FREE HEEGAARD DIAGRAMS AND EXTENDED
NIELSEN TRANSFORMATIONS, I

Robert Craggs

This is the first of two papers (see also [7]) devoted to the study of a free
analogue, called here a free splitting homomorphism, of the algebraic formalism
for Heegaard splittings of 3-manifolds due to Stallings [30} and Jaco [10]. Roughly,
free splitting homomorphisms come from replacing surface groups by free groups
in the Stallings-Jaco formalism. A free splitting homomorphism has the form,
=4, XY: G"—> X" X Y", where G™, X", and Y" are free groups of ranks m,
n, and n respectively, and each of the factor homomorphisms {, and ¥, is surjective.
We will show in Theorem 4.1 that, after allowances are made for stabilization,
the free splitting homomorphism theory is equivalent to the theory of extended
Nielsen transformations [2]. (Extended Nielsen transformations will be described
in Section 1.)

The connection between the two theories will be made by normalizing a free
splitting homomorphism ¢ as above so that for free bases {g,:i =m}and {x;:i = n}
for G™ and X", ¢ has the form y(g,) = (x;,v;) ¢ =n) and ¥(g,,,) = (1,r). One
will then have an associated group presentation Z(y) = (Y":(r;)). Theorem 4.1
states that two free splitting homomorphisms ¢ and ¢ are stably equivalent if
and only if, after normalization, the associated group presentations Z () and F#(d)
are equivalent in the sense of extended Nielsen transformations including stabiliza-
tion.

Two applications of Theorem 4.1 will then be given. The first of these, Theorem
5.2, concerns simplifying a group presentation (Y ":(r,)) to a presentation (Y ?: (s;))
(¢ < n) through the use of extended Nielsen transformations including stabilization.
Theorem 5.2 says that this can be done if there are q elements w,,...,w, in Y"
such that {w,} U {r;} generates Y". The second application, Theorem 5.3, shows
that the stable form of the Andrews-Curtis conjecture on presentations for the
trivial group holds if and only if, in a stable sense, the conclusion of the
Grusko-Neumann theorem (see [9], [22], [11], [29], [12], [17]) holds for surjective
homomorphisms of the form, G** - X" X Y" where G**, X", and Y" are free
groups as before.

The second of the two papers will apply methods due to Rapaport [26] to
compare equivalence for free splitting homomorphisms with equivalence under
extended Nielsen transformations. Another criterion for simplifying a presentation
will be given which mostly involves normal closure properties. Finally, some
examples will be proposed which we suspect distinguish between two different
kinds of extended Nielsen equivalence classes for balanced presentations of the
trivial group.
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Here is an outline of the paper. In Section 1 we discuss some notation and
we review extended Nielsen transformations and the Andrews-Curtis conjecture.
In Section 2 we describe the free splitting homomorphism theory. Section 3 is
devoted to obtaining two normal forms for free splitting homomorphisms. In Section
4 we prove the main classification theorem relating the two theories. The two
applications described above are given in Section 5. We close the paper in Section
6 with some remarks and questions.

At about the same time that this paper and its sequel [7] were written, Wolfgang
Metzler produced, independently, a manuscript on extended Nielsen transformations
[19]. There is a small overlap of the results in the papers. The interested reader
should compare Theorem 4 in [19] with Theorem 5.3 here and Theorem 4.3 in

[7].
It is a pleasure to thank Bill Boone, Joe Rotman, and Paul Schupp for many

helpful conversations on group theory and to thank Marshall Cohen for help with
formal deformations.

SECTION 1. EXTENDED NIELSEN TRANSFORMATIONS

Throughout this paper G™, X", and Y" (m =1,2,...,n=1,2,...) will denote
free groups of ranks m, n, and n. It will be assumed that these free groups have
canonical free bases {g;: 1 <i=m}, {x;,: 1= i= n},and {y;: 1= i< n}.In partic-
ular then, for G™, X", or Y", it will be assumed that these bases are nested
for different values of m or n.

If {r;} is a set of elements in a free group W, then Gp({r;}) or Gp, ({r;})
will denote the subgroup of W generated by the elements r;. Similarly CI({r;})
or Cl,({r;}) will denote the smallest normal subgroup of W containing the elements
r;. We will use the expression, id (identity), to denote the identity automorphism
on a group, and in order to avuid confusion with the identity element of a group
we will use 0 to denote any group homomorphism A\: A — Bsuchthat A\(4A) =1 € B.

Let (r;) be a p-tuple of elements in a free group W. By a Nielsen transformation
on the p-tuple, denoted by (r;) — (s;), we mean any finite composition of elementary
transformations of the following two types:

Type 1: s;=r; (Tt #k)
s, =r;".

Type 2: s;=r; T #k)
Sp = Iyl (J # k).

Let {w,: 1 =i=n} be a free basis for the free group W, and let w € W. Then
q
w is expressed uniquely as a freely reduced product w = I | wf} (g; = £1). The

J=1
length L(w) of w relative to the alphabet {w,;} is defined to be the number of
syllables, g, in the expression above. A Nielsen transformation (r;) — (s;) on p-tuples
of elements of W is said to be length reducing (length preserving) with respect
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to the alphabet {w,} if > L(s) < > L(r,) (2 L(s) =, L(ri)), and a p-tuple

(r;) is said to be Nielsen reduced with respect to {w;} if there exists no Nielsen
transformation diminishing the sum of the lengths of the elements of (r,). Section
3.2 in Magnus, Karass, and Solitar’s book [15] and Section 2 of Chapter 1 in
Lyndon and Schupp’s book [13] are good references for the following results of
Nielsen’s on Nielsen transformations which we will need on several occasions
in the two papers: First, any p-tuple (r;) of elements in W can be transformed
to a Nielsen reduced p-tuple (s;) by a sequence of elementary Nielsen transformations
that are length preserving or length reducing. Second, the non-trivial elements
in the Nielsen reduced p-tuple (s;) freely generate a subgroup S of W. Third,
if S = W, then (s;) is up to inversions a permutation of the p-tuple (w,, ...,w,, 1, ...,1)
where the number of 1’s is (p — n). Now permutations of elements are Nielsen
transformations (see Lemma 1.1,), but they are not elementary Nielsen transforma-
tions. It thus follows from the above that any p-tuple (r;) for which {r;} generates
W, can be transformed to (w,,...,w,,1,...,1) by a sequence of length preserving
and length reducing Nielsen transformations.

Consider now the following six types of elementary transformations (r,) — (s;)
on a p-tuple of elements in Y”:

Type 1: Nielsen Type 1.
Type 2: Nielsen Type 2.

Type 3: s, =r; @ #kR)

s, =y, 1y, (€ {y.},e =%l

Type 4: s, = AN(r;) (i = p) where \ is an automorphism of Y”,

Type 5: Replace Y" by Y" "' and augment (r;) to the (p + 1)-tuple

(Si) = ((r,):yn +1)-

Type 6: 1If r, = y, and if each r; (i < p) belongs to Y" ', replace Y" by Y"™*
and diminish (r;) to the (p — 1)-tuple (r,,...,r,_,).

By an extended Nielsen transformation (compare [1]) we mean any finite
composition of transformations of Types 1-6. An equivalent set of transformations
that avoids automorphisms of Y" is described in the Appendix to this paper. We
prefer to follow language of Rapaport’s [26] and Metzler’s [18] for describing
various classes of extended Nielsen transformations: By a @, @*, resp. @**-trans-
formation, (r;) — (s;) we mean any finite composition of transformations of Types
1-3, Types 1-4, resp. Types 1-6. We emphasize that @ **-transformations can change
the sizes of tuples whereas @ and @ *-transformations cannot change sizes. The
definition of a Type 4 transformation appears to differ slightly from the one Metzler
uses. He uses automorphisms of Y" that are induced by elementary Nielsen
transformations on the free basis {y;}, but by [23] all automorphisms of Y" are
induced by compositions of the elementary transformations just mentioned; so
the two definitions of @*-transformations are equivalent. Two tuples (r,) and
(s;) are defined to be @, @*, resp. @ **-equivalentif oneis a @, @ *, resp. @ **-transform
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of the other. It is easy to check that these are equivalence relations (see the
following lemma). We will speak interchangeably of @, @*, or @**-equivalence
of tuples (r;) and (s;) and @, @*, or @**-equivalence of the corresponding group
presentations (Y"!:(r;)) and (Y"2:(s;)) for the factor groups Y"!/CIl({r,}) and
Y"*2/Cl({s;}).

LEMMA 1.1. Let (r;) be a p-tuple of elements in Y".

(1) If (r;) — (s;) is a Nielsen, @, @*, or Q**-transformation, then (s;) — (r;)
is a transformation of the same type.

(2) The transformation (r;)) — (s;), s;=r; @ # J,k), s; = ry, 8, = r; is a Nielsen
transformation.

(3) If w is an element of Y", then the transformation (r;)— ((r;),y,.,Ww) is
a Q**-transformation.

Proof. We leave the verification of (1) to the reader. The transformation in
(2) is effected as follows:

(@) r,o>r, > r.'r>r;'r,=s,(1).
(b) ;> ryr;'r,=r,=s,.
(© 8,(1) > (5,(Vs;7) " =r;=s5,.

The transformation in (3) is effected by first activating y,,., via the Type 5
transformation (r;) = ((r;,), ¥, ., ). Then an automorphism\ : Y*** — Y " *'is defined
by AMy;) = y,(t = n) and MN(y,,,) = ¥,..w. This induces a Type 4 transformation
from ((r;), ¥u11) to ((r,), ¥, 1y w).

Clearly a necessary condition for @ **-equivalence of p-tuples (r;) and (s;) of
elements in Y" is that the groups Y"/CI({r;}) and Y"/CI({s;}) be isomorphic,
for @ **-transformations are compositions of Tietze transformations. But even for
p-tuples satisfying this condition, the situation is complex: Metzler, [18] gives
some examples in this situation where the tuples are @**-equivalent but not
@ *-equivalent and other examples where the tuples are not even @**-equivalent.
Other examples of this phenomenon are described in [14] and [8]. The case where
Y"/Cl({r;}) = 1 is untouched at present and is the subject of the Andrews-Curtis
conjecture to be discussed presently.

An interesting simplification of @ **-equivalence classes results from the addition
of trivial relators to tuples. This is described by the following theorem that appears
in [3, Le. 5]. In translating to the @ **-language, the reader should bear in mind
Lemma 1.1.

THEOREM 1.2. Let (r;) and (s;) be p-tuples of elements in Y", and consider
the (2p + n)-tuples ((r;),1,...,1) and ((s;),1,...,1).

Then the two (2p + n)-tuples are Q**-equivalent if and only if the groups
Y"/ClL({r;}) and Y"/Cl({s;}) are isomorphic.

Below are listed four conjectures. When p is specialized to n in the first two,
one obtains different forms of the Andrews-Curtis conjecture [1] and [2]. The
last two conjectures are related to the Grusko-Neumann theorem.
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A, .. Let (r,) be any p-tuple of elements in Y" such that CI({r;}) = Y". Then
(r;) is @-equivalent to (y,,...,5,,1,...,1).

B_ : In the situation of A the tuple (r;) is @ **-equivalent to ((y,),1,...,1).

p,n p,n?
C.. Lety=19 X§:G"—>X"XY" be a surjective homomorphism. Then
G™ decomposes as a free product Gy * Gy such that

B(Gy)=X"x1 and $(Gy)=1XY"

D,,.: In the situation of C there is an integer / and there is a surjective
homomorphism & = ¢, X ¢,: G**— X7 X Y’ satisfying the conclusion of C,,, so
that the homomorphism (b, * &,) X (U, *b,): G * G¥'— (X" * Xy X (Y" » Y)
satisfies the conclusion of C,, ..., ., when the three free products are identified
with G™*?,X"* and Y™

m.n?

We will show in Theorem 5.3 that for m = p + n, the two conjectures B, ,
and D, , are equivalent.

SECTION 2. FREE SPLITTING HOMOMORPHISMS AND INVARIANTS OF
GEOMETRIC HEEGAARD SPLITTINGS

In this section we describe free splitting homomorphisms. To motivate their
use, and to show that the objects we end up with provide topological invariants
for 3-manifolds, we begin by reviewing the Stallings-Jaco formalism ([30] and
[10]) and some facts about free presentations for surface groups and isomorphisms
between surface groups.

By [30] and [10] it is known that Heegaard splittings can be studied formally
via the group homomorphisms they give rise to. Thus, for our purposes here,
we may take a Heegaard splitting of genus n for a 3-manifold M to be a
homomorphism

1) U= Xp:m(@)—> X" XY"

where @ is an orientable surface of genus n, X" and Y" are the free groups
mentioned in Section 1, and each of the factor homomorphisms ¥, and s, is surjec-
tive. Two splitting homomorphisms of genus n, ¥ and ¢, are defined to be equivalent
if there are isomorphisms n: 7, (@) —» m,(®), m,: X" — X", and ,: Y"— Y" such
that the diagram below is commutative:

d:m(Q) —> X"XY"

(2) \L M \l,("ll,'rlz)
g:m @) —> X"XY”

We are intentionally ignoring conditions on orientation because they disappear
anyway in the passage to free splitting homomorphisms. Jaco allows an interchange
of the factors X" and Y" in his definition of equivalence. The correspondence
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with geometric Heegaard splittings stands regardless of whether or not this
interchange is allowed.

Consider the group G*". Let g be an element of G** satisfying the two conditions,
4n
(i) for some free basis {e;} for G**, g = l—[ ez (e; = =1) where each generator

Jj=1
. 1 -1
e; appears twice, once as e; and once as e; -, and

(ii) the length 4n of the spelling of ¢ with respect to {e;} is minimal over
all free bases for G*".

Then the fundamental group =,(Q) of an orientable surface @ of genus n has
a presentation 1, () = (G**:q). This follows from standard cut and paste argu-
ments as in [17, Ch. 2, Secs. 5-7]. The presentation arises in the following way:
Start with a graph that is the wedge of 2n circles identified with the generators
e; and then attach one boundary component of an annulus to the graph reading

the cyclic word g = Hez’f to get a punctured surface E(g) whose boundary is

a simple closed curve. Then attach a disk D(g) to E(q) along BdE (q) to get a
closed orientable surface of genus n. By the classification theorem for surfaces
(see for example the reference [17] above), we may assume that E(q) and D(q)
are contained in @. Thus there is a natural homomorphism p: G** — m, () induced
by the composition G*>* — ,(E (g)) — , (). By the Seifert-van Kampen theorem
(see [17, Ch. 4]) ker . is the normal closure of g.

Let (G*:q) and (G®:q’) be presentations for m,(Q) as in the preceding
paragraph corresponding to partitions (E(g),D(g)) and (E(q’),D(q’)) and homo-
morphisms p: G*" — m, (Q) and v: G*" - m,(Q). Let n: 7, (®) — =, (Q) be an auto-
morphism. By [23] and [16, Th. 2], n is induced by a homeomorphism A of @,
and by isotopically modifying A holding the basepoint fixed we may assume that
h(D(q’)) = D{(q). Thus hA(E(q’)) = E(q) and so there is an automorphism
MNg:G* — G corresponding to the automorphism (2|E(q’)). on ,(E(q’)) so
that vn; = pm. Thus there is associated with the equivalence (2) a commutative
diagram,

= dv
\’ITI(Q)—dZX"X Y”
3) Ne J/Tl \L (“1»"‘\2)

;wl(Q)—l!—iX" XY"

A4

GZn
Yo =Yp
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We will refer to the homomorphisms $, and &, as free presentations for
and ¢, and we will model equivalences in the free splitting homomorphism theory
on the outer block in (3). This will enable us to treat invariants of free presentations
for Heegaard splitting homomorphisms as invariants of geometric Heegaard dia-
grams.

We define now a free splitting homomorphism to be a homomorphism of the
form ¥ =Y, X ¥,: G™— X" X Y" where each of the factor maps Y, and ¢, is
surjective. We do not require that m equal 2n or that m be even. This generality
will enable us to set up criteria for @* and @**-equivalence of unbalanced group
presentations. Let { and ¢ be two free splitting homomorphisms from G™to X" X Y".
We define ¢y and ¢ to be equivalent if there are isomorphisms n:G™ — G™,
n,:X"— X" and n,: Y" — Y” such that the diagram below is commutative:

¢ : G" —- X"xXY"
@) In V (nyoma)

y : G ™ X"xXY"

We define a standard free splitting homomorphism x,:G*— X" X Y" by
X.(&:)=(&,y,) i = n) and x,(g;.,) = (L,y;). The particular description given
for x, has been chosen to correspond to the normal forms that we will develop
in the next section. Let : G™'— X"1 X Y"1t and $:G™2— X"2 X Y "2 be two split-
ting homomorphisms. We define the sum ¢ # ¢ of Y and ¢ to be a homomor-
phism from G™1"™2 o X"1*"2 X Y"1*"2 defined as follows: First define

AMXTEX Y2 XMt x YRt
by A ((x;,1)) = (X:4n,,1) and M((1,y,)) = (1,y,-+nl) Then set,
b#b(g)=V(g) E=n)) # blgi,) =rd(g) (=n,)

q" # ¢(gi+n1+n2) = llj(g‘i‘%nl) (l = ml - nl)
Y# S (Eivm an,) = NP(&isn,) (E=my—ny).

Note that the sum ¢ # ¢ is just a rearrangement of the homomorphism
W * b)) X Wy *dy): G™1+ G2 (X1 X7™2) X (Y"1 % Y "2),
Finally, we define two splitting homomorphisms ¢ and ¢ to be stably equivalent

if there are integers p and g such that ¢ # x, and ¢ # x, are equivalent.

The following lemma shows that free splitting homomorphisms provide 3-mani-
fold invariants (compare Statement (6) in [19]):

LEMMA 2.1. Let b, and &, be free presentations for Heegaard splitting
homomorphisms ¢ and & (as in (1)) corresponding to 3-manifolds M and N.
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Then b and ¢ are equivalent or stably equivalent only if 4, and & are equivalent
or stably equivalent. In particular, any stable invariants of ; and b are topological
invartants of the manifolds M and N.

Proof. From (3) equivalences of Heegaard splitting homomorphisms induce
equivalences for free presentations for these homomorphisms. Similarly, from [30]
and [10] sums and stabilizations of Heegaard splitting homomorphisms induce
corresponding sums and stabilizations for the free presentations. Thus the first
assertion in the conclusion of the lemma holds. The second assertion now follows
from the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings
of a 3-manifold [27], [28] (see also [6]).

Examples. Below are described two free splitting homomorphisms from G°
to X? X Y>. According to Metzler [18, p. 9] the two 3-tuples (y>,¥3, [¥,,¥.]) and
(¥%,73, [¥1,¥2]) are @**-equivalent but not @*-equivalent. By Theorem 4.1 the
two free splitting homomorphisms are stably equivalent. It would be somewhat
surprising if the two turned out to be equivalent.

g, — (x,y) (=2 g, — (x,y) (=2)
gs — (1,y3) g;— (Ly])

g, — (L,y3) g.— (Ly;)

gs = (1, [¥1,5:]) gs— (1, [y,y3]).

SECTION 3. NORMAL FORMS FOR FREE SPLITTING HOMOMORPHISMS

In this section we develop two normal forms for free splitting homomorphisms.
As indicated in the introduction these will provide us with a means to relate
the free splitting homomorphism theory with the theory of extended Nielsen
transformations.

LEMMA 3.1. (Normal form). Let & be a free splitting homomorphism from
G"to X" XY" i

Then & is equivalent to a splitting homomorphism & such that $(g;) = (x;,v;)
(t=n) and &(g,,,) = (1,r;). Here {v;} may or may not be a free basis for Y".

Proof. The factor homomorphism §, is surjective so ¥, (g;) generates X". By
the Nielsen reduction theorem described in Section 1, there is a sequence of length
preserving and length reducing Nielsen transformations converting the m-tuple
W,(g,) to (x,,...,x,,1,...,1). Carry out the corresponding sequence of transforma-
tions on (g,,...,&,,) to get a new m-tuple (g1, ...,2..) such that {g},...,g%.} is
a free basis for G™. We then have ¥ (g!) = (x;,v;) (=n) and ¥(gi,,.) = A,r;).
Define an automorphism m:G™ — G™ by n(g;) = g, (i = m). Then the promised
¢ is given by ¥m.

Remark. By a length argument we may suppose that the 1’s in the m-tuple
(b, (g;)) are at most permuted and are not otherwise involved in the sequence
of Nielsen transformations. Thus if ¢, (g,) = 1, then {¢,(g;) ends up being one
of the elements r;,. We will need to use this observation in Section 5.
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We will refer to a free splitting homomorphism with the form of ¢ in Lemma
3.1 as being in normal form. We denote the group presentation (Y”":(r,)) by Z(¢d).
Now every finite group presentation & = (Y":(r;)) is associated as Z () for some
free splitting homomorphism {§ in normal form. To see this, set m = n + p, and
define ¥:G"—> X" X Y" by ¢(g,) = (x,,y;)@i=n) and ¥(g,,,) = (1,r;). This con-
struction is due to Mihailova [20] (see also the books by Miller [21, pp. 35-42]
and Lyndon and Schupp [13, pp. 193-195]). The interest of these authors’ in
this particular form was in showing that the generalized word problem and similar
problems are recursively unsolvable in direct products of free groups. We will
refer to any free splitting homomorphism with the form { defined above as a
Mihailova map. The following lemma, together with Lemma 3.1, shows that any
free splitting homomorphism is stably equivalent to a Mihailova map:

LEMMA 3.2 (Mihailova normal form). Let \:G™ — X" X Y" be a free split-
ting homomorphism in normal form and with associated group presentation

L) = (Y™ (r)).
Then & # x, is equivalent to a Mihailova map ¢:G™ " — X" X Y** whose
associated group presentation P(d) is (Y"1 ((r;), Y s1s s Yon) )-

Proof. We will be changing ¢ through several steps. To simplify notation we
will regard ¢ as being redefined at each step and so use the symbol ¢ to denote
the new homomorphism each time.

Step 1. Stabilize ¢ to ¢ # x,, to get a new ¥ defined by,
b(g:) = (x,0) @G=n) V(&)= @in,0,) (E=n)
U(gison) = (1) G=m—n)  (W@(&irmen) = L,Y.0,)
From now on each step will modify { by redefining it as (n;", id) ¥m where

M, My, and m, = id are the isomorphisms in (4), the model for equivalence.

In any given step at most one of n and n, will be different from the identity.
We will specify the one that is not the identity and not mention the other.

Step 2. Define m:G™*" — G™*® by M (g,,,) = Lisn&itmsn (i = n) and
n(g;) = g, otherwise. Now redefine ¢ as indicated at the end of Step 1 to give
{y the form,

U(g;)=(x;,v,) (i=n) Y (840 = (x;4,,1) (E=n)
“’J(gi+2n) = (lﬁri) (i =m— n) L‘J(gz+m+n) = (l’yi+n)‘

Step 3. Let G4, G, G, and G, denote the respective subgroups of G™**",
Gp({g;:i=n}), Gp{g:n+1=i=2n}), Gp{g;:2n + 1 =i = m + n), and
Gp({g;:m + n + 1 = i}). Note that G™*** decomposes as G, * G * G * Gp,.

Now ¢, is surjective so for each y,(i = n) there is an element d; € G, ~ G,
such that ¢(d,) = (w;,v;'y;). Define another automorphism m of G™**" by
MN(&ivn) = 8irnd; I = n) and n(g;) = g, otherwise. Redefine ¢ as before to give
Y the new form,
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v(g;) = (x;,v;) U(girn) = (2 w5, vi_lyi)
¢(gi+2n) = (]-’ri) ¢(gi+m+n) = (I!yi+n)'

Step 4. Note that {x;,x,,,w,;} is a free basis for X**. Thus there is an
automorphism m;': X** — X" given by

n @) =xGE=n) and w7 (x,,w) = x,,.
Redefine ¥ as indicated before to give { the new form,
V(g) = (x,0) V(&) = X0 'y)
U(&iv2n) = (L) V(&ismin) = (LYiin)

Step 5. Define another automorphism m of G™**" by n(g,) = g.,8,;., i = n)
and n(g;) = g; otherwise. Redefine { as before to get the new form,

¥(g:) = (x;x,,,,7) U(girn) = (xi+mvi_1yi)
ll"(gi+2n) = (1,1',-) ¢(gi+m+n) = (l’yi+n)'

Step 6. Define an automorphism n;': X* — X** by ;" (x,x

)==x; (i = n)
and n7" (x,,,) = x,,,. Redefine § as before to get the new form,

i+n

(g = () U (&ivn) = @it 07 )

¢<gi+2n) = (l’ri) "b(gi+m+n) = (1!yi+n)'
Step 7. For each i < n, let ¢, be an element of G, such that ¥, (¢;) = v; 'y,.
Define an automorphism m of G™**" by M(g;,,) = &iin€: Eismsn (i=n) and

m(g;) = g, otherwise. Set f,=y,(e;') (i = n). Redefine § as before to get the
new form, .

b(g;) = (x;,5) U (8ivn) = X fisYivn)
llf'(gi+2n) = (l’ri) l!J(gi+m+n) = (l’yi+n)'
Step 8. The set {x,,x,,,.f.} is a free basis for X**. Define an automorphism

nitof X*by m1'(x;) = x;(i= n)and n{ *(x,,,.f.) = x,, .. Then redefine ¢ as before
to get, finally, the desired form,

\l»’(g;) = (xi’yi) ll"(gi+n) = (xi+n ’yi+n)
lp(gi+2n) = (lsri) ll"(gi+m+n) = (lryi+n)'
The following lemma, due essentially to Mihailova [20], reveals the connection

between surjectivity of splitting homomorphisms and presentations for the trivial
group. The reader should compare [30], Th. 1].
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LEMMA 3.3. Lety:G™ — X" X Y" be a free splitting homomorphism in normal
form with associated group presentation & ().

Then  is surjective if and only if () presents the trivial group.

Proof. Stabilization does not change the surjectivity or lack of it; so by Lemma
3.2 we may assume that ¢ is a Mihailova map. But now the lemma follows from
[20], [21, Ch. 3, Le. 18], or [13, Ch. 4, Le. 4.2].

SECTION 4. THE MAIN CLASSIFICATION THEOREM

We come now to the main classification theorem, Theorem 4.1, relating the
two theories. This theorem is stated below but its proof is delayed so that we
may introduce some geometric machinery to prove it. The geometric approach
here uses mapping cylinders for geometric maps corresponding to free splitting
homomorphisms and is essentially the free counterpart of the mapping cylinder
construction used by Jaco [10] to analyze constrained Heegaard splitting homomor-
phisms. Formal deformations (to be discussed presently) will be used to analyze
these mapping cylinders. In the sequel to this paper we will give a purely algebraic
proof of Theorem 4.1 based on Rapaport’s techniques [26]. The geometric approach
used here seems to be of some interest in its own right, for as we will point
out in Theorem 4.6, this approach enables us to characterize equivalence of
2-dimensional polyhedra under formal 3-deformations in terms of relative homotopy
equivalence of other 2-dimensional polyhedra.

THEOREM 4.1. Let  and & be free splitting homomorphisms in normal form
and with associated group presentations Z(b) and F#(d).

Then & and & are stably equivalent if and only if () and P(d) are Q**-
equivalent.

We will be dealing with polyhedra in this section. We will assume that all
maps mentioned are piecewise linear {(pwl). We begin our preparations for the
proof of Theorem 4.1 by recalling that there is a well known method for associating
with any compact, connected, 2-dimensional polyhedron A, a finite presentation
P(A) = (Y": (r;)) for the fundamental group m, (A). This is based on a decomposition
of A as a cell complex. See [34] for example. Next, let A and B be polyhedra.
We say that A formally j-deforms to B, the deformation denoted by A »\B, provided

J
that A can be transformed to B by a sequence of abstract elementary polyhedral

e

expansions ( /) and elementary polyhedral collapses ( e\) such that the dimension
of any intervening polyhedron in the process does not exceed j. See [31], [32],
[33], and [34] for a fuller discussion. There is an obvious extension to tuples
of polyhedra and subpolyhedra defined by the requirement that there be consistent
sequences of deformations on the items in the tuple. We emphasize that the collapses
and expansions here are polyhedral. The reason for this restriction is so that
we may have available the following folk theorem due to Wright {34, Cor. 3.1}
(see also [19, Sec. 1]):
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THEOREM 4.2 (Wright). Let A and B be compact, connected 2-dimensional
polyhedra with associated group presentations (Y% (r;)) and (Y "2 (s;)).

Then A /3\.B if and only if (r,) and (s;) are Q**-equivalent.

Remark. It may not be obvious to a person reading [34] that the results
there imply Theorem 4.2. In particular, it is not apparent what corresponds in
[34] to transformations of Type 4. For this reason we are including an appendix
which shows how to make the transition from [34, Cor. 3.1] to Theorem 4.2.

Any formal deformation A A B induces a homotopy equivalence between A
J
and B. It is enough to note how this works for a single elementary expansion

e
A 7B=A U E where E is a ball with £E N A a ball in BdE of dimension one

less. One has an inclusion map A — B and a retraction r: B— A defined so that
r(E) = E N A. These two maps define the homotopy equivalence.

Next we provide a geometric interpretation for free splitting homomorphismes.
Let ¢ = ¢, X s, be a free splitting homomorphism from G™ to X" X Y". Let (A, a),
(B, b), and (C, c) be finite, connected, pointed polyhedral graphs with fundamental
groups isomorphic to G™, X", and Y” respectively via isomorphisms

NGT—> w(A,a), p:X"> w(B,b), and o:Y"— m,(C,c).

Let f: (A,a) > (B,b) and g: (4,a) — (C,c) be maps such that §, =p ' f,\ and
U, = o 'g.\ where * denotes the induced homomorphism on the fundamental
group. Consider the mapping cylinders,

M=Ax[-1,00] + B

(x,—1)=f(x)

M,=Ax[01] + C.

(x,1)=g(x)

Here + denotes disjoint union with identification. We have a double mapping
X=)y
cylinder defined by
MM, = M + M

@0 =(x,0 &

We say that the triple
T=(MM,,aXx [-1,1]),(;M,a X [-1,0]),(M_, a X [0,1]))

is a geometric realization for the free splitting homomorphism . The realization
Tis given a polyhedral structure as follows: Take triangulations (¢, / (a)), (K, K (b)),
and (L,L(c)) of (A,a), (B,b), and (C,c) so that f and g are simplicial with respect
to these triangulations. Then regard the mapping cylinders as the simplicial mapping
cylinders as defined by Whitehead [33] or Cohen [5, Sec. 4]. By the Hauptvermutung
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for 2-complexes (see [25] or [4]), the polyhedral structures on T'defined by different
triangulations are equivalent so it does not matter really which triangulations
we use.

The following lemma shows that geometric realizations for free splitting
homomorphisms are unique up to formal deformation. The use of Theorem 7.1,
of [5] in the proof here was suggested by Marshall Cohen.

LEMMA 4.3. Let T and T' be geometric realizations for equivalent free splitting
homomorphisms b and ¢.

Then T {35. T'.

Proof. Let T and T' be built from graphs (4,a),...,(C’,c¢’), maps f, g, f’,
g’, and isomorphisms \,...,o". The proof of the lemma is based on a sequence
of simplifications on the assumptions about the items above. Each step in the
proof proceeds on the basis of the preceding simplifications.

Step 1. We may assume that ¢ = . Given an equivalence between ¥ and
&, construct a geometric realization 7" for ¢ using the same graphs (4, a), ...,(C,c)
and the same maps f, g as for T but using different isomorphisms )\, p”, »” that
reflect the equivalence between § and ¢. But then 7"= T” so we may now regard
T as a geometric realization for ¢.

Step 2. Wemay assume that (B,b) = (B',b’),(C,c) = (C',¢'),p=p',and v = w’.
Consider, for the moment, just the [—1,0] side in the triple 7. The map p’p~'
induces a homotopy equivalence from B to B’. Identify b with b’ by taking a
different copy of B if necessary. By taking formal 2-deformations that reflect
Nielsen transformations, it is possible to construct a formal 2-deformation B /2&31

that holds b fixed and effects the homomorphism p’p~" via a sequence of inclusions
and retractions induced by the elementary steps in the deformation. This deforma-
tion may be assumed to be divided into pairs of steps: elementary 2-expansion

of a 1-polyhedron (;/') followed by an elementary 2-collapse (;\) of the result-
ing 2-polyhedron to a new 1-polyhedron. Thus it is enough to consider the case
B ;}'B(l) ;\.B’.

Define a new triple T'(1) by using the old maps but replacing B by B(1). Clearly
T 2/’ T(1). Let r: B(1) > B’ be a pwl retraction induced by the collapse B(1) \\ B’.
Note that p’ = r,p. Define a new triple T'(2) from T(1) by replacing B(1) by B’,
fby rf, and p by p’. We will show that 7°(1) ?T(Z).

Observe first that f and rf are homotopic maps from (4,a) to (B(1),5). To

avoid confusion with the mapping cylinder notation we define a polyhedron A*
equivalent to the product A X [0,1] with subpolyhedra A*(0), A*(1), and
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A*(a X [0,1])

corresponding to A X 0, A X 1, and a X [0,1]. By taking a pwl approximation to
the original homotopy between f and rf, we obtain a pwl map A: A*— B(1)
such that h|A*(0) represents f (via A = A*(0)) and h|A*(1) represents rf (via
A = A*(1)). We assume that A is chosen so that A(A*(a X [0,1])) = b. Define a
product map %k from A* to C so that % corresponds to the projection of A X [0,1]
to A followed by g. The map % is clearly pwl. Let J, K, and L be complexes
triangulating A*, B(1), and C so that A and % are simplicial maps with respect
to these triangulations and so that A*(a X [0,1]) is triangulated as a subcomplex
J(a X [0,1]) of J. Let J(0) and J(1) denote the subcomplexes of J triangulating
A*(0) and A*(1).

Define a new triple 7'(3) from 7'(1) by using A* in place of A, A*(a X [0,1])
in place of a, and A and % in place of f and g. Regard T(1) and T'(2) as being
defined by the restrictions of A* to A*(0) and A*(1), and give all three triples
T(1), T(2), and T'(3) polyhedral structures by regarding the mapping cylinders
+M and M, as being the simplicial mapping cylinders defined by Cohen [5, Sec.
4] for the complexes J, K, and L.

It is well known that for complexes of dimension less than or equal to 2,
polyhedral collapses of complexes to subcomplexes (in which each elementary
collapse involves a ball that is a subcomplex) can be effected simplicially. Thus
we have a simplicial formal deformation:

(5) J(0) i/‘J(O) U J(a x [0,1]) Z/ J ;\ J(1) U J(a X [0,1]) j\ J(1).

Consider a simplex ¢ of J. By [5, Th. 7.1,] the polyhedra (¢ X [—1,0])/% and
(o X [0,1]) /% are balls where /h and /% indicate identification of points in o X —1
and o X 1 according to A and k. By mimicking the expansions and collapses in
(5) by expansions and collapses of the balls (o X [—1,0])/k and (o X [0,1])/k
along the walls of the mapping cylinders , M and M, and then collapsing the
base B (1) 2\.3 ’, we obtain a formal deformation (recall that 7°(1) and 7'(2) are

identified with restrictions of 7°(3)):

M 2 MU AT @X[0,1]) g MU (A% (@ X [0,1]) X [~1,0])/A
£ oM 3 MU @A @x [0,1]) X [=L,0D/h % MU A*(@X [0,1]) X\ /M.

There is a similar deformation M, é\M . Where the two copies of M, are

identified with restrictions of M, associated with A*(0) and A*(1). Combining
these two deformations with the deformation 7° 2/’T(l) obtained previously, we

obtain the formal 3-deformation
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T /TAQ) ATE) NT(2).
2 3 3

The change C— C’, v —> ' is effected in the identical manner. Finally we
end up with a triple 7" associated with the graphs (4,a), (B',b’), (C’,c’), maps
f” and g”, and isomorphisms \’, p/, and o’. It is easy to check that the maps
f" and g” still represent §, and {, in the revised model. Now use T'” for T.

Step 3. We may assume that A = A’ and X\ = \’. Reversing the roles of A
and A’ we construct, as in Step 2, a formal deformation A’ /2\...A fixing a and
effecting the map AN(\’) ~'. We will construct a new triple 7” using A’ and \’

in place of A and A, and we will construct a formal deformation Téy T”. As in
Step 2 we may assume that the deformation A’ /2\ A is made up of the two steps

e e
A’ 2/' A1) ;‘ A. Let r: A(1) > A be a retraction associated with the collapse

A1) \ A so that A\(\') ' =r|A’. We will use the retraction r to define new
mapping cylinders and new triples 7'(1) and T".

Let 2 and & be maps from A(1) to B and C defined by h = fr and %k = gr.
Because f, g, and r are pwl, h and % are also pwl. Let f” and g” denote the
restrictions 2 |A’ and k|A’. Define a new triple 7(1) from T by using A(1) in
place of A and 2 and k in place of f and g. Then define a triple 7 from 7'(1)
by taking the restriction associated with A’, f”, and g”. It is easy to check that
f” and g” represent ¢, and ), in the new model. Choose triangulations ¢/, K,
and L of A(1), B, and C so that with respect to these triangulations the maps
f. & h, k f’, and g” are simplicial. We suppose also that a = a’ is a vertex of
J. Let J(A) and J(A’) denote the subcomplexes of ¢/ triangulating A and A’. Let
the polyhedral structures on 7, T'(1), and 7" be defined as in Step 2.

s s
As in Step 2 we have a simplicial deformation J(A) 2/' J 2\ J(A’), and as

in Step 2 this leads to a deformation T 3/ T(1) ?}‘ T”. Now use T” in place of

T.

Step 4. We may assume that f =’ and g = g’. There are homotopies from
f to f’ and from g to g’ both fixing the image of a. The analysis of this step
proceeds now exactly as in Step 2.

We have, at this point, reduced the problem to the trivial case T'= T, and
the proof of the lemma is complete.

The following theorem, together with Theorem 4.1, will show that @**-
equivalence of p-tuples can be posed as a problem in relative homotopy equivalence
of geometric realizations for splitting homomorphisms (see Theorem 4.6). This
result appears to have some similarity with the results in Section 2 of [19].
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THEOREM 4.4. Let ¢y and & be free splitting homomorphisms with geometric
realizations T () and T(d).

Then ¢ and o are equivalent if and only if T({) and T(db) are homotopy equivalent
triples.

Proof. Formal deformation is a strong form of homotopy equivalence; so if
¢ and ¢ are equivalent, then T'(¢) and 7'($) are homotopy equivalent by Lemma
4.3. On the other hand, suppose that T() and 7T'(b) are homotopy equivalent.
Let A (), ..., C(d) be the associated graphs. Then, because the homotopy equivalence
is a relative one, A({) X 0 must be taken to A(d) X 0 and vice versa, and the
homotopies describing the equivalence must restrict to homotopies of the 0-sections
A @) X 0 and A ($) X 0. By adjustments along the walls of the mapping cylinders,
we may suppose that the equivalence exchanges B(y) with B(d) and similarly
exchanges C(y) with C(¢). But then the equivalence between ¢ and ¢ can be
read off by substituting in (4) the fundamental group maps induced by restrictions
of the homotopy equivalence T'(d) — T'(f) to A (d), B(d), and C().

LEMMA 4.5. Lety:G™ — X" X Y" be a free splitting homomorphism in normal
form, and let Z(§) = (Y™: (r,)) be its associated group presentation.

Let T=((MM_,, a X [—1,1]),...) be any geometric realization of ¥. Finally let
D be any compact, connected 2-dimensional polyhedron whose fundamental group
is read as #(D) = Z({) in the manner previously described.

Then MM, guD.

Proof. By Lemmas 4.2 and 4.3, it is sufficient to find one T realizing ¢ and
one D realizing Z(¥) for which the conclusion of the lemma holds. We construct
T according to the recipe for geometric realizations but subject to the refinements
described below:

First let A be a wedge of m circles with wedge point a, and think of A as
a wedge A; v A, corresponding to the free product decomposition G™ = G, » G,
where G, = Gp({g;:i=n}) and G, = Gp({g,.,.}). Choose (B,b), (C,c), f, and g
so that:

(i) f maps A, to the base point b € B,
(ii) f maps A,; homeomorphically onto B,

(iii) g attaches the circles in A, to C according to the words r; in the group
presentation Z () = (Y": (r,)),

(iv) g attaches the circles in A, to C according to the words v, = ¥, (g,)({ < n).
Consider the subpolyhedra E, F, and E, of .MM, defined by,

E= A, X[-L1])/f,gUuBU C
F=AyX [-L1])/f,gu C
E,=ax [-1,1] U C.

As in the proof of Lemma 4.3, /f,g indicates that ‘identifications are made at
the —1 and 1 levels.
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Now MM, =E U F,and E N F = E,. But, by the definition of f, E is a product
up to (A, X 1)/g; so E collapses to E, and thus ,MM_, collapses to F. But F
is made up of 2-cells attached to C according to the recipe #(J) where the 2-cells
are then bound together along the arc @ X [—1,1]. Thus the group reading Z(F)
may be taken to be Z(), and we may take D to be F to finish the proof of
the lemma.

Proof of Theorem 4.1. First suppose that the presentations Z(y) and ()
are @Q**-equivalent. By stabilizing ¢ and ¢ we may as well assume that Z()
and Z() are Q*-equivalent. By Lemma 3.3 we may assume that ¢ and ¢ are
Mihailova maps from G™ to X" X Y” and that

ZW) = (Y"(r,)) and Z($) = (Y":(s,))

are still @*-equivalent. Now, without loss in generality, we may suppose that
(s,) results from (r;) by a single transformation of Type 1-4. We consider the
possible types separately and we leave consideration of Type 1 to the reader:

Type 2. Let s, = r,r; and s; = r; otherwise. Define an isomorphism v: G” - G™
by W(&€hin) = Erin&i+n and n(g,) = g, otherwise. Set m, = id and v, = id in (4).
Then (4) defines an equivalence between { and &.

Type 3. Let s, = y,°r,y; and s; = r, otherwise. Define n: G™ — G™ by
N(&rsn) =&, &rin&; and m(g;) = g, otherwise. Set m, =1id and q, = id. Then
we have an equivalence defined by (4) as in the Type 2 case.

Type 4. Let s;=\(r,) where \: Y" — Y" is an automorphism. First let
v: X" — Y" be the isomorphism defined by v(x;) = y, (i = n). Define isomorphisms
M: X" > X" andn,: Y"> Y by n,=A"" and q, = v *A"'v. Now observe that
Y, and &, both take G, isomorphically onto X" where G, * G is the free product
decomposition of G™ described in the proof of Lemma 4.5. Thus for each x,(i < n)
there is an element e, € G, such that {,(e;) = n, (x;). Clearly {e;} is a free basis
for G,. Define an isomorphism w: G™ — G™ by m|Gg = id and n(g,) = e;
(f = n). Then n,m,, and 1, define an equivalence in (4) between ¥ and .

Suppose now that  and ¢ are stably equivalent. Then as before we can replace
¥ and ¢ by stable versions of themselves so that ¢ and ¢ are equivalent and
so that the @**-equivalence classes of the new presentations 2(§) and Z(¢) are
the same as the old classes. Let T = (( ;MM ,...)and T’ = ((,, MM . , ...) be geometric
realizations for ¥ and ¢, and let D and D’ be compact, connected 2-dimensional
polyhedra with associated group readings Z(y) and #(¢). By Lemmas 4.3 and
4.5 we have a sequence of formal deformations,

6) D~ MM, A~ MM,

Thus by Wright's theorem, Theorem 4.2, Z({) and #($) are @ **-equivalent.

The theorem below shows how to re-express equivalence of 2-dimensional
polyhedra under formal 3-deformations in terms of relative homotopy equivalences.

THEOREM 4.6. Let D and E be compact, connected 2-dimensional polyhedra
with associated group presentations
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PD)=(Y"u(r,..,r,)) and P(E)=(Y"%(s,,...,5,))
for w, (D) and =, (E). Set m, =n,+p and m, =n, + q, and let ¥ and ¢ denote
the Mihailova maps ¢: G™* — X"t X Y™ and $: G™2— X"2 X Y2 defined by

¥(g:)=(x,y) G=n,), V(g,,)=([Lr),
¢‘(g,) = (xi:yi) (l = nz): and ¢(gi+n2) = (1’81')'

Then D ?E if and only if for some integers k and /, the geometric realizations

T # x,) and T(d # x ) for b # x, and ¢ # x_, are homotopy equivalent.
Proof. By Lemma 4.2, D ?E if and only if (r;) and (s;) are @**-equivalent.

By Theorem 4.1, (r;) and (s;) are @ **-equivalent if and only if ¥ # x, and ¢ # x,
are equivalent for some % and # By Theorem 4.4, y # x, and & # x_ are equivalent
if and only if their geometric realizations, T'(y # x,) and T' (¢ # x ), are homotopy
equivalent.

SECTION 5. APPLICATIONS

In this section we give two applications of Theorem 4.1. The first of these
gives a sufficient condition for simplifying a group presentation by @ **-transforma-
tions. The second relates the Andrews-Curtis conjecture (see Section 1) to the
Grusko-Neumann theorem.

LEMMA 5.1. Consider the homomorphism v:X"— Y" given by v(x;) =y,
(i = n). Let ¥ and ¢ be two free splitting homomorphisms from G™ to X" X Y"
defined by ¥(g;) = (x;,v) C=n), ¥(g:,,) = A,r), d(g,) = (u,,y,) and

¢(gi+n) = (Si’l)

where v; = v(u;) and r; = v(s;).

Then ¢ and ¢ are stably equivalent. Moreover, if { is a Mihailova map then
¢ and ¢ are equivalent.

Proof. Suppose first that ¢ is not a Mihailova map. By the proof of Lemma
3.2, applied to ¢ and applied to ¢ with the roles of X" and Y" reversed, we
can stabilize both ¥ and ¢ and then renormalize them both so that s is a Mihailova
map and so that the hypotheses of the lemma still hold. Thus it is sufficient
to prove the lemma for the case where ¢ is a Mihailova map.

The homomorphism ¢, takes G, isomorphically onte X" where G™ = G, ~ G
is the free product decomposition of G™ described in the proof of Lemma 4.5.
For each s; € X" there is an element ¢, € G, such that ¢,(e;) = s;'. Define an
automorphism m:G™— G™ by n(g,) =g, (( = n) and n(g,,,) = (e,8;,,) . Set
m, = id and n, = id in (4). Then m, m;, M, define an equivalence in (4) between

¢ and ¢.
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THEOREM 5.2. Let (r;) be a p-tuple of elements in Y". Suppose that for some
q < n, there exist elements w,, ...,w, in Y" so that {w;} U {r,} generates Y".

Then (r;) is @**- equwalent to a (p — (n — q))-tuple of elements (t,, ...
in Y

Proof. Set m = n + p and define a homomorphism $:G™ — X" X Y”" by
P(g;) = (x,w;) @ = q), ¥(g,) = (x,,1) (g <1 =n), and ¥(g.,,) = (1,r;). By the
hypothesis of the theorem, { is a bonafide free splitting homomorphism. Notice
that ¢ is in normal form.

7p (n— q))

Now carry out the normalization construction in the proof of Lemma 3.1 with
the roles of X” and Y" reversed. Let ¢ denote the resulting homomorphism where
d(g,) = (u,;,y) ¢ = n) and & (g,,,) = (s;,1). By the remark following Lemma
3.1 we may assume that the images (x;,1) ( > gq) are left unchanged in the process.
This fact has two consequences: First, by rearranging the terms s;, we may suppose

that the last (n — ¢) terms in (s,,...,s,) are x_,,,...,x,. Second, since the Nielsen
transformations in the construction do not involve the 1’s, it follows that the
first p — (n — q) terms in (s;) do not involve x,_,,, ...,x,; that is, these terms are

elements of X7

By Lemma 5.1, ¢ is stably equivalent to the free splitting homorphism
$:G™ — X" X Y" defined by ¢, =v ' d, and ¢, = vd,. Set ¢, = v(s;) (i = p).
Then since ¢ is equivalent to ¢, ¢’ is, by transitivity, also equivalent to {. Thus
by Theorem 4.1, (r,) and (¢,,...,t,) are @**-equivalent. But, by the preceding
paragraph, (¢,,...,t,) reduces to the (p — (n — q)) tuple ¢,,...,t,_(,_,) of ele-
ments in Y? by (n — gq) successive transformations of Type 6. Thus (r;) and
¢y, .- ty_(n_q) are @**-equivalent as desired.

The Grusko-Neumann theorem [9], [22], [11], [29], [12], [17, Ch. 4] states
that if \:G — A * B is an epimorphism from a free group G to any free product
of groups A * B then G admits a decomposition as a free product G, * G5 such
that N(G,) = A and A(G) = B. The theorem which follows shows that, at the
stable level, the existence of such free product decompositions for free splitting
homomorphisms is equivalent to the conjecture, Conjecture B in Section 1, that
presentations for the trivial group are standard (in the sense of @ **-transforma-
tions).

THEOREM 5.3. Let (r;) be a p-tuple of elementsin Y" withp = n. Setm = n + p
and let ¢ be any free splitting homomorphism in normal form with

P) = (Y":r,).

Then (r;) is @**-equivalent to (y,,...,y,,1,...,1) if and only if for some number
/, the group G™** in the sum (U # x,): G™** = X" X Y"*“ decomposes as
Gy*Gysothat (W# x,)Gx)=X"""X1and $# x,)Gy)=1XY"*"

Proof. Let x,,, (m = 2n) denote the free splitting homomorphism from G™
to X" X Y" given by x,,,.(&) = (x,¥) C = n), Xpn.(&:ir,) = 1L,y) G = n), and
Xm.n(&irn) = (1,1) ¢ > n). That is, x,, , is the Mihailova map associated with
the group presentation (Y":(y,,...,¥,,1,...,1)). Notice that x,, , # x_ is equivalent
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t0 X,ussns - By Theorem 4.1, (r;) is @**-equivalent to (y,,...,y,,1,...,1) if and
only if for some 4 ¢ # x, and x,, ., ., .~ are equivalent. Now G™ in

Xomm: G™— X" X Y™

splits as the free product G, * G, where Gy = Gp({g.,g;l.:i = n}) and
G, =Gp({g;.,)), and this free product decomposition has the property indicated
in the conclusion of the lemma. Thus if (r,) is @ **-equivalent to (y,,...,y,,1,...,1)
then by the above argument, the equivalence between ¢ # x,and x,,, ., can
be used to pull back the desired free product decomposition of G™*?“,

Gm+2/

Suppose, on the other hand, that admits the desired free product
decomposition. Then under a change of basis, ¥ # x_ is represented as the free
splitting homomorphism

g—-> @, )e=n+7/) i, —mLy)i=n+7) giin.,— 1,1)

By an obvious change of basis we can replace the 1’s in the (x,,1)’s by y,’s to
get images (x;,5;) ({ = n + /). But now we have a Mihailova map so by Theorem
4.1, (r,) and (¥,,...,¥,,1,...,1) are @ **-equivalent.

The relation between the Andrews-Curtis conjecture and the Grusko-Neumann
theorem is now seen by specializing Theorem 5.3 to the case p = n.

SECTION 6. CONCLUDING REMARKS

We return for a moment to free presentations for Heegaard splitting homomor-
phisms (Section 2). Let §: G>* — X" X Y” be a free presentation for a constrained
splitting homomorphism w, (@) — X" X Y" as in (1) where =, (Q) = G**/Cl(q). If
¢ is in normal form with associated group presentation Z(}) = (Y " (r,)), and

if g has the form, H Ei8isnt g;l g +.,thenthe presentation 2(¥) is the geometric

presentation described by Singer [28, Sec. 2] for the fundamental group of a
3-manifold M corresponding to the homomorphism 7, (@) — X" X Y". To see this
use Jaco’s construction to reconstruct from =, (@) - X" X Y”" a geometric Heegaard
splitting M = U +,,,.. V of M into cubes with handles U and V where U and
V are identified along their boundaries via homeomorphisms ¢;: @ — BdU and
t,: @ — BdV. Here X" is identified with w,(U) and Y”" with =, (V) so that if i
and j denote the inclusion maps from BdU to U and BdV to V, then

Labis X Jaloy:m, (@) X" X Y

is the splitting homomorphism described above. The generators g,,, correspond
to simple closed curves in @ that are mapped to meridians in BdU by ¢,, and
under the identification above, Z({) is the presentation described by Singer.

It is, in fact, not difficult to show that every geometric presentation for the
fundamental group of an arbitrary 3-manifold M that arises from a Heegaard
splitting of M in the manner described by Singer is obtained as Z() for some
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normalized free splitting homomorphism s that freely presents a Heegaard splitting
homomorphism for M. Thus by Lemma 2.1 and Theorem 4.1, the geometric group
presentations for the fundamental group of M are all @**-equivalent. We have
then rederived the previously known result that the @**-class of a geometric
group presentation for the fundamental group of a 3-manifold is a topological
invariant of the 3-manifold. Metzler also makes this observation in {19, (6)] for
presentations arising from spines of 3-manifolds. The @ **-classes in the two cases
are the same, for spines can be constructed from Heegaard splittings and vice
versa so that the @ **-classes of the group presentations are not changed.

But Lemma 2.1 and Theorem 4.1 show that the topological invariance referred
to in the preceding paragraph applies to a much broader class of group presentations
than just the geometric ones in Heegaard splittings, for there are many possible
surface group relators ¢ in the model above so that for these choices of ¢, the
elements g,,, in G** do not correspond to geometric simple closed curves in Q.

The discussion above suggests a new way to try to show that a balanced group
presentation & = (Y ": (r;)) is @ **-equivalent to a geometric presentation for the
fundamental group of a closed 3-manifold: Do not alter #Z except possibly to stabilize
Pto (Y4 () (Yns1s--sYns))). Consider free splitting homomorphisms of the
form ¥: G** — X" X Y" where U(g;) = (x,v;) (( = n) and $(g,,,) = (1,r;). Here
the v/s are arbitrary subject to the constriction that {v,} U {r,} generate Y".
Now search for true quadratic words ¢ in G** under various free bases (each
generator appears twice—once with exponent +1 and once with exponent —1)
to see if one of these belongs to ker . If one turns up, and if its spelling length,
4n, is minimal over all free bases for G**, then ¢ is a geometric realization of
a Heegaard splitting homomorphism corresponding to a closed 3-manifold M, and
Z is @Q**-equivalent to a geometric presentation for w,(M). On the other hand,
if Zis @ **-equivalent to a geometric 3-manifold presentation, then when unlimited
stabilization is allowed as described above, a true quadratic word g as above must
turn up in ker ¢ and so the construction above must lead eventually to a geometric
3-manifold presentation @ **-equivalent to Z

One final question: Suppose that {: G>* — X" X Y" is a free presentation for
a Heegaard splitting homomorphism associated with a homotopy 3-sphere M. By
[30, Th. 1] or Lemma 3.3, ¢ is surjective. Is ¢ stably equivalent to x, ? By Theorem
4.1 this is equivalent to asking whether a geometric group presentation for m, (M)
is @ **-equivalent to (Y": (y,)).

APPENDIX. AN ALTERNATE DESCRIPTION OF EXTENDED
NIELSEN TRANSFORMATIONS

Wright [34] and some others use a description of extended Nielsen transforma-
tions that does not involve isomorphisms of the base groups. We will show here
that this alternate description leads to the same thing as @ **-equivalence.

In the Appendix here we will understand a finite group presentation to be
an expression of the form # = (y,,...,y, :(r,...,r,)) where y; , ...,y are distinct
elements in the infinite set {y,,...,y;,...}, and (r,...,r,) is a p-tuple of elements
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in the group Gp ({y;,, ..-,¥; }). We will not distinguish between presentations that
differ by a permutation on the order of the generatorsy, ,...,y; .

Consider the following six operations on a group presentation

P =AYiys-di, (P, sT)):

(0) Interchange two relators r; and r,.
(1) Replace a relator r, by ¢ 'r,t where t € Gp({y.-l, ...,yin}).
(2) Replace a relator r, by r;*.

(3) Add a new generatory; & {y;,....5, }and add a newrelator r,,,, =y, w
where w € Gp({y,,...,7:,})

(4) Inverse of (3).
(5) Replace a relator r, by r,r; where j # k.

We define two presentations to be EN-equivalent if one can be obtained from
the other by a finite sequence of operations of types (0)-(5). It is easy to check
by reference to [34, Secs. 4-7] that EN-equivalence is, up to a change in notation,
the equivalence relation used by Wright.

The following lemma shows that EN-equivalence is the same as @ **-equivalence.
With this lemma, Lemma 4.2 here becomes a restatement of Corollary 3.1 in
[33].

LEMMA A.1. Let (r;) and (s;) be tuples of elements in Y™* and Y "? respectively.
Then (r;) and (s;) are @**-equivalent if and only if #(1) = (y,,...,y,: (r;)) and
P(2) = (Y15 -5 Yn,: (5;)) are EN-equivalent.

Proof. First consider the problem of converting an EN-equivalence to a @**-
equivalence. For an arbitrary presentation & = ( Yis oYt (¢)), and an integer
m such that {; = m (1 = j = n), let #,, denote the presentation

(yls "',ym: ((t:): (yklr ---)))

obtained by activating via operations of type (3) each generator y, (k < m) such
that y, € {5;,,...,y; } and adding each such y, as a relator. Two facts are clear
from this construction:

() If m, and m, are such that both &, and &, are defined, and if (u,)
and (v,) are the relator tuples in &, and &, , then () and (v,) are @ **-equivalent.

(II) Any &£, is EN-equivalent to &

Consider an elementary operation of type (0)-(5) converting a presentation Z(a)
to a presentation #(b). We claim that if m is sufficiently large so that both
Z(a),, and Z#(b),, are defined, and if («;) and (v;) are the relator tuples in #(a),,
and #(b),, respectively, then (z;) and (v;) are @ **-equivalent. Except for the case
where the operation is of type (3) or (4) this is clear since the other operations
correspond to @-transformations on (¢;). We need only consider a type (3) operation,
for a type (4) operation is the inverse of a type (3) operation converting £ (b)
to Z(a). Up to permutation, (v;) results from (), in the type (3) case, by replacing
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some element y; with Y, W where w is a word in {y;:i=mandi #i;}. Define
an automorphism A: Y™ Sy” by My} =, ((# i;) and N(y;) =y, w. Then A\ ()
is a permutation of (v;) so (¢;) and (v;) are Q**-equlvalent by Lemma 1.1.

Suppose now that the presentations #(1) and #(2) in the hypotheses of the
lemma are EN-equivalent. Let £2(1) = #(1,0)...#(1,¢) ... #(1,e) = #(2) be a se-
quence of elementary operations converting #(1) to #(2). Let m be an integer
larger than the index of any generator that is active in the sequence above. By
the considerations in the preceding paragraph together with an induction argument,
it follows that the tuples in the presentations #(l,¢),, (0 = ¢ = e) are all
Q**-equivalent. But £(1) = ?(l)nl and Z(2) = .@(2),,2 so by (I) the tuples (r;)
and (s;) are @**-equivalent.

Second, consider the problem of converting @ **-equivalences to EN-equivalences.
Let (r;) and (s,) be @ **-equivalent in the hypotheses of the lemma. We may suppose
that (s;) results from (r;) by a single transformation of Type 1-6. Except for a
Type 4 transformation, the EN-equivalence of #(1) and £#(2) is clear, for the
other transformations correspond to EN-operations. Let (s,) = (A(r;)) where
MY — Y™ is an automorphism. By [23] we may suppose that A\ is induced
by an elementary Nielsen transformation. We consider the Type 2 case of a
Nielsen transformation and leave the inversion case to the reader. Let A(y,) =y,
(t # k) and XA (y,) = y,y,.

Consider the two presentations

L) = Y1yt (r)) and Z(2) = (¥1,.. Y0, (5:)

where now n, = n,. By actlvatmg the generatorsy, +1,...,¥,,, via type (3) operations
that add new relations y, ,,y; ", convert #(1) to

PL1) = Y1y eeerYang: () G er 77N

Now regard each r; as a word in the alphabet { Y15--3Yn, }- Substitute ¥, .,
for each syllable y; (1 =i=n,) to convert (r;) to a tuple (¢,) of elements in
Gp({y,,415-+Y2., ). This substitution induces a sequence of operations of types
(0), (1), (2), and (5) converting #(1,1) to £2(1,2) = (Y150 Yon, (@), (¥ 40Y D).
To see that this conversion can be made by EN-operations consider for example
an expression uy; v and the following sequence of EN-operations (with the unmodified
terms ignored) converting uy;v to uy, ,v:

uy,;v — vuy; (conjugation)
Ymridi = Vi Vi (conjugation)
VY, = VUY, Y] Y v (type (5))
VUY, i —> WYy 4,V (conjugation)
Vi Yngri = Fnyri Vi (conjugation)

The substitution for inverses is similar.

Let {t;:1=i=n,} be the set defined by t,=y, (i# k) and ¢, = y,y,. In the
same manner as with #(1), convert #(2) to #(2,1) = (y,, s Yon, t ((82), (y,,l+,.t,_1))).
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Then regard each s; as being spelled in the alphabet (¢ }. As in the previous
case, substitute y;, ., for each syllable ¢; (1 = i = n,) to convert #(2,1) to

‘@(2: 2) = (y]_, ""y2n1: ((vi)’ (ynl+i t;—l)))'
But now (v;) must be equal to (z;) since the isomorphism \ creates a spelling
correspondence between (r;) in the alphabet {y,} and (s;) in the alphabet {¢,}.

By inversions, convert #(1,2) to #(1,3) = (Y15 -osYan,: (), (y,y,,"lil))) and
P(2,2) 0 P(2,3) = (Y1, Y2n,: (1), (¢; ,:11,” ))). By operations of type (4) destabilize
#(1,3) and £ (2,3) to #(1,4) = (yn1+1 s Yan, s (1)) and

P(2,4) = (Yn 41> -5 Yon, 2 (U)).
In the case of #(2,3) we must drop y, first and then the other generators. But

(u;) = (v,) so #(1,4) = #(2,4) and by transitivity, #(1) and #(2) are EN-equivalent
as desired.
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