)| in the annulus $d \le z \le c+1$ where c is the greatest distance of a point of C from 0. Then $|g(z-b_k)| \le M$ for $z \in C$ and $k \ge 1$, and

$$\sum_{k=1}^{\infty} \int_{C} |g_{k}(z)| dz \leq Ml \sum |c_{k}| < \infty.$$

It is therefore justified to interchange the order of summation and integration and deduce,

$$\int_{C} f(z) dz = \int_{C} \sum_{k=1}^{\infty} g_{k}(z) dz = \sum_{k=1}^{\infty} \int_{C} g_{k}(z) dz = 0.$$

THEOREM 2. There is a complex function f(z) defined on the plane which satisfies CR everywhere and has the following properties:

- (i) f has equal directional derivatives in all directions at every point;
- (ii) f has a bounded nowhere dense linear singularity set B of positive 1-dimensional measure;

(iii) for every closed contour C disjoint from B,
$$\int_C f(z) dz = 0$$
.

Proof. Let L be the line segment y=0, $0 \le x \le 1$ and K any perfect nowhere dense subset of L of positive linear measure. Let b_i , $i \ge 1$, be the midpoints of the disjoint open intervals composing $L \setminus K$ and let N_i be open discs centred on b_i such that N_i subtends an angle less than 1/i at the endpoints of the interval containing b_i . Let $A = \{b_1, b_2, \ldots\}$: we shall repeat the construction in the proof of theorem 1 using a function g(z) whose existence is established in the following lemma.

LEMMA 2. There is a function g(z) analytic everywhere except for an isolated singularity at 0 and having the properties:

(i) g(z) and g'(z) are bounded in the plane excluding the bounded open region S which is the image of the half-strip T: x > 1, 0 < y < 1 under the (multivalued) mapping $z \to z^{-1/4}$;

(ii) if g(0) is defined as 0 then g'(a;0) exists with value 0 for all directions a.

Proof of Lemma. By results [2] on the approximation of analytic functions by entire functions there exists a non-constant entire function h(z) bounded in the plane outside T. For example approximate $\exp(-(z-1)^{1/4})$ defined suitably on the domain T^c . By adding a constant we may suppose h(0) = 0.

Define $g(z) = z^2 \int_{-\infty}^{z} h(z^{-4}) dz$ where the path of integration is not to pass through 0: since the residue of $h(z^{-4})$ at 0 is 0, g(z) will be defined and single valued for all $z \neq 0$. Conditions (i) and (ii) are then satisfied.

Now set $f(z) = \sum_{k=1}^{\infty} c_k g(z-b_k)$. Provided $c_k \to 0$ sufficiently fast, clauses (i) and (ii) of the theorem will be satisfied with B=K. Indeed, for $z \in K \setminus A$ and any direction $a \neq \pm 1$ there is a line segment in direction a containing z in its interior and not meeting $\bigcup_{i=1}^{\infty} \bar{N}_i$, whence, with small enough c_k , $f'(a;z) = \sum_{k=1}^{\infty} c_k g'(z-b_k)$; conditions (i) and (ii) of the lemma then ensure that this equation also holds for $a = \pm 1$ and for $z \in A$ and any a provided a term g'(0) is taken directionally.

Finally clause (iii) follows when $\sum |c_k| < \infty$ by the same argument as used in the proof of clause (iv) in Theorem 1.

3. FURTHER QUESTIONS

The preceding results suggest the following problems:

- (a) The constructions of Theorems 1 and 2 depend essentially on the existence of a set of isolated singularities with various properties. Can these be removed, so that in each case f is constructed with a perfect singularity set B?
- (b) Does f(z) exist satisfying CR everywhere and with equal directional derivatives in all directions at every point, and such that its singularity set is of positive planar measure?
- (c) An affirmative answer to (b) would require the existence of a closed totally disconnected set B of planar measure mB > 0 such that *every* orthogonal projection pB on a line should be a closed nowhere dense linear set. Can such a set exist?

REFERENCES

- 1. J. Garnett, Analytic Capacity and Measure. Springer Lecture Notes No. 297 (1972), 95f.
- 2. S. N. Mergelyan, Uniform approximations of functions of a complex variable. Uspehi Mat. Nauk (N.S) 7, no. 2 (48) (1952) 31-122. MR 14 (1953), 547.
- 3. S. Saks, *Theory of the Integral*. Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach. Dover Publications, Inc., New York, 1964.

- 4. G. P. Tolstov, Sur les fonctions bornées verifiant les conditions de Cauchy-Riemann. Mat. Sbornik, 52 (1942), 79-85. MR 4 (1943), 136.
- 5. Ju. Ju. Trohimčuk, Continuous mappings and conditions of monogeneity. Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1964.

Balliol College Oxford, OX1 3BJ England