SIMPLY CONNECTED SURGERY OVER A RING

Gerald A. Anderson

1. INTRODUCTION

In [1] it is shown that the surgery obstructions for a simply connected problem
are given by the signature, Kervaire invariant or invariants §, lying in a certain
2-torsion group determined in [2]. The first two listed have been treated extensively
in the literature. It is the purpose of this paper to compute the B -invariants
of a normal map f: M— X in terms of M,X and the degree of f (section 3). We
also deduce a product formula. Applications are given to Poincare complexes,
homology spheres, singular manifolds and involutions.

2. SURGERY OBSTRUCTION GROUPS

Let R be a principal ideal domain. A map f: X — Y between path-connected,
simply connected spaces is an R-homotopy equivalence if

f,1:mX)®R=m,(Y)®R for all i.

Suppose 7, X = 0 and (X,dX) satisfies Poincare duality with coefficients in R,
given by cap product with [X,dX] € H_ (X,0X). Let f: (M,0M)— (X,0X) be a map
so that

(i) (M,0M) is a compact n-manifold,
(ii) f, [M,0M] is a unit in H_(X,0X;R) =R,
(ii1) there is a bundle £ over X and a bundle map b: v, — £ covering f,
and
(iv) f|oM is an R-homotopy equivalence.

In [1] we construct a cobordism group L, (1;R) so that if n = 5, f is normally
cobordant to an R-homotopy equivalence if and only if an obstruction in L (1;R)
vanishes. Let K be the set of primesp sothat R® Z/p = 0; thenL . (1;R) = L _(Z k)
whereZ, =Z [1/p: p € K], and L, (Z) is K-theoretic group of [10]. The following
is proved in [1]:

THEOREM 2.1. (i) L,,,,(Z,) =0
() LyolZg)=Z/20®Z,
(i) L,,(Zx) = W(Zy).
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Here W(Zy) denotes the Witt-Wall ring of non-singular even quadratic forms
over Z x, modulo kernels, and is computed in [2]:

W(Zy) CaxZ® @ W(F,)
PEK

where

K =0mod (2)
K =3 mod (4), K # 0 mod (2)
K # 3 mod (4), K # 0 mod (2), K = 1 mod (4)

otherwise.

@ & DN e

We write K = a mod (b) if p = a mod (b) for some p € K and

Z]2 p=2
W(F,) ={ Z/20Z/2 p=1mod )
Z/4 p = 3 mod (4).

The map W(Zy) — ax Z is given by the signature, and B,: W(Zy) — W(F,) is
defined as follows: Let q be a non-singular quadratic form over Z, . Diagonalize
q (over ®) as (a,,...,a, ), where a, =b,/c?, b, €Z. Then for p # 2, if n, is the
greatest power of p that divides b;, welet B,(q) € W (F,) be the form @ (p~"i.b;).

We also define a,(q) = B, (pq) (p # 2), and njodd
az(q) = dim (q) mod (2), B,(q) = m mod (2),

where m is the largest power of 2 that divides det (q).

3. COMPUTATION OF THE SURGERY OBSTRUCTIONS

Let M** be a closed oriented rational Poincare complex and A = H**(M;Q).
Then the pairing

B(x,y) = (x Uy, [M]) xyE A

is a non-singular symmetric bilinear form on A, and thus defines a quadratic
form q on A by q(x) = B(x,x). Define the Hasse-Minkowski invariants of M by

o, (M) =a,(@ and B,(M)=p,(q).

By definition, «,(M) = B, (M) = 0 if dim (M) # 0 mod (4).

If M has non-empty boundary, we can define a bilinear form B’ on

A’ =H>™M,M;Q)
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by the composition

i*

H*M,0M;Q)— H**(M;Q) = Hom (H,, (M;Q),Q)
= Hom (H** (M;0M;Q),Q).

This form induces a non-singular quadratic form q on A = A’/ker (i*). Define

a,(M) = o,(q), B,(M) = B,(q).
LEMMA 3.1. If M = 9N, then o,(M) =B, (M) = 0.
Proof. Consider the following diagram (with rational coefficients throughout):
j*
H2k(N) h H2k(M) — H2k+l(N’M)

—_— _— ~

Hyia (NLM) — H,, (M) — H,, (N),

where the vertical maps are given by Poincare duality. Then Im (j*) = ker (j*)
by exactness and Im (j*) = H,,, (M) /ker (j*) under the isomorphism

H*M) - H,, (M).
Thus dim (Im (j*)) = (1/2) dim (H,, (M)), and for x = j*(y) € Im (j*),

(xUx, [M]) = (G*y U j*y, [M])
= (yU y,j« [M]) =0.

By Lemma 5.3 of [10], the quadratic form q corresponding to M is a kernel,
and so is a kernel over Q . Thus by Sylvester’s Theorem, [6],

a,M)=B,M) =0  forp#2.

For p = 2, we have o, (M) = dim (H?*(M)) mod (2) = 0, and B, (M) = 0 since q is

a kernel.
LEMMA 3.2. B,(MxXN) =B Ma,[N) +p,Na, M)
M =
. O X N) = {az( ) o (N) b2
a, (M) a, (N) + B,(M)B,(N) p# 2.

The proof follows from Proposition 3.1 of [2] and the proof of the product formula
for the signature, [8].
THEOREM 3.3. Let X be an oriented Poincare complex. Then

a,(X) =Sign(X) -1 and B,(X)=0.
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Proof. Notice that the quadratic form q associated to X is unimodular over
the integers, so ,(X) = 0 by Lemma 2.2 of [2]. Define

"= q® |Sign (X)|(x1),
where we take + or — according to whether or not Sign (X) < 0. Then

Bo(q") = B,(q) + [Sign X)| B, (1) =B,(q) =0
and o(q’) = o(q) — Sign (X) =0,

so q’ is a kernel over Q. Thus
0=a,(q") = a,(X) — Sign (X)(1).
More generally, if X is a Poincare complex over Z i, then §,(X) = 0 forp € K.

However, o, (X) need not equal Sign (X) - 1.

For X a smooth manifold, Theorem 3.3 follows independently of the Hasse-Min-
kowski principal. First of all, dimensional considerations show that «, and 8,
vanish on tor (Q5°). Let Q5" be the subring of Q ;° generated by CP*™, n = 0,1, ....
By [8], Q.F — 03° has cokernel an odd torsion group, and thus a, and B are
determined by their values on complex projective spaces.

In contrast to this we have the following result:

THEOREM 3.4. (1) If p is an odd prime, then there exist smooth manifolds
M,0M) with o, (M) # Sign (M) - 1 and B,(M) #0.

(2) Let p be a set of primes and n € Z, x, € W(F,) so that (n,x,) cp is in
W(Zy). Then there exists a closed, oriented, Z -homology manifold M**, k > 0,
so that Sign (M) = n and B,(M) = x,.

Proof. (2) follows immediately from the plumbing theorem, coning over the
boundary; see [1], [4] or [10].

(1) also follows from plumbing using the matrix

()
(73

if p = 4k + 1. In the first case, o, = (2),Sign = 2,8, = (2) (and so a, = =1 mod (4))
and in the second case, o, = (2), Sign = 0, B, = (2).

if p = 4k — 1, and the matrix

Remarks. (1) a,(M) = Sign (M) mod (2) is always true.

(2) The form (2) over Q has B, # 0, and so there exists a smooth manifold
with boundary, (M,0M), so that 8,(M) # 0.
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(3) By coning over the boundary, the manifolds in (1) allow us to construct
closed oriented Z x-homology manifolds M, with a,(M) # Sign (M) - 1.

THEOREM 3.5. (Novikov Additivity). Let M and N be oriented manifolds and
f: 90M — aN an orientation reversing homeomorphism. Then
a,(MU;N) = a,(M) + a,(N)
B, M U;N) = g (M) +p,(N).
The proof is similar to the signature case; see [3]. This also generalizes to
partial unions as in [9].

Let (M,0M) be an oriented manifold and (X,0X) a simply connected Poincare
pair over Z, both of dimension 4k = 8. Suppose f: (M,dM) — (X,dX) is a normal
map of degree 1, so that f]dM is a Z -homotopy equivalence. Do surgery on M,
relative to dM, so that f,: H, (M) — H,(X) is an isomorphism for i < 2k, and

A=ker(f,: H,, M;Z;)—> H, (X;Z\))

is a free Z .-module. Self-intersections of 2k-spheres in M that are null-homotopic
in X define a non-singular even quadratic form q over Z .. Define

a,(f) = a,(q)

B, (f) = B,(q)
Sign (f) = o(q).

By 2.1, Sign (f) and B,(f), p € K, are the surgery obstructions for f.

THEOREM 3.6. a,(f) = a,(M) ~ o, (X)
Bp(f) = B, (M) — B, (X)
Sign (f) = Sign (M) — Sign (X).
Proof. Since «,, B, and Sign are cobordism invariants, it follows from [4],

Theorem V.1.3, that o, (f) = «,(q*), B, (f) = B,(q*) and Sign (f) = Sign (q*), where
q* is defined by the pairing

B*: A* X A*—> Q, B*(xy) =(xUy, [M])

and A* = coker (f*: H*(X,0X;Q)— H* M,sM;Q)).

We have H®*(M,aM;Q) = A* ® f*H*(X,0X;Q), and furthermore, this is a
splitting of the bilinear form B on H**(M,0M; Q), since for x € A*y € H*(X, X;Q),
(xU f*y, [M]) = (f*yn (x N [M])) =y nf,(x N [M])
=y N {x N[X])=0.

So a,(M) = a,(q*) + «,(X), etc., since the form on f*H> (X,0X;Q) is the same
as the form on H**(X,0X;Q).
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Note that this result applies only to degree 1 maps. For arbitrary degree, we
use the following notation: If p is a prime number and n is an integer, let d(n)
be the largest integer m = 0 so that p™ divides n; let e, (n) = p % ™n,

COROLLARY 3.7. Letf: (M,0M)— (X,0X) be a degree n normal map as above.
Then

Sign (f) = Sign (M) =+ Sign (X) (+ifn<0, —ifn>0)

a,(f) = ay,(M) + a, (X)
Bo(f) = B, (M) + d,y(n)a, (X) + B, (X)

o () = {ap(M) — (e, (n)) o, (X) if d,(n) =0mod (2),p # 2
) a, (M) — (e,)B,(X)  if d,(n)=1mod(2),p+# 2
B.(F) = {BP(M) —(e,(n))B,(X) if d,(n)=0mod (2),p # 2
’ B, (M) — (e,(n))a,(X) if d,(m)=1mod(2),p# 2.

Proof. Let (Y,0Y) be the Poincare pair over Z 4 [1/n] with underlying space
(X,0X) and fundamental class n[X,0X]. Then f induces a degree 1 map
f’: (M,0M)— (Y,0Y) and o, (f) =a,(f'), etc. If q, q’ are the quadratic forms
corresponding to X, Y, then nq(x) = q’(x). Thus if q has a diagonalization
(a;, ...,a, ), q' has a diagonalization (na,, ...,na, ). The result now follows from
the theorem.

COROLLARY 3.8. Let f:M— N be a degree n normal map between closed
oriented manifolds. Then for p # 2

¢ { Sign (M)(1) — Sign (N)(e,(n)) if d_(n)=0mod (2)
77 A sign (M)(1) if d,(n)=1mod (2)
if d_(n)=0mod (2

B (f) = { ) )
—Sign (N)(e, (n)) if d,(n) =1mod (2).

As a typical application, we have

THEOREM 3.9. Letf: M — N be a normal map of degree n > 0 between simply
connected closed manifolds of dimension 4k, where Sign (N) = 0 mod (4). Then f

is normally cobordant to a Z  -homotopy equivalence, K = {p: d_ (n) > 0}, if and
only if Sign (M) = Sign (N).

Proof. Since 4W (F,) = 0, Corollary 2.8 shows that each B, (f) = 0. By Corollary
3.7, the surgery obstruction is Sign (f) = Sign (M) — Sign (N).

Remarks. (1) If no p € K is 3 mod (4), or 2(e,(n)) =0, for all p, then we
can relax the hypothesis to Sign (N) = 0 mod (2).

(2) If n is a square, then we need no condition on the signature.

THEOREM 3.10. Let f be as in 3.7, N a manifold, and f’: M#N — X induced
from f. Then B,(f") = B (f) + B, (N).

Proof. By Theorem 3.5, B, (M#N) = B,(M) + B, (N). Thus by Corollary 3.7, the
result holds.
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4. PRODUCT FORMULAS
In this section we prove the product formulas for «, and B,; i.e., we determine
the pairing L, (1;Zx) X L, (1;Zx)— L, (1;Zy).

THEOREM 4.1. Letf: (M,0M)— (X,0X), g: (N,0N)— (Y,0Y) be degree 1 normal
maps as above with dim (M X N) = 4k. Then

a,(fXg) = a,(f)ay(@® + ay(f)a,(Y) + a,y(g) ay (X)
o, (fXg) = a,f)a,(g) + B,(£)B,(8) + a, ) a,(Y) + B, (f)B,(Y)
+ a, (@) a,(X)+B,(@)B,X) ifp#2
Bof X g) = B,() e (8) + B8, (f) + B (F) a, (Y) + B, (Y) e, (f)
+ Bp(® e, X) + B, (X) o, (g).
Proof. We prove the second assertion only; the others are similar. First assume

the dimensions of M and N are not 0 mod (4). Then both sides of the equation
are 0. To see this, it suffices to show the form associated to M X N is a kernel.

Ifdim (M) = 47+ 1, dim (N) = 4h — 1, k = /+ h, then, assuming dM = oN = ¢
for clarity,

H*M x N;Q) = @ H'(M;Q) ® H* ' (N;Q) ® @ H*7(M;Q) ® H' (N;Q)

i=2/+1 i=2h+1
and qQuunE®Y) =quEqny) =0 forx e HM;Q),i=2/+ 1.

Thus the form q,, on H**(M X N;Q) is a kernel.

If dim (M) =4/+ 2,dim (N) = 4h — 2, then B is skew-symmetric on
H?>7'(M;Q) and so we find a symplectic basis, xl,. ,x,,yl,. .Y, that is, a
basis with B, (Xi:x5) = qM(yl,yJ)—O and BqM(xl,x) Let S be the
subspace spanned by x,,...,x,. Then qu,yn is 0 on S®H2h '(N;Q), and
H*7" (M;Q) ® H** ' (N;Q) is a kernel. But

H>™M x N;Q) = H>**'(M;Q) ® H*~ 1(N0)® @ H(MQ)@H”"(NQ)

and the argument above shows the second summand is a kernel.

Now, if dim (M), dim (N) = 0 mod (4), then we have

a,(fXg)=a,MXN)—-a,(XXY) by Theorem 3.6
=a,(M)a,(N} +B,M)B,(N) — (¢, X)a (Y) + B,(X)B,(Y))
= (o, (f) + a, (XN (a,(g) + o, (Y)) + (B, (f) + B, XN(B,(g)

+ Bo(Y) — (o, (X) o, (Y) + B, (X) B, (Y))
= a, (D) a,(8) +B,()B,(8) + o, () e, (Y) + B,(F)B,(Y)
+ o, (8) o, (X) + B, (g) B, (X).

A similar result holds for arbitrary degree.
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COROLLARY 4.2. Let f: M,0M)— (X,0X) be a degree n normal map and
(N,aN) a manifold. Then

ay (X 1) = oy (F) ey (N)
a, (EX 1y) = a,(f) o, (N) + B,()B,(N)  ifp # 2
Bp(f X 1y) = B, () o, (N) + B, (N)a,(f).

COROLLARY 4.3. If N is closed, then

a, (X 1) = o, () o, (N)
B, (X 1y) = B,()a, ).

5. APPLICATIONS

In this section we give a number of applications of the previous sections.
a. Structures on Poincare Complexes.

Let (X,0X) be a Poincare pair over Z of dimension n = 5, 9X # #, w,(X) =0,
X a manifold. Suppose the Spivak normal fibration of X is Z,-fiber homotopy
equivalent to a topological bundle, rel dX.

THEOREM 5.1. (X,0X) is Z-homotopy equivalent to a con@'pact n-manifold
pair.

If n # 0 mod (4), the condition X # # can be dropped. This also holds for
n = 0 mod (4), provided we replace “manifold” with “Z -homology manifold.”

Proof of Theorem 5.1. Let f: (M,0M) — (X,0X) be a normal map as in Section
2. Assume first that n = 0 mod (4). Let x be the surgery obstruction of f and
let (N,0N) be an n-manifold pair with g, (N) = —f_(x), Sign (N) = —Sign (x).
By Theorem 3.10, the result follows.

If n # 0 mod (4), the usual argument shows that stronger result above. The
dX = @ case follows from Theorem 3.4 (2).

b. Homology Spheres and Manifolds.

Let ¥ denote the group (under connected sum) of H-cobordism classes, over
Zy, of PL n-manifolds with the Z -homology of S”. Let

W(Z«,Z) = coker (W(Z)— W (Zy)).
THEOREM 5.2. For n > 1, there is an injection W(Zx,Z) — b5 _,.

Proof. Define ¢: W(Z ) — ¥, sending x to aM:", where M " is obtained
by plumbing with x. ¢ is well-defined: Suppose M,, M, are stably paralleliz-
able, with intersection pairing x. We can then do surgery on M, #(—M,) to show
[0M,] = [0M,]in ¥ S _,. ¢ is a homomorphism by Theorem 3.10.

Clearly W(Z) C ker (¢). Suppose ¢ (x) = 0; i.e. [0M,] = [S™ ']. Let W be an
H-cobordism over Z ;. between dM , and S". Then M, U W U D" is a closed manifold
with intersection pairing x, so that x € W(Z). Hence ker () = W(2Z).
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In [5], it is shown that a closed homology manifold of dimension n = 5 has
the simple homotopy type of a closed n-manifold. For K # &, this is false:

THEOREM 5.3. Let K # &. Then there exist closed Z -homology manifolds
M** that are not Z ,.-homotopy equivalent to a closed topological 4k-manifold.

Proof. First assume that there is some prime p = 3 mod (4) in K. Let M*
be a Z ,-homology manifold with o, (M) = ,(M) = (2) = £1 € Z /4. (See the proof
of Theorem 3.4.) Suppose f: N— M is a Z-homotopy equivalence of degree n,
where N is a topological manifold. Then

0=, =8,(N) — (e, (m)B,(M) = — (e, (n)), (M)

by Theorem 3.3 and Corollary 3.7. This is a contradiction since +1 is not a zero
divisorin W ([F,). The same argument holds if p = 1 mod (4) since (2) is the generator
of one of the summands of W([F,), and W([F,) =[F,[Z /2] as a ring.

The final case to be considered is when K = {2}. Let M ** be obtained by plumbing
4 0
via the matrix (O 0 ).Then B.M) =1,a,(M) =0,andif f: N—> MisaZ,-homo-

topy equivalence as above, then
0=83,()=pB,(N) +d,(n)a,(M) +B,(M) = 1.

¢. Singular Manifolds

Let M", N be Z/m-manifolds with «,(N) =0, w,(8N) =0, n= 5, and let
f: M — N be a normal map of degreer €2 ;. (See [7].)

THEOREM 5.4. f is normally cobordant to a Z .-homotopy equivalence if and
only if an obstruction in

tor (W(Z,)® Z/m n = 1 mod (4)
Z]20Z,®Z/m n = 2, 3, mod (4)
W(Z)® Z/m n = 0 mod (4)

vanishes.

Proof. Suppose M, N are obtained from M,, N by identifying m isomorphic
boundary components. We regard f: (M,,dM_ ) — (N,,dN_). Let aM’,, dN’, be corre-
sponding boundary components.

Case 1. n = mod (4):
The obstructions to completing surgery on f|{dM’: dM/ — dN’, are

Sign (IM) — Sign (8N’)

d {Bp(aM:,) — (e, (x))B,(BN") d,(r) = 0 mod (2)
a
B,(8M;) — (e,()a,(BN},)  d,(r) =1mod (2)
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Since m M/, m aN/ are boundaries, Sign (dM!) = Sign (dN’) = 0, and
mB,(0M)) =mB,(6N]) = ma, (0N,) = 0.

Thus there is an obstruction in (tor ({N (Zy)) ® Z/m. If this vanishes, there is

no further obstruction for f.

Case 2. n= 2 mod (4):

Do surgery on f|oM.. The surgery obstruction of f relative to the boundary
now lies in Z/2 ® Z,. The argument of [7] shows that it vanishes if m is odd.

Case 3. n = 3 mod (4): Same as Case 2.
Case 4. n = 0 mod (4).

We may do surgery on f|dM/ to get a Z .-homotopy equivalence. By Theorems
3.4 and 3.5, we may change the surgery obstruction of f by any element of mW (Z).
Thus the obstruction is given as stated,

d. Involutions.

Let T be an involution on a Z ;-homotopy sphere 2. We say that T desuspends
mod (K) if there is an invariant embedded Z . -homotopy sphere 2" C ="

THEOREM 5.5. Let n=6. Then T desuspends mod (K) if and only if an
obstruction in

0 n = 0 mod (2)
Z/2®Zy n = w; mod (4)
W(Zg) n = —w; mod (4)

vanish, where wy € {x1} is 1 if and only if T preserves orientation.
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