ON THE SINGULARITY SET OF COMPLEX FUNCTIONS
SATISFYING THE CAUCHY-RIEMANN EQUATIONS

M. J. Pelling

1. INTRODUCTION

Let f(z) = u(x,y) + iv(x,y) be a finite valued complex function defined on
a domain D and satisfying the Cauchy-Riemann equations everywhere in D; i.e.
at every point u and v possess finite first order partials satisfying u, = v,
u, = —v,. Under the additional restriction that f be continuous, or even only
locally bounded, it is known that f must be analytic in D: theorems of Looman-
Menchoff {3], [5] and Tolstov [4] respectively. With no supplementary restriction
f need not be analytic everywhere in D (consider eg. f(z) = e "/ ), but
Trokhimchuk ([5, p. 109f]) proved that the singularity set B is a closed totally
disconnected set whose projections on the coordinate axes are closed nowhere dense
linear sets (a result whose proof required Tolstov’s theorem) and asked whether
it was possible for B to contain a (perfect) nucleus. It will be shown here that
(section 2) B can be non-denumerable and even of positive Lebesgue measure
with f satisfying certain additional imposed conditions. Some further questions
are raised in section 3.

2. LARGE SINGULARITY SETS

Definition. A complex function f(2) = u + ivhas a directional derivative f’ (a;2)
in the direction a = e*® at z if hlim (f(z + ah) — f(2))/ah exists finitely and equals
— 0t

[’ (a;z). In particular if f’(x1;2), f'(£i;2z) all exist and are equal then f is said
to satisfy CR at z which is equivalent to u,v having first order partials at z
obeying the Cauchy-Riemann equations.

LEMMA 1. Let {a,,a,,...} be a countable set of directions, |a;| = 1, and let
D betheunitdisc|z| = 1. Then thereexists a countableisolated subsetA = {b,,b,, ...}
of D and disjoint open discs N, centred on b;, i = 1, such that if p, is the orthogonal
projection on the tangent L, to D at a, then for each i =1 the sets p;N,C L,
are disjoint for j = i. Furthermore A can be chosen so that K = AN\A (which is

closed as A is isolated) has planar measure mK >0 and p KN p;N,= @ for
l=i1=j.

Proof. Take a closed nowhere dense linear subset K, of the line segment

p;:DN L;suchthatm(D N p;'K,)>mw — 2 "and let K = n p. 'K, N D so that
i=1
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K is closed and mK > 0. Let J = ﬂ P, (L N\ K;) N D which by Baire’s theorem

is dense in D, and let (g,)7 be a sequence of points in K such that every point
of K is the limit of a subsequence.

Suppose b,,b,, ...,b,, € J and disjoint open discs N, centred on b,, 1 =i < n,
have been defined and satisfy (i) p,N are disjoint for ¢ = j = n and each |,
l=i<n @KNpN,=¢,1=si=sj=mEi))NNK=9¢,1=i=n
(iv) |b;—¢q;|<27% 1 = i = n. We shall define b,_,,,N,,, so that conditions
(1)-(iv) continue to hold for n + 1.

Certainly there exists b,,, € J and an open disc N, , centred on b,,, such
that |b,,, — q,..|<27“*", N.,,NK=¢,N,,,NN,=¢ for1 =i < n; also
we can ensure, by taking b, ,, sufficiently close togq,, ., and radius N, , sufficiently
small, that p, N,,, N p,N,=0¢,1 =i = j < n (note that p,(q,,,) € K, which
is closed and disjoint from p,N) and that p,N,,, NK,=90,1 =i=<=n + 1
(note that p;(b,,,,) € L, \K, which is open in L,).

Continuing this inductive construction the set A and discs N, are constructed
and, since p;K C K,, do, with K, satisfy the requirements of the lemma.

COROLLARY. Ifz € K and Z; is the line (not ray) passing through z in the
direction a; then Z; does not meet N; for j = i. Hence there exists 8 > 0 such

that z + a;h & U N, for -3 = h = +3.
j=1
THEOREM 1. There is a complex function f(z) = u + iv defined on the plane
which satisfies CR everywhere and has the following properties:

(i) f has equal directional derivatives in all dlrectwns of a countable set
W= {a,,a,,...} of directions at every point;

(ii) f has a bounded singularity set B of planar measure mB > 0;

(iii) at every point u and v possess partial derivatives of all orders and types
with respect to x,y and u_, + u,, = v, + v, =0;

(iv) (cf. Vitushkin [1]) for every closed contour C disjoint from B, S f(2)dz=0

C

Proof. Let W be arbitrary at present and let A = {b,,b,,...}, N;,, K= A\A
with mK > 0 satisfy the hypotheses of Lemma 1. For 2 = 1 let g, (z) be a function
analytic everywhere except for an isolated singularity at b, and such that for
2,2’ outside N, and |z|, |2| = &, |£,(2)] < 2*and |g,(2) — g, ") <27 %|z—2'|.

Define f(z) = E £,(2) so that f will be defined on the plane and will have singu-

larity set B = K U A.
By the corollary to Lemma 1 f'(qa,;z) exists for z € K, ¢; € W and

f'la;2) = gil2).
k=1
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Further if we take g,(z2) = c,g(z — b,) for suitable constants c, where
g(z) = e ** g(0) = 0, and if W is chosen with +1,+i € W and all

3
arg(a;) € U (4dm — 1)w /8, (dm + 1)/ 8)

then CR holds everywhere and conditions (i) and (ii) of the theorem are satis-
fied. Provided ¢, — O sufficiently rapidly (iii) will also hold, by elementary properties
of the function g(z).

Finally let C be a closed contour of length / disjoint from B and let c, have
been chosen with z |e,] <. Since B and C are compact the distance

d(B,C) = d > 0. Let M be the upper bound of |g(z)| in the annulusd = z2=<c + 1
where ¢ is the greatest distance of a point of C from 0. Then |g(z — b,)| = M for
2€ Cand k=1, and

> S g, @) dz=ML |c,| <.
k=1 C

It is therefore justified to interchange the order of summation and integration
and deduce,

S f(Z)dz=S Egk(Z)dz=zg g,(2)dz=0
C C k=1 C

THEOREM 2. There is a complex function f(z) defined on the plane which
satisfies CR everywhere and has the following properties:

(1) f has equal directional derivatives in all directions at every point;

(ii) f has a bounded nowhere dense linear singularity set B of positive 1-dimen-
sional measure;

(iii) for every closed contour C disjoint from B, S f(z2)dz=0
C

Proof. Let L be the line segment y = 0, 0 = x = 1 and K any perfect nowhere
dense subset of L of positive linear measure. Let b;, i = 1, be the midpoints of
the disjoint open intervals composing LN\ K and let N, be open discs centred on
b; such that N, subtends an angle less than 1/ at the endpoints of the interval
containing b;. Let A = {b,,b,,...}: we shall repeat the construction in the proof
of theorem 1 using a function g(z) whose existence is established in the following
lemma.

LEMMA 2. There is a function g(z) analytic everywhere except for an isolated
singularity at 0 and having the properties:

(i) g(2) and g’ (z) are bounded in the plane excluding the bounded open region
S which is the image of the half-strip T: x > 1, 0 < y < 1 under the (multivalued)
mapping z— 2z~ '*;
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(ii) if g(0) is defined as O then g’ (a;0) exists with value O for all directions a.

Proof of Lemma. By results [2] on the approximation of analytic functions
by entire functions there exists a non-constant entire function A(z) bounded in
the plane outside 7. For example approximate exp (—(z — 1) /*) defined suitably
on the domain 7'°. By adding a constant we may suppose A (0) =

z

Defineg (z) = z° S h(z~*) dzwhere the path of integration is not to pass through

0: since the residue of A(z™*) at 0 is 0, g(z) will be defined and single valued
for all z # 0. Conditions (i) and (ii) are then satisfied.

=]

Now set f(2) = 2 c,&(z — b,). Provided ¢, — 0 sufficiently fast, clauses (i) and

k=1
(ii) of the theorem will be satisfied with B = K. Indeed, for z € K\ A and any
direction a # *1 there is a line segment in direction a containing z in its interior

and not meeting U N ,, whence, with small enoughc,, f’ (a;2) = 2 c,8' (z—b,);

k=1
conditions (i) and (11) of the lemma then ensure that this equation also holds

for a = £1 and for z € A and any a provided a term g’ (0) is taken directionally.

Finally clause (iii) follows when Z e, | <o by the same argument as used

in the proof of clause (iv) in Theorem 1.

3. FURTHER QUESTIONS

The preceding results suggest the followihg problems:

(a) The constructions of Theorems 1 and 2 depend essentially on the existence
of a set of isolated singularities with various properties. Can these be removed,
so that in each case f is constructed with a perfect singularity set B?

(b) Does f(z) exist satisfying CR everywhere and with equal directional deriva-
tives in all directions at every point, and such that its singularity set is of positive
planar measure?

(c) An affirmative answer to (b) would require the existence of a closed totally
disconnected set B of planar measure mB > 0 such that every orthogonal projection
pB on a line should be a closed nowhere dense linear set. Can such a set exist?
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