DISCRETE MAPS ON MANIFOLDS

P. T. Church

1. INTRODUCTION

Let M^n and N^n be second countable manifolds, and let $f: M^n \to N^n$ be a map (continuous function). The *branch set* $B_f \subset M^n$ is the set of points at which f fails to be a local homeomorphism; and f is *countable* (respectively, *discrete*) if $f^{-1}(y)$ is countable (respectively, consists of isolated points) for each $y \in N^n$.

- 1. THEOREM. If f is countable, then int $B_f = \emptyset$, i.e. dim $B_f \le n 1$.
- 2. THEOREM. If f is discrete, then dim $B_f = \dim f(B_f) \le n 1$. Specifically, f is open if and only if dim $B_f = \dim f(B_f) \le n 2$.

In [13] Väisälä proved Theorem 1 for $n \le 3$, and conjectured it for general n. The present proof for arbitrary n is shorter than Väisälä's proof, but builds on his earlier lemmas, and his clever ideas. The second sentence of Theorem 2 is already known (see (12)). Examples ((9) and (10)) show that the Theorems are sharp, and a mistake in a paper of Trohimčuk [11] is discussed. The author is grateful to the Institute for Advanced Study for its hospitality during the summer of 1977.

3. Notation and terminology. A map $f: M^n \to N^n$ is light if

$$\dim f^{-1}(y) \le 0$$
 for every $y \in N^n$.

Alexander-Spanier cohomology with integer coefficients and compact supports is used, and \tilde{H}^m is augmented. The real numbers are denoted by \mathbb{R} , $[0, 1] \subset \mathbb{R}$ by I, the unit sphere in \mathbb{R}^{n+1} by S^n , and the distance between x and y by d(x, y). A subset $A \subset B$ is residual if B - A is of the first category in $B \neq \emptyset$ [8].

2. THE PROOF OF THEOREM 1

4. LEMMA. Let $K \neq \emptyset$ be compact and let $B \subset I^m$ be residual (m = 0, 1, ...). If $f : K \to I^m$ is a light map with $f \mid f^{-1}(B)$ injective, then $\tilde{H}^m(K) = 0$.

Proof. We use induction on m. For m = 0, I^0 is a single point, so $B = I^0$ and (since $f | f^{-1}(B)$ is injective), K is also a single point.

Suppose the lemma is true for m-1, and consider $m \ge 1$. According to the Kuratowski-Ulam Theorem [8; Vol. I, p. 247, Corollary 1a] there is a residual set $C \subset I$ such that $B \cap (\{x\} \times I^{m-1})$ is residual in $\{x\} \times I^{m-1}$ for each $x \in C$.

Received August 5, 1977. Revision received October 6, 1977.

Michigan Math. J. 25 (1978).

Let $J \subset I$ be any interval with $H^m(f^{-1}(J \times I^{m-1})) \neq 0$, and let

$$0 \neq \alpha \in H^m(f^{-1}(J \times I^{m-1})).$$

There are subintervals J_1 and J_2 with $J_1 \cup J_2 = J$, $J_1 \cap J_2$ a single point $b \in C$, and length $\ell(J_r) < 2\ell(J)/3$ (r = 1, 2). By inductive hypothesis,

$$\tilde{H}^{m-1}(f^{-1}(b \times I^{m-1})) = 0 \quad (\text{or } f^{-1}(b \times I^{m-1}) = \emptyset),$$

so in the Mayer-Vietoris Sequence inclusion induces a monomorphism

$$H^{m}(f^{-1}(J \times I^{m-1})) \to H^{m}(f^{-1}(J_{1} \times I^{m-1})) \oplus H^{m}(f^{-1}(J_{2} \times I^{m-1}))$$
.

Thus for either r = 1 or r = 2, $i_r^*(\alpha) \neq 0$.

Now suppose that $H^m(K) \neq 0$, i.e. there is an $\alpha \neq 0$ in

$$H^{m}(K) = H^{m}(f^{-1}(I \times I^{m-1})).$$

From the preceding argument there is a sequence of intervals I_s (s = 0, 1, ...) such that $I_0 = I$, $\ell(I_s) \le (2/3)^s$, and inclusion induces homomorphisms

$$i_s^* : H^m(K) = H^m(f^{-1}(I \times I^{m-1})) \rightarrow H^m(f^{-1}(I_s \times I^{m-1}))$$

with $i_s^*(\alpha) \neq 0$. If $\{c\} = \bigcap_s I_s$, $H^m(f^{-1}(c \times I^{m-1})) \neq 0$ by the Continuity Theorem [10; p. 318, Theorem 6]. Since each $f^{-1}(y)$ is at most 0-dimensional,

$$\dim (f^{-1}(c \times I^{m-1})) \le m-1$$

[9; pp. 91-92], and a contradiction results [9; p. 152]. Thus $H^m(K) = 0$.

5. LEMMA. Let $G \subset \mathbb{R}^n$ be open, let $f: G \to f(G) \subset \mathbb{R}^n$ be a light map such that f(G) is open in \mathbb{R}^n , and let $B \subset f(G)$ be a residual set such that f is open at each point of $A = f^{-1}(B)$ and $f \mid A$ is injective. Then f is a homeomorphism.

Proof. For each $W \neq \emptyset$ open in G, dim f(W) = n [9; pp. 91-92], so that B meets int f(W); thus A meets W, and since W is arbitrary, A is dense in G. Since $f \mid A$ is injective, if f is open, then f is a homeomorphism [13; p. 542, (2.5)].

Thus we may suppose that f fails to be open at some x in G, *i.e.*, there is an open neighborhood W of x in G such that $f(x) \notin \text{int } f(W)$. For any r > 0 sufficiently small and

$$V = \{y \in f(G) : d(f(x), y) < r\},\$$

 $V \subset f(G)$, the component U of $f^{-1}(V)$ containing x has \bar{U} compact, $\bar{U} \subset W$ [13; p. 543, (3.3)], and $V - f(\bar{U}) \neq \emptyset$, so we may suppose that $\partial V - f(\bar{U}) \neq \emptyset$. By the Kuratowski-Ulam Theorem [8; Vol. I, p. 247, Corollary 1a] we may also choose r so that B meets ∂V in a residual set.

Now $f(bdy U) \subset \partial V \approx S^{n-1}$, so there is an (n-1)-cell $I^{n-1} \subset \partial V$ with

$$f(bdy U) \subset I^{n-1}$$
.

From (4) applied to $f \mid bdy \ U : bdy \ U \to I^{n-1}$ with residual set $(B \cap I^{n-1})$, $\tilde{H}^{n-1}(bdy \ U) = 0$. A contradiction results from the exact sequence

$$\tilde{H}^{n-1}(bdy\ U) \to H^{n}_{c}(U) \to H^{n}(\bar{U}).$$

$$\parallel$$

$$\mathbb{Z}$$

- 6. LEMMA (Väisälä [13; p. 543, (3.4)]). Suppose $G \subset \mathbb{R}^n$ is open and $f: G \to \mathbb{R}^n$ is a countable map. Then there is a set B residual in int f(G) such that $f^{-1}(B) = A$ is residual in G and G is open at each point of G. Moreover, the set $G \subset G$ at which $G \cap G$ is locally injective is dense in $G \cap G$ and open in $G \cap G$.
- 7. Proof of Theorem 1. Suppose int $B_f \neq \emptyset$ for some f. Since the question is local, we may suppose that $f: G \to \mathbb{R}^n$, where G is open in \mathbb{R}^n , and, by further restriction, that $B_f = G$. For the set A given by (6) there is a set D open in G such that $D \cap A \neq \emptyset$, and $f|D \cap A$ is injective. Since f is open at each point of A,

$$D \cap f^{-1}(B \cap int f(D)) = D \cap A$$
.

For $G' = D \cap f^{-1}$ (int f(D)) and $h: G' \to h(G')$ the restriction of $f, B_h = G', h(G')$ is open, and h and $B' = B \cap h(G')$ satisfy the hypotheses of (5). Then h is a homeomorphism, and a contradiction results.

3. THE PROOF OF THEOREM 2

8. LEMMA. If $f: M^n \to N^n$ is discrete, then int $f(B_f) = \emptyset$.

Proof. Suppose there exists a discrete f with int $f(B_f) \neq \emptyset$. Since M^n is second countable, there is an $x \in M^n$ such that int $f(X \cap B_f) \neq \emptyset$ for every open neighborhood X of x in M^n . By restriction to a sufficiently small X, we obtain a map $\alpha: X \to \mathbb{R}^n$, where X is open in \mathbb{R}^n , and by further restriction we may suppose [13, p.543, (3.3)] that α is proper. There is an open n-cell $D \subset \operatorname{int} \alpha(B_\alpha)$, and the restriction of α to $\alpha^{-1}(D)$ will again be denoted by f. Then f maps G into D^n , where G is open in \mathbb{R}^n , D^n is the open unit n-ball, and $f(G) = f(B_f) = D^n$. Let $B \subset D^n$ be the residual set given by (6), and let $B_i \subset B$ be the set of y such

that
$$f^{-1}(y)$$
 has at most i points. Since f is discrete and proper, $B = \bigcup_{i \ge 1} B_i$.

For $y \in B - B_i$, let x_j (j = 1, 2, ..., i + 1) be points of $f^{-1}(y)$, and let V_j be mutually disjoint open neighborhoods of x_j . Since f is open at each point of $f^{-1}(y)$

(by definition of B),
$$y \in \bigcap_{i}$$
 int $f(V_i) = U$, and hence $U \subset D^n - B_i$. Thus $B - B_i$

is open in B, so that each B_i is closed in B. Since B is residual in D^n , it follows from the Baire Category Theorem that some B_i is somewhere dense in D^n , i.e.

for some open $V \subset D^n$, $\bar{B}_i \supset V$. Since B_i is closed in $B, V \cap B = V \cap B_i$.

Let $g: f^{-1}(V) \to V$ be the restriction of f (so that $V = g(B_g)$), and choose $y \in V \cap B$ such that $f^{-1}(y)$ is maximal, say $\{x_1, ..., x_m\}$ where $m \le i$. Let V_j be mutually disjoint open neighborhoods of x_j , let $W = \bigcap_j \operatorname{int} g(V_j)$, let $W_j = V_j \cap g^{-1}(W)$, and let $h_j: W_j \to W$ be restrictions of g. Now $h_j(W_j) = W$ and $h_j \mid (W_j \cap g^{-1}(B))$ is injective, so by (5) each h_j is a homeomorphism. This contradicts $W \subset V = g(B_g)$.

Lemma 8 (and Theorem 2) cannot be extended to countable maps:

9. Example. There is a countable, proper map $f: \mathbb{R} \to \mathbb{R}$ with $f(B_f) = \mathbb{R}$.

Proof. We actually define $f: I \to I$, where I = [0, 1], $f^{-1}(0) = \{0\}$, and $f^{-1}(1) = \{1\}$. Let C be the Cantor set, viewed as the set of sequences of 0's and 1's, and define a continuous surjection $g: C \to I$ by $g(\{a_n\}) = \sum_{n \ge 1} a_n \cdot 2^{-n}$. For each component (interval) J of I - C, $g(\partial J)$ is a single point. Extend g to \bar{J} by folding \bar{J} in half, i.e. each of the two half intervals of \bar{J} is mapped isometrically onto its image interval. This defines a map f of I onto I.

Each $g^{-1}(y)$ has at most two points, each $f^{-1}(y) \cap J$ has at most two points, and there are a countable number of intervals J; thus f is countable (and some $f^{-1}(y)$ are not discrete). Each midpoint of each J is in B_f , and C is the set of limit points of these midpoints; thus $C \subset B_f$, so that $I = f(B_f)$, as desired.

- 10. Remark. Theorem 1 is false for light maps: by folding enough we may define a light map $f: \mathbb{R} \to \mathbb{R}$ with $B_f = \mathbb{R}$. In fact, as Väisälä noted in a letter to the author, any nowhere differentiable map serves as a counter example.
- 11. Lemma. If $f: M^n \to N^n$ is light, dim $B_f \le n-2$, and dim $f(B_f) \le n-1$, then f is open.

Proof. Suppose that f is not open, at $\bar{x} \in M^n$; then there is an open neighborhood W of \bar{x} such that $f(\bar{x}) \notin \text{int } f(W)$. Choose an open n-cell neighborhood V of $f(\bar{x})$ in N^n sufficiently small that the component U of $f^{-1}(V)$ containing \bar{x} is contained in the interior of a closed n-cell of M^n . Then $g: U \to V$ defined by restriction of f is proper, and since $g(U) \neq V$, deg g=0. According to [6; pp. 32-33, (5.7) (and the following paragraph)], if there are points $x, y \in U$ with the local degrees $d_x = 1$ and $d_y = -1$, then $H_c^{n-1}(B_g; G) \neq 0$ for any module $G \neq 0$ over a commutative ring. Since dim $B_g \leq n-2$, $d_x = 1$ (say) for every $x \in U - B_g$.

Since dim $g(B_g) \le n-1$, dim $g^{-1}(g(B_g)) \le n-1$ [9; pp. 91-92], so there exists $x \in U - g^{-1}(g(B_g))$. Let x(i) (i=1,2,...,m) be the points of $g^{-1}(g(x))$. Since each $d_{x(i)} = 1$, $0 = \deg g = \sum_i d_{x(i)} = m$, and a contradiction results.

12. Proof of Theorem 2. According to [1], [2], and [12], if f is discrete open, then dim $B_f = \dim f(B_f) \le n - 2$. According to [5; p. 531, (2.4)], if f is light and dim $f(B_f) \le n - 2$, then f is open. The second conclusion results.

Thus we may suppose that f is not open, and dim $f(B_f) \ge n - 1$. By Theorem

1 dim $B_f \le n-1$, and by (8) dim $f(B_f) \le n-1$, so that dim $f(B_f) = n-1$. By (11) dim $B_f = n-1$ also.

13. Remarks. In the smooth case more can be said ([4; p. 94, (2.3)] and [3; p. 500, (5.1)]): If $f: M^n \to N^n$ is C^3 light, then $B_f = \emptyset$,

$$\dim B_f = n-2$$
 or $\dim B_f = n-1$;

the last case occurs if and only if f is not open.

The topological case differs: for $n \ge 5$ there are discrete open maps $f: S^n \to S^n$ with $B_f \approx f(B_f) \approx S^{n-4}$ [7; (5.6)].

4. TROHIMČUK'S PAPER

14. Remark. In [11] Trohimčuk claims to prove that there is no discrete open map $f: M^n \to N^n$ with $n \ge 3$ and dim $B_f = 0$ (and thus dim $f(B_f) = 0$). We now note that there is a gap in his proof (the author agrees), so the question is apparently still open.

The gap occurs in the proof of [11; Lemma 6], specifically in the middle of page 287 where he claims that \bar{Q} is a closed 2-cell ("... $Q \cup L_0$ is homeomorphic to a closed disk, and the boundary of Q coincides with L_0 ..."). For an example, define $f:\mathbb{R}^3 \to \mathbb{R}^3$ by $f(u+iv,t)=((u+iv)^2,t)$, so $B_f=f(B_f)=\{(0,0)\}\times\mathbb{R}$. Let Λ be the union of the line segment joining (0,0,1) to (0,1,0) and that joining (0,0,-1) to (0,1,0); in a sufficiently fine triangulation of \mathbb{R}^3 the regular neighborhood \bar{V}_r of Λ will be closed 3-ball meeting $\{(0,0)\}\times\mathbb{R}$ in two disjoint line segments, each contained in $V_r=\inf \bar{V}_r$ except for its endpoints on bdy $(V_r)=(V_r)_g=S_1$. Then $G_r=f^{-1}(V_r)$ is the interior of a solid torus \bar{G}_r meeting $\{(0,0)\}\times\mathbb{R}$ in two disjoint line segments, each contained in G_r except for its endpoints on

$$bdy(G_r) = (G_r)_r = S.$$

The set of (u, v, t) on S_1 defined by v = 0 and $u \ge 0$ consists of two arcs, as does the set defined by u = 0 and $v \ge 0$. Let $L_1 \subset S_1$ be the union of the two former arcs, together with (either) one of the latter two; then L_1 is an arc containing the four points of $S_1 \cap (\{(0,0)\} \times \mathbb{R})$, in their order on $\{(0,0)\} \times \mathbb{R}$, with two of them as endpoints. Each component Q of $S - f^{-1}(L_1)$ has \bar{Q} a cylinder, not a disk as Trohimčuk claims.

Of course dim $B_f \neq 0$, as is required in the hypothesis of [11; Lemma 6], so this example is not a counterexample. But observe that all that is *used* in the proof of [11; Lemma 6] is:

$$\dim (B_f \cap S) = \dim (f(B_f) \cap S_1) = 0,$$

$$f^{-1}(f(B_f)) = B_f, \quad f: B_f \approx f(B_f), \quad \text{and}$$

$$f: \mathbb{R}^3 - B_f \to \mathbb{R}^3 - f(B_f)$$

is a covering map. Thus the argument of [11; Lemma 6] should apply to this example; since it does not, the gap cited earlier appears to be significant.

5. ANY MAP IS QUASI-OPEN ALMOST EVERYWHERE

- 15. Definitions. For a map $f: X \to Y$ and $x \in X$, the component of $f^{-1}(f(x))$ containing x is denoted by Γ_x . The map f is called *quasi-open* [14] at x if, for every open neighborhood U of Γ_x , $f(x) \in \text{int } f(U)$. A light quasi-open map is open. Lemma 6 (Väisälä [13; p. 543, (3.4)]) has a generalization from light maps to arbitrary maps (continuous functions):
- 16. PROPOSITION. Let X and Y be locally connected, compact metric spaces, and let $f: X \to Y$ be any map. Then there is a set B residual in Y such that f is quasi-open at each point of $f^{-1}(B)$.

Proof. The space Y has a countable base $\{V_i\}$ of open sets with \bar{V}_i compact. Let $U_{i,j}$ be the components of $f^{-1}(V_i)$. Then each $U_{i,j}$ is open, and there are a countable number of them.

Now

$$\begin{aligned} \operatorname{bdy} f(U_{i,j}) &= f(\bar{U}_{i,j}) - \operatorname{int} f(U_{i,j}) \\ &\subset f(\operatorname{bdy} U_{i,j}) \cup (f(U_{i,j}) - \operatorname{int} f(U_{i,j})) \\ &\subset \operatorname{bdy} V_i \cup (f(U_{i,j}) - \operatorname{int} f(U_{i,j})), \end{aligned}$$

so that the closed subset bdy $f(U_{i,j}) \subset Y$ has empty interior. Let

$$F = \bigcup_{i,j} bdy f(U_{i,j});$$

then B = Y - F is residual in Y.

Let $x \in f^{-1}(B)$, and let U be an open neighborhood of Γ_x . There is a $U_{i,j}$ with $\Gamma_x \subset U_{i,j} \subset U$. Since $f(x) \in B$, $f(x) \notin bdy f(U_{i,j})$, so that

$$f(x) \in int f(U_{i,i}) \subset int f(U)$$
.

Hence f is quasi-open at each point of $f^{-1}(B)$.

REFERENCES

- 1. A. V. Černavskii, Finite-to-one open mappings of manifolds, Amer. Math. Soc. Translations, Series (2) 100, 253-267, translation of Math. Sb. 65 (107) (1964), no. 3, 357-369.
- 2. ——, Addendum to the paper, Finite-to-one open mappings of manifolds, Amer. Math. Soc. Translations (2) 100, 269-270, translation of Mat. Sb. 66 (108) (1965), no. 3, 471-472.

- 3. P. T. Church, Differentiable monotone maps on manifolds. II. Trans. Amer. Math. Soc. 158 (1971), 493-501.
- 4. ——, Differentiable open maps on manifolds. Trans. Amer. Math. Soc. 109 (1963), 87-100.
- 5. ——, and E. Hemmingsen, Light open maps on n-manifolds. Duke Math. J. 27 (1960), 527-536.
- 6. ——, and W. D. Nathan, Real analytic maps on manifolds. J. Math. Mech. 19 (1969/70), 19-36.
- 7. ——, and J. G. Timourian, Differentiable maps with small critical set or critical set image. Indiana Univ. Math. J., to appear.
- 8. K. Kuratowski, *Topology*. Vol. I. Translated from French by J. Jaworowski, Academic Press, New York-London, 1966; Vol. II. Translated from French by A. Kirkor, Academic Press, New York-London, 1968.
- 9. W. Hurewicz and H. Wallman, *Dimension Theory*. Princeton Mathematical Series, v. 4. Princeton University Press, Princeton, N.J., 1941.
- 10. E. H. Spanier, Algebraic Topology, McGraw-Hill, New'York, 1966.
- 11. Ju. Ju. Trohimčuk, Continuous mappings of domains in euclidean space, Amer. Math. Soc. Translations (2) 100, 271-291, translation of Ukrain Mat. Ž. (1964), 196-211.
- 12. J. Väisälä, Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. Ser. AI no. 392 (1966), 1-10.
- 13. ——, Local topological properties of countable mappings, Duke Math. J. 41 (1974), 541-546.
- 14. G. T. Whyburn, Open mappings on locally compact spaces. Mem. Amer. Math. Soc., no. 1, 1950.

Department of Mathematics Syracuse University Syracuse, New York, 13210