DISCRETE MAPS ON MANIFOLDS

P. T. Church

1. INTRODUCTION

Let M" and N" be second countable manifolds, and let f: M"— N" be a map
(continuous function). The branch set B, C M" is the set of points at which f
fails to be a local homeomorphism; and f is countable (respectively, discrete) if
£ (y) is countable (respectively, consists of isolated points) for each y € N™.

1. THEOREM. Iff is countable, then int B, = ¢, ie. dimB;=<n — 1.

2. THEOREM. If f is discrete, then dim B, = dim f(B;) = n — 1. Specifically,
f is open if and only if dim B, = dim f (B;) =n — 2.

In [13] Vaisald proved Theorem 1 for n < 3, and conjectured it for general
n. The present proof for arbitrary n is shorter than Vaisald’s proof, but builds
on his earlier lemmas, and his clever ideas. The second sentence of Theorem 2
is already known (see (12)). Examples ((9) and (10)) show that the Theorems are
sharp, and a mistake in a paper of Trohimc¢uk [11] is discussed. The author is
grateful to the Institute for Advanced Study for its hospitality during the summer
of 1977.

3. Notation and terminology. A map f: M"— N" is light if
dimf '(y) =<0 foreveryy € N™.

Alexander-Spanier cohomology with integer coefficients and compact supports is
used, and H™ is augmented. The real numbers are denoted by R, [0, 1] C R
by I, the unit sphere in R"*! by S”, and the distance between x and y by d(x, y).
A subset A C B is residual if B — A is of the first category in B # § [8].

2. THE PROOF OF THEOREM 1

4. LEMMA. Let K # ¢ be compact and let B C I"™ be residual (im =0, 1, ...).
Iff: K— I™ is a light map with £|f " (B) injective, then H™ (K) = 0.

Proof. We use induction on m. For m = 0, I° is a single point, so B = I° and
(since f|f~' (B) is injective), K is also a single point.

Suppose the lemma is true for m — 1, and consider m = 1. According to the
Kuratowski-Ulam Theorem [8; Vol. I, p. 247, Corollary 1a] there is a residual
set C C I such that B N ({x} X I™™") is residual in {x} X I™ ! for each x € C.
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Let J C I be any interval with H™ (f "' (J X I™™)) # 0, and let
0#a € H " (I X I™ ).

There are subintervals J, and J, with J, U J, =J,d, N J, a single point b € C,
and length Z(J,) < 2/7(J)/3 (r = 1, 2). By inductive hypothesis,

H* ' ' XI™')=0 (orf "(bxI™")=¢),
so in the Mayer-Vietoris Sequence inclusion induces a monomorphism
H(f (I XI™" ) > H"f (I, XI"H) @ H"‘(f“.l(J2 x I™™h).

Thus for eitherr=1orr=2,i* (a) # 0.
Now suppose that H™ (K) # 0, i.e. there is an a # 0 in

H™X)=H"(f '@ xI™)).

From the preceding argument there is a sequence of intervals I_(s = 0, 1, ...) such
that I, =1, Z(I,) = (2/3)° and inclusion induces homomorphisms

i*: H*"®) =H"¢f "I x " ')—» H™(¢ 7, xI™))

with i* (@) # 0. If {c} = N I, H*(f '(c X I™")) # 0 by the Continuity Theorem
[10; p. 318, Theorem 6]. Since each f ' (y) is at most 0-dimensional,

dim(f ' ecxI™')=m-1

[9; pp. 91-92], and a contradiction results [9; p. 152]. Thus H™(K) = 0.

5. LEMMA. Let G C R" be open, let £: G— £(G) C R" be a light map such
that £(G) is open in R", and let B C f(G) be a residual set such that f is open
at each point of A = £7*(B) and f| A is injective. Then f is a homeomorphism.

Proof. For each W # @ open in G, dimf(W) =n [9; pp. 91-92], so that B
meets int f(W); thus A meets W, and since W is arbitrary, A is dense in G. Since
f|A is injective, if f is open, then f is a homeomorphism [13; p. 542, (2.5)].

Thus we may suppose that f fails to be open at some x in G, ie, there is
an open neighborhood W of x in G such that f(x) ¢ int f(W). For any r>0
sufficiently small and

V={y€e€f(G):d(fx),y) <1},

V C f(Q), the component U of f~'(V) containing x has U compact, U C W [13;
p. 543, (3.3)], and V — f(U) # @, so we may suppose that 8V — f(U) # ¢§. By the
Kuratowski-Ulam Theorem [8; Vol. I, p. 247, Corollary 1a] we may also choose
r so that B meets aV in a residual set.

Now f(bdy U) C 9V =~ S™}, so there is an (n — 1)-cell I*™* C 9V with
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f(bdy U) C 1™,

From (4) applied to f|bdy U:bdy U —I""' with residual set (B N I"™?),
H* (bdy U) = 0. A contradiction results from the exact sequence

H* '(bdy U)— H*(U) - H"(U).
X l
Z 0

6. LEMMA (Vaisala [13; p. 543, (3.4)]). SupposeG C R"isopenandf:G— R"
is a countable map. Then there is a set B residual in int £(G) such that £ ' (B) = A
is residual in G and f is open at each point of A. Moreover, the set A, C A at
which f| A is locally injective is dense in A and open in A.

7. Proof of Theorem 1. Suppose int B, # @ for some f. Since the question is
local, we may suppose that f: G— R", where G is open in R”, and, by further
restriction, that B; = G. For the set A given by (6) there is a set D open in G
such that D N A # ¢, and f|D N A is injective. Since f is open at each point
of A,

DNf'BnNnintfD)=DNA.

For G’ =D N £ (int f (D)) and h: G’ — h(G’) the restriction of f, B, = G’, h(G’)
is open, and h and B’ = B N h(G’) satisfy the hypotheses of (5). Then h is a
homeomorphism, and a contradiction results.

3. THE PROOF OF THEOREM 2

8. LEMMA. Iff:M"— N" is discrete, then int f(B;) = ¢J.

Proof. Suppose there exists a discrete f with int f(B,) # ¢. Since M" is second
countable, there is an x € M such that int f (X N B;) # ¢ for every open neighbor-
hood X of x in M". By restriction to a sufficiently small X, we obtain a map
a:X— R" where X is open in R”, and by further restriction we may suppose
[13, p.543, (3.3)] that a is proper. There is an open n-cell D C int a(B_), and
the restriction of o to o ' (D) will again be denoted by f. Then f maps G into
D", where G is open in R”, D" is the open unit n-ball, and f(G) = f(B,;) =D".
Let B C D" be the residual set given by (6), and let B; C B be the set of y such

that £ " (y) has at most i points. Since f is discrete and proper, B = U B;.
i=1
For y e B—B,, let x; (j=1,2,...,i+ 1) be points of f7'(y}, and let V, be
mutually disjoint open neighborhoods of x;. Since f is open at each point of £ (y)

(by definition of B), y € n int f(V,;) = U, and hence U C D" — B;. Thus B — B;

i
is open in B, so that each B, is closed in B. Since B is residual in D", it follows
from the Baire Category Theorem that some B, is somewhere dense in D", i.e.
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for some open V C D", B, D V. Since B, is closed in B, VN B=V N B,.

Let g:f ' (V)> V be the restriction of f (so that V=g(B,)), and choose
y € V N B such that f'(y) is maximal, say {(X,, .. X} Where m =<1i. Let V,

be mutually disjoint open neighborhoods of x;, let W= n int g(V;), let

W;=V,Nng" (W) and let h;: W;,— W be restrictions of g. Now h;(W;) =
and h;|(W; N g~ 1(B)) is 1nJect1ve so by (5) each h; is a homeomorphlsm ThlS
contradicts W C V = g(B,).

Lemma 8 (and Theorem 2) cannot be extended to countable maps:
9. Example. There is a countable, proper map f:R — R with f{(B;) = R

Proof. We actually define f:I— 1, where I= [0,1], f '(0) = {0}, and
f7'(1) = {1}. Let C be the Cantor set, viewed as the set of sequences of 0’s

and 1’s, and define a continuous surjection g: C— I by g({a,}) = 2 a, 27" For

n=1

each component (interval) J of I — C, g(3J) is a single point. Extend g to J by
folding J in half, i.e. each of the two half intervals of J is mapped isometrically
onto its image interval. This defines'a map f of I onto I.

Each g ' (y) has at most two points, each f *(y) N J has at most two points,
and there are a countable number of intervals J; thus f is countable (and some
f~'(y) are not discrete). Each midpoint of each J is in B;, and C is the set of
limit points of these midpoints; thus C C B,, so that I = f(B;), as desired.

10. Remark. Theorem 1 is false for light maps: by folding enough we may
define a light map f:R— R with B, =R. In fact, as Viisdld noted in a letter
to the author, any nowhere differentiable map serves as a counter example.

11. Lemma. If f:M"— N" is light, dim B;= n — 2, and dim f (B; )< n—1,
then £ is open.

Proof. Suppose that fis not open, at x € M”; then there is an open neighborhood
W of x such that f(x) & int f(W). Choose an open n-cell neighborhood V of f(X)
in N* sufficiently small that the component U of £ (V) containing X is contained
in the interior of a closed n-cell of M". Then g: U — V defined by restriction
of f is proper, and since g(U) # V, deg g = 0. According to [6; pp. 32-33, (5.7)
(and the following paragraph)], if there are points x, y € U with the local degrees
d,=1landd, = —1, then HZ‘I (B,.; G) # O for any module G (# 0) over a commuta-
tive ring. Since dim B, = n — 2,d, = 1 (say) for every x € U — B,.

Since dim g(B,) =n — 1, dim g '(g(B,) =n — 1 [9; pp. 91-92], so there exists
xeEU-g g (B,)). Let x(i) (i = 1, 2, ..., m) be the points of g ' (g (x)). Since each

d,;; =1,0=degg = 2 d,q = m, and a contradiction results.

12. Proof of Theorem 2. Accordlng to [1], [2], and [12], if f is discrete open,
then dim B; = dim f(B;) = n — 2. According to [5; p. 531, (2.4)], if f is light and
dim f(B;) = n — 2, then f is open. The second conclusion results.

Thus we may suppose that f is not open, and dim f (B;) = n — 1. By Theorem
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1 dim B, =n — 1, and by (8) dim f (B;) = n — 1, so that dim f(B;) = n — 1. By (11)
dim B; =n — 1 also.

13. Remarks. In the smooth case more can be said ([4; p. 94, (2.3)] and [3;
p. 500, (5.1)]): If f: M™ — N" is C? light, then B, = ¢,

dime=i1—2 or dimB,=n-1;

the last case occurs if and only if f is not open.

The topological case differs: for n = 5 there are discrete open maps f: S" — S*
with B, = f(B,) = S"™* [7; (5.6)].

4. TROHIMCUK’S PAPER

14. Remark. In [11] Trohiméuk claims to prove that there is no discrete open
map f: M"— N” with n= 3 and dim B; =0 (and thus dim f(B;) = 0). We now
note that there is a gap in his proof (the author agrees), so the question is apparently
still open.

The gap occurs in the proof of [11; Lemma 6], specifically in the middle of
page 287 where he claims that Q is a closed 2-cell (“... Q U L, is homeomorphic
to a closed disk, and the boundary of Q coincides with L, ...”). For an example,
define f:R®*—>R 2 by f (u + iv, t) =.((u + iv)% t), so B, = f(B,) = {(0, 0)} X R. Let
A be the union of the line segment joining (0, 0, 1) to (0, 1, 0) and that joining
(0, 0, —1) to (0, 1, 0); in a sufficiently fine triangulation of R? the regular neighbor-
hood V, of A will be closed 3-ball meeting {(0, 0)} X R in two disjoint line segments,
each contained in V_ = int V_ except for its endpoints on bdy(V,) = (V,),=S,.
Then G, = f*(V,) is the interior of a solid torus G, meeting {(0, 0)} X R in two
disjoint line segments, each contained in G, except for its endpoints on

bdy(G,) = (G,), = 5.

The set of (u, v, t) on S, defined by v =0 and u = 0 consists of two arcs, as
does the set defined by u=0 and v=0. Let L, C S, be the union of the two
former arcs, together with (either) one of the latter two; then L, is an arc containing
the four points of S, N ({(0, 0)} X R), in their order on {(0, 0)} X R, with two
of them as endpoints. Each component Q of S — f™*(L,) has Q a cylinder, not
a disk as Trohimcuk claims.

Of course dim B;# 0, as is required in the hypothesis of [11; Lemma 6], so
this example is not a counterexample. But observe that all that is used in the
proof of [11; Lemma 6] is:

dim (B, N S) = dim (f(B,) N S,) = 0,
f'(f(B,) =B,, f:B,~f(B,), and
f:R®- B,—» R®-f(B,)
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is a covering map. Thus the argument of [11; Lemma 6] should apply to this
example; since it does not, the gap cited earlier appears to be significant.

5. ANY MAP IS QUASI-OPEN ALMOST EVERYWHERE

15. Definitions. For a map f: X— Y and x € X, the component of f~*(f(x))
containing x is denoted by I',. The map f is called quasi-open [14] at x if, for
every open neighborhood U of I',, f(x) € int £ (U). A light quasi-open map is open.
Lemma 6 (Vaisala [13; p. 543, (3.4)]) has a generalization from light maps to
arbitrary maps (continuous functions):

16. PROPOSITION. Let X and Y be locally connected, compact metric spaces,
and let f: X—> Y be any map. Then there is a set B residual in Y such that
f is quasi-open at each point of £ (B).

Proof. The space Y has a countable base {V,} of open sets with V, compact.
Let U,; be the components of f~'(V,). Then each U;; is open, and there are a
countable number of them.

Now

bdy £(U;;) = £(0;;) — int f(U;;)
C f(bdy Uy;) U (£(U;;) — int £(U,;))
C bdy Vi U (f(Ui,j) —int f(Ul,J)) ’

so that the closed subset bdy f(U,;) C Y has empty interior. Let

F= U bdy £ (U,,);
i,j

then B=7Y — F is residual in Y.

Let x € f7'(B), and let U be an open neighborhood of I',. There is a U;; with
I, C U;; C U. Since f(x) € B, f(x) € bdy f(U,;), so that )

f (x) € int f(U,;) C int f (U).

Hence f is quasi-open at each point of £ (B).
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